УДК 621.121.222(088.8)

М.Ю. Иванцов 1 , О.И. Кадацкая 2 , В.П. Сироклын 1 , Н.Д. Кошевой 1

СИСТЕМА КОНТРОЛЯ И УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Предлагается система контроля и управления расходом топлива, которая обеспечивает защиту от несанкционированного его слива из топливного бака.

система, контроль, топливо, форсунка, расход, персональный компьютер, пульт управления, двигатель внутреннего сгорания

Введение

Рост цен на нефтепродукты коренным образом меняет отношение потребителей к таким ресурсам, как топливо. Его стоимость составляет значительную часть расходов промышленных, транспорт-

ных, сельскохозяйственных предприятий и городских служб. В проблеме расхода топлива значительную роль играет человеческий фактор. Водитель транспорта может легко доказать, что двигатель внутреннего сгорания (ДВС) расходовал на 15...20% больше, чем в реальном случае.

 $^{^{1}}$ Национальный аэрокосмический университет им. Н.Е.Жуковского «ХАИ», Харьков 2 Харьковский национальный университет радиоэлектроники

Только полноценная система контроля и управления расходом топлива может дать информацию о реальном его расходе в ДВС [1].

Таким образом, разработка систем, которые обеспечивают защиту топлива от несанкционированного слива из топливного бака, является актуальной проблемой.

Анализ последних источников исследований и публикаций. Известные системы и устройства [2, 3] для измерения расхода топлива имеют сложность конструкции, недостаточную надежность и точность, отсутствие защиты от несанкционированного слива топлива из топливного бака.

Известна система [4] для измерения расхода топлива, основанная на использовании математической модели ДВС.

В памяти микроконтроллерного вычислительного устройства (МВУ) записана математическая модель двигателя, которая характеризует зависимость расхода топлива за единицу времени от таких параметров, как количество оборотов двигателя n, кругящего момента $M_{\kappa p}$, температуры воздуха перед двигателем T_{κ} :

$$q = f(n, M_{KD}, T_{K}). \tag{1}$$

В процессе работы двигателя сигналы с датчиков оборотов n, крутящего момента $M_{\rm кp}$ и температуры воздуха $T_{\rm k}$ через коммутатор поступают в аналого-цифровой преобразователь (АЦП). В АЦП аналоговые сигналы преобразуются в цифровые и поступают в микропроцессорное вычислительное устройство. В МВУ по математической модели (1) и текущим значениям n, $M_{\rm kp}$, $T_{\rm k}$ вычисляется расход топлива $q_{\rm i}$ за единицу времени. Одновременно система отсчитывает время $t_{\rm i}$, на протяжении которого текущие параметры n, $M_{\rm kp}$, $T_{\rm k}$ не изменялись. Расход топлива за это время определяется по формуле

$$P_i = q_i \cdot t_i, \tag{2}$$

а суммарный расход топлива за весь цикл работы двигателя вычисляется как

$$P_{\Sigma} = \sum_{i=1}^{k} q_i t_i, \tag{3}$$

где k – количество этапов в цикле, которые характеризуются изменением параметров $n,\,M_{\kappa p},\,T_{\kappa}.$

Таким образом, с использованием математической модели $q = f(n, M_{KP}, T_K)$ определяется только то количество топлива, которое расходуется в процессе работы двигателя, а это обеспечивает защиту от несанкционированного слива топлива из топливного база.

Недостатком такой системы является необходимость получения и корректировки математической модели ДВС.

Постановка задачи. В связи с этим необходимо разработать такую систему контроля и управле-

ния расходом топлива, которая позволяет устранить отмеченные недостатки и, в первую очередь, обеспечить защиту от несанкционированного слива топлива из топливного бака.

Основные материалы исследования

Авторами предлагается система контроля и управления расходом топлива, функциональная схема которой представлена на рис. 1.

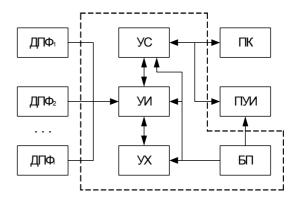


Рис.1. Функциональная схема системы контроля и управления расходом топлива

Во время работы двигателя через форсунку производится впрыск топлива в цилиндр, при этом тарелка пружины совершает поступательное движение. С датчика положения форсунки (ДПФ) сигнал о движении форсунки поступает на устройство измерения (УИ), в котором преобразуется в логический частотный сигнал и измеряется его частота и скважность. Затем рассчитывается угол поворота кулачка вала насоса, ход его плунжера и расход топлива за один впрыск, интегрируя который получаем суммарное количество топлива потребляемое ДВС. Система контроля в процессе работы записывает в устройство хранения (УХ) интервалы времени, которые заданы пользователем, и текущие параметры работы двигателя: общий расход топлива, расход по каждой форсунке, цикловую подачу, частоту вращения двигателя, время его работы.

Устройство связи (УС) используется для связи измерительного блока с пультом управления и индикации (ПУИ) или персональным компьютером (ПК). При этом использован интерфейс связи RS232, протокол обмена Mod Bus RTU.

Блок питания (БП) служит для преобразования входного постоянного напряжения +70В в постоянные напряжения +5В, +3,3В, +1,8В, необходимые для работы всех узлов системы и питания пульта управления и индикации.

Для создания такой системы контроля и управления была разработана форсунка ДВС с целью определения моментов впрыска топлива [5]. Количество таких форсунок со встроенными ДПФ в дизельном двигателе может быть от 8 до 20.

Форсунка (рис. 2) состоит из проточного корпуса 1 с входным и выходным каналами, причем в середине корпуса расположен механизм 2 натяжения пружины 3, который выполнен в виде регулирующего винта с продольным выходным каналом и установлен в корпус. Подпружиненный запорный орган, который состоит из штока 4 и тарелки пружин 5, расположен между пружиной и корпусом. Магнитный узел снятия сигнала выполнен в виде катушки индуктивности 6, которая размещена на корпусе, и постоянного магнита 7, закрепленного на тарелке пружины с помощью гайки 8.

Входной и выходной каналы форсунки выполнены по продольной оси корпуса.

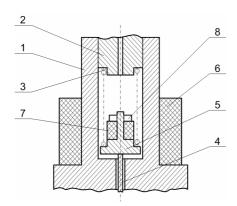


Рис. 2. Упрощенная конструкция форсунки

Форсунка работает следующим образом. Топливо попадает в корпус 1 через входной канал со штоком 4, на который с одной стороны действует давление топлива, а с другой – давление пружины 3. Канал остается закрытым до тех пор, пока давление топлива не превысит давление пружины и закрывается после их уравновешивания. Шток взаимодействует с пружиной через тарелку 5, на которой закреплен постоянный магнит 7, совершающий поступательные движения при каждом открывании и закрывании входного канала. Колебание магнита наводит ЭДС в катушке индуктивности 6, закрепленной на внешней стороне корпуса, а далее сигнал поступает на устройство измерения (УИ).

Исходя из описания работы системы контроля и управления расходом топлива, создано ее алгоритмическое и программное обеспечение.

Алгоритм работы представлен на рис. 3.

Программное обеспечение разрабатывалось на языке С.

Для написания и отладки программы использовалась интегрированная среда Cross Works компании Rowley.

Заключение

Предложенная система для контроля и управления расходом топлива дает возможность повысить

точность измерения указанного параметра и обеспечить защиту от несанкционированного слива топлива. Разработаны опытные образцы форсунки и системы контроля и управления.

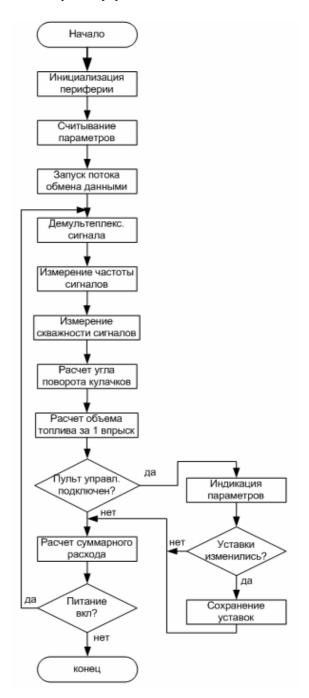


Рис. 3. Схема алгоритма работы системы контроля и управления расходом топлива

Список литературы

- 1. Автомобильные двигатели. Системы управления и впрыска топлива. С.-Пб.: Альфамер, 1999. 200 с.
- 2. А.с. 1744478 СССР, М. кл 5 G01F1/10. Устройство для учета расхода топлива / И.Ф. Дьяков, А.М. Казаков (СССР). № 4801486/10; Заявл. 16.01.90; Опубл. 30.06.92, Бюл. № 24. 5 с.
- 3. А.с. 1809313 СССР, М. кл⁵ G01F3/16. Устройство для измерения расхода жидкости / Б.И. Ковальский,

- А.Л. Гайдуков (СССР). № 4935409/10; Заявл. 12.05.90; Опубл. 15.04.93, Бюл. № 14. 4 с.
- 4. Патент 15311 Україна, МПК (2006) G01F1/00. Витратомір палива / М.Д. Кошовий, В.П. Сіроклин, В.А. Дергачов, М.Ю. Іванцов (Україна). № U200600393; Заявл. 16.01.2006; Опубл. 15.06.2006, Бюл. № 6. 2 с.
- 5. Патент 18903 Україна, МПК (2006) G01F3/00. Пристрій для вимірювання витрати палива рідини / М.Д. Кошовий., М.Ю. Іванцов, В.П. Сіроклин, В.А. Дергачов (Україна). № U200606716; Заявл. 16.06.2006; Опубл. 15.11.2006, Бюл. № 11. 2 с.

Поступила в редколлегию 00.00.2007

Рецензент: д-р техн. наук, проф. И.А. Фурман, Харьковский национальный технический университет сельского хозяйства им. П. Василенко, Харьков.