УДК 621.396.98:629.783

В.П. Пашинцев

Ставропольский военный институт связи РВ, Ставрополь, Россия

ПРОГНОЗИРОВАНИЕ ШУМОВОЙ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ПСЕВДО-ДАЛЬНОСТИ В СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМАХ ПРИ ВОЗМУЩЕНИЯХ ИОНОСФЕРЫ В СЛОЕ F

Произведен прогноз возрастания шумовой погрешности измерения псевдодальности и времени запаздывания сигналов в спутниковых радионавигационных системах по мере увеличения степени частотно-селективных замираний в трансионосферном радиоканале при возмущениях ионосферы в слое F, сопровождаемых ростом интенсивности ее неоднородностей.

спутниковые радионавигационныеt системы, шумовая погрешность измерения, псевдодальность, трансионосферный радиоканал, ионосфера, слой F

Введение

Известно [1], что в основе методов, применяемых в спутниковых радионавигационных системах (СРНС) для расчета координат объектов лежит высокоточное значение псевдодальности R. Она определяется по результатам измерения времени запаздывания τ сигнала, передаваемого со спутника СРНС, как $R = c\tau$ (где c - скорость света в вакууме). Для уменьшения шумовой погрешности измерения псевдодальности (σ_R) в СРНС передаются широкополосные сигналы (ШПС) с полосой спектра $\Delta F_0 \approx 1 \, \text{M} \Gamma$ ц или 10 МГц на несущей частоте $f_0 \approx 1,6$ ГГц. Выбор таких значений f_0 и ΔF_0 обеспечивает условия распространения радиоволн (PPB) через атмосферу Земли, при которых принимаемый сигнал подвержен лишь флуктуациям начальной фазы. Использование ШПС обеспечивает повышение потенциальной точности измерения τ в оптимальной схеме обработки сигнала с флуктуирующей фазой на фоне гауссовских шумов [2]. Это следует из выражения $\sigma_{\tau} = (q\Delta\Omega_{2})^{-1}$ для среднеквадратического отклонения (СКО) измерения т, где $q = \sqrt{2E_r / N_0}$ – отношение сигнал/шум (с/ш) на выходе согласованного фильтра, E_r – энергия принимаемого сигнала, N₀ - спектральная плотность шума, $\Delta \Omega_{2}$ – эффективная ширина спектра передаваемого сигнала. Однако потенциальные точности измерения времени запаздывания ($\sigma_{\tau} \sim 10^{-9}$ с) и псевдодальности ($\sigma_R = c\sigma_\tau = c/q\Delta\Omega_{2} \approx 2...6$ м) будут достигаться только при РРВ через нормальную (невозмущенную) ионосферу.

При возмущениях ионосферы на высотах ее F-слоя (150...300 км) происходит рост СКО электронной концентрации ($\sigma_{\Delta N}$) в ее неоднородностях и при этом полоса когерентности трансионосферного канала связи (КС) может сужаться до значений $\Delta F_{\kappa} < 100 \, \kappa \Gamma_{\rm U}$ и менее [3]. В этом случае достигаются отношения $\Delta F_0 / \Delta F_{\kappa} > 10$ или 100 и в СРНС будет выполняться условие $\Delta F_0 / \Delta F_{\kappa} > 1$ возникновения частотно-селективных замираний (ЧСЗ) принимаемых сигналов. Это приведет к росту шумовой погрешности измерения времени запаздывания ($\tau = R/c$) сигнала с ЧСЗ $\sigma_{\tau({\rm Y})}$ и определяемой ею псевдодальности $\sigma_{R({\rm Y})} = c \sigma_{\tau({\rm Y})}$ по сравнению со случаем отсутствия ЧСЗ (когда $\Delta F_0 / \Delta F_{\kappa} <<1$):

$$\sigma_{R(\mathbf{y})} = c \sigma_{\tau(\mathbf{y})} > c \sigma_{\tau} = \sigma_R . \tag{1}$$

Целью статьи является оценка увеличения относительной шумовой погрешности измерения псевдодальности ($\sigma_{R(4)}/\sigma_R$) в СРНС по мере роста степени ЧСЗ ($\Delta F_0/\Delta F_k$) при возмущениях ионо-сферы в слое *F* (увеличения σ_{AN}).

Результаты исследований

Известно [2], что при передаче сигнала с комплексной огибающей $\dot{S}_t(t)$, энергией E_t , нормированной комплексной огибающей $\dot{f}(t) = \dot{S}_t(t) / \sqrt{E_t}$ и несущей частотой $\omega_0 = 2\pi f_0$

$$s_{t}(t) = \sqrt{2} \operatorname{Re} \{ \dot{S}_{t}(t) \exp(j\omega_{0} t) \} =$$
$$= \sqrt{2} \operatorname{Re} \{ \sqrt{E_{t}} \dot{f}(t) \exp(j\omega_{0} t) \}$$

по КС с флуктуирующей (неизвестной) начальной фазой принимаемый сигнал отличается от передаваемого лишь ослаблением амплитуды (в $\sqrt{K_{oc}}$ раз) и запаздыванием на время τ :

 $s_r(t) = \sqrt{2} \operatorname{Re} \{ \sqrt{E_t K_{oc}} \dot{f}(t-\tau) \exp[j\omega_0(t-\tau)] \}.$ (2)

При РРВ через ионосферу время запаздывания τ сигнала складывается из: 1) времени $t_0 = R_0 / c$ его распространения в свободном пространстве на

расстояние R_0 от навигационного спутника (HC) до навигационной аппаратуры потребителей (HAП); 2) поправки на среднее значение группового времени запаздывания волны $\overline{\tau}_{\Gamma}$ с несущей частотой f_0 в ионосферном слое со средней интегральной электронной концентрацией (ЭК) \overline{N}_{Γ} [3 – 5]:

$$\tau = t_0 + \overline{\tau}_{\Gamma} = R_0 / c + \delta \overline{R}_{\Gamma} / c = R_0 / c + 40,4 \overline{N}_{T} / c f_0^2$$
, (3) где $\delta \overline{R}_{\Gamma} = 40,4 \overline{N}_{T} / f_0^2$ – поправка на среднее значение группового пути волны в ионосфере. Здесь средняя интегральная ЭК (или полное электронное содержание) по всей высоте h ионосферы определяется как

$$\overline{N}_{T} = \int_{0}^{\infty} \overline{N}(h) dh = h_{9} \overline{N}_{m}, \qquad (4)$$

где $h_{\mathfrak{I}}$ – эквивалентная толщина ионосферы со средней ЭК, соответствующей высоте $h = h_m$ максимума ионизации в слое F ионосферы $\overline{N}_m = \overline{N}(h = h_m)$.

Потенциальная точность измерения времени запаздывания (т) принимаемого сигнала (2) оптимальной некогерентной схемой (рис. 1) его обработки на фоне гауссовских флуктуационных шумов n(t) определяется величиной СКО, описываемой выражением вида [2]

$$\sigma_{\tau} = \left[\sqrt{2(E_{r} / N_{0})} \Delta \Omega_{3} \right]^{-1} =$$

$$= \left(\sqrt{2h^{2}} \Delta \Omega_{3} \right)^{-1} = (\rho \Delta \Omega_{3})^{-1},$$
(5)

где $h^2 = E_r / N_0 = E_t K_{oc} / N_0$ – отношение энергии принимаемого сигнала (2) $E_r = E_t K_{oc}$ к спектральной плотности мощности шума N_0 ; $\Delta \Omega_3$ – эффективная ширина спектра сигнала.

Рис. 1. Оптимальная некогерентная схема измерения времени запаздывания (τ) принимаемого сигнала

На рис.1 обозначены: СФ – согласованный фильтр; ДО – детектор огибающей; СВМ – схема выбора максимума; $U_{r \ Bbix}$ – амплитуда напряжения сигнала на выходе СФ (а также ДО); σ_n – СКО гауссовского шума на выходе СФ (ДО). Отметим, что отношение мощности сигнала на выходе СФ ($P_{r \ Bbix}$) к мощности шума($P_{n \ Bbix}$) в момент времени $t = \tau + T_s$ в схеме рис.1 описывается выражениями

$$q^{2} = (P_{r} / P_{n})_{B \text{bix}} = (U_{rB \text{bix}} / \sigma_{n})^{2} =$$
$$= (a_{1} E_{r} / a_{1} \sqrt{E_{r} N_{0} / 2})^{2} = 2 E_{r} / N_{0} = 2 h^{2},$$
(6)
rde $a_{1} = \text{const}.$

Длительность сигнала T_s определяет ширину его спектра $\Delta F_0 = 1/T_s$. Последняя связана линейной зависимостью с эффективной шириной спектра сигнала $\Delta \Omega_3 = a_2 \Delta F_0 = a_2/T_s$, где коэффициент $a_2 = \text{const}$ определяется формой огибающей [2]. Например, для сигналов с прямоугольной и колоколообразной формами огибающей спектра $\Delta \Omega_3$ описывается выражениями вида:

$$\Delta\Omega_{9} = a_{2} / T_{s} = \pi / \sqrt{3} T_{s} = \pi \Delta F_{0} / \sqrt{3} ;$$

$$\Delta\Omega_{9} = a_{2} / T_{s} = \sqrt{\pi} / T_{s} = \sqrt{\pi} \Delta F_{0} .$$
(7)

В соответствии с (6 – 7), выражение (5) можно записать в виде

$$\sigma_{\tau} = T_{s} / q a_{2} = T_{s} / (U_{r B b I x} / \sigma_{n}) a_{2}.$$
 (8)

Анализ выражения (8) показывает, что СКО (σ_{τ}) времени запаздывания (τ) входного сигнала (2) уменьшается при уменьшении его длительности ($T_s = a_2 / \Delta \Omega_3$) и увеличении амплитуды пика выходного сигнала СФ и ДО ($U_{r \ Bbix} = a_1 E_r$).

Принимаемый сигнал в КС с ЧСЗ описывается выражением вида [3 – 7]

$$s_{r}(t) = \sqrt{2} \times \operatorname{Re}\left\{\sqrt{E_{t}} \int_{-\infty}^{\infty} \dot{f}(t-\tau-\lambda)\dot{b}(\lambda)d\lambda \exp\left[j\omega_{0}(t-\tau)\right]\right\}, (9)$$

где $\dot{f}(t-\tau-\lambda)$ – нормированная комплексная огибающая передаваемого сигнала $\dot{f}(t)$ со средним временем запаздывания τ (неизвестная неслучайная величина, подлежащая измерению) и случайным запаздыванием λ ; $\dot{b}(\lambda)$ – низкочастотная импульсная функция КС (комплексный гауссовский процесс с математическим ожиданием $M[\dot{b}(\lambda)] = 0$ и корреляционной функцией $M[\dot{b}(\lambda)b(\lambda_1)] = 2\sigma_b^2 \sigma_H(\lambda)\delta(\lambda-\lambda_1)$,

где $2\sigma_b^2$ – мощность коэффициента передачи (b) КС с релеевскими общими замираниями (O3), а $\sigma_H(\lambda)$ – нормированная функция рассеяния КС по времени).

Причиной появления ЧСЗ принимаемых сигналов СРНС при возмущениях ионосферы в слое F является увеличение флуктуаций ЭК в ее пространственных неоднородностях $\Delta N(\rho, h_m)$ относительно их среднего значения $\overline{N}(h_m)$. Вследствие этого возрастают флуктуации группового времени запаздывания во фронте волны на выходе неоднородного ионо-сферного слоя $\Delta \tau_r(\rho)$ относительно $\overline{\tau}_r$ [3, 5, 8, 9]

$$\Delta \tau_{\Gamma}(\rho) = 40, 4\Delta N(\rho, h_m) / cf_0^2. \qquad (10)$$

Последние однозначно определяет флуктуации группового времени запаздывания в точку лучей

 $\lambda_i = \Delta \tau_r(\rho_i)$, образованных на поверхности (ρ_i) фронта волны на выходе ионосферы, а также характер функции рассеяния трансионосферного КС по времени $\sigma_{\mu}(\lambda)$.

Погрешность измерения в схеме рис.1 времени запаздывания т принимаемого сигнала с ЧСЗ (9) проанализируем для простейшего случая передачи сигнала с колоколообразной формой огибающей [2, 4]

$$f(t) = (1/\sqrt{E_t}) \exp(-\pi t^2 / T_s^2) = (11)$$

= $(1/\sqrt{E_t}) \exp(-t^2 \Delta \Omega_2^2)$

и эффективной шириной спектра вида (7) $\Delta\Omega_{3} = \sqrt{\pi}\Delta F_{0} = \sqrt{\pi} / T_{s}$ по трансионосферному КС с нормированной функцией рассеяния гауссовского вида [3, 5]

$$\sigma_{\rm H}(\lambda) = (\sqrt{2\pi} \sigma_{\lambda})^{-1} \exp(-\tau^2/2\sigma_{\lambda}^2). \qquad (12)$$

Здесь СКО определяется полосой когерентности $\Delta \Omega_{\kappa} = 2\pi \Delta F_{\kappa}$ данного КС[3 – 9]:

$$\sigma_{\lambda} = 2\sqrt{2} / \Delta \Omega_{\rm K} = \sqrt{2} / \pi \Delta F_{\rm K} , \qquad (13)$$

которая зависит от СКО флуктуаций ЭК в неоднородностях ионосферы $\sigma_{\Delta N} = <\Delta N^2(\rho,h_m) >^{1/2} = \beta \overline{N}_m$ согласно выражению

$$\Delta F_{\kappa} = \frac{cf_0^2}{80.8\pi^{5/4} (2l_s h_3 \sec \theta_0)^{1/2} \mathcal{I}_1 \sigma_{\Delta N}} .$$
 (14)

Здесь $\beta = \sigma_{\Delta N} / \overline{N}_m$ – интенсивность ионосферных неоднородностей; l_s – характерный размер ионосферных неоднородностей; θ_0 - угол возвышения приемной антенны; $\mathcal{I}_1 \ge 1$ - коэффициент, характеризующий нарастание дифракционных эффектов во фронте волны по мере ее распространения внутри неоднородного ионосферного слоя и за ним до точки приема на расстоянии h_0 :

$$\mathcal{A}_{1} = \left[1 + \frac{(3h_{0}^{2} - 3h_{0}h_{3} + h_{3}^{2})c^{2}\sec^{2}\theta_{0}}{384\pi^{2}f_{0}^{2}l_{s}^{4}}\right]^{1/2}, \quad (15)$$

Следует заметить, что выражение (14) для $\Delta F_{\kappa} \sim c f_0^2 / \sigma_{\Delta N}$ соответствует известной формуле общего вида для любого многолучевого КС $\Delta F_{\kappa} \approx 1/\Delta \tau_{\Gamma}$, поскольку согласно выражению (7) $\Delta \tau_{\Gamma}(\rho) \sim \Delta N(\rho, h_m) / c f_0^2$.

На основе выражений (9, 11 – 13) в [4] получена формула для оценки СКО времени запаздывания (т) сигнала с ЧСЗ в схеме обработки рис.1 в виде

$$\sigma_{\tau(\mathbf{y})} = \left[2\overline{E}_{r} \frac{\overline{E}_{r} \eta_{\mathbf{y}}}{N_{0}(N_{0} + \overline{E}_{r} \eta_{\mathbf{y}})} \Omega_{3}^{2} \mu_{\mathbf{y}} \right]^{-1/2} =$$
(16)
$$= (2\overline{E}_{r} C_{\mathbf{y}}^{\prime} \Delta \Omega_{3}^{2} \mu_{\mathbf{y}})^{-1/2},$$

где $\overline{E}_r = 2 \sigma_b^2 E_t = E_r$ – средняя энергия принимае-

мого сигнала с ЧСЗ, равная его энергии в КС без замираний ($E_r = E_t K_{oc}$);

$$\eta_{\rm H} = (1 + 4\Delta F_0^2 / \pi \Delta F_{\rm K}^2)^{-1/2} \le 1 - (17)$$

коэффициент энергетических потерь (уменьшения $\overline{E}_r = E_r$) при некогерентной обработке в схеме рис. 1 сигнала, подверженного ЧСЗ;

$$\mu_{\rm q} = (1 + 4\Delta F_0^2 / \pi \Delta F_\kappa^2)^{-3/2} \le 1 - (18)$$

коэффициент сужения квадрата эффективной ширины спектра ($\Delta \Omega_{2}^{2} = \pi / T_{s}^{2} = \pi \Delta F_{0}^{2}$) при некогерентной обработке в схеме рис. 1 сигнала с ЧСЗ;

$$C'_{\mathbf{y}} = \overline{E}_r \eta_{\mathbf{y}} / N_0 (N_0 + \overline{E}_r \eta_{\mathbf{y}}) .$$

В частном случае отсутствия ЧСЗ (т.е. $\Delta F_0 \,/\, \Delta F_\kappa <<\! 1\,)$ будем иметь:

$$\eta_{\rm q} = 1; \ \mu_{\rm q} = 1; \ C'_{\rm q} = C' = \overline{E}_r / N_0 (N_0 + \overline{E}_r). \ (19)$$

Тогда выражение (16) сводится к известному [2] виду для оценки σ_{τ} в КС с релеевскими ОЗ, который при отношении $\overline{E}_r / N_0 = E_r / N_0 \ge 10$ (когда С' $\approx 1/N_0$) примерно соответствует формуле (5) для КС без замираний:

$$\sigma_{\tau} = \left[2\overline{E}_{r} \frac{\overline{E}_{r}}{N_{0} (N_{0} + \overline{E}_{r})} \Delta \Omega_{9}^{2} \right]^{-1/2} = (20)$$
$$(2\overline{E}_{r} C' \Delta \Omega_{9}^{2})^{-1/2} \approx \left(\sqrt{2E_{r}/N_{0}} \Delta \Omega_{9} \right)^{-1}.$$

По мере увеличения степени ЧСЗ ($\Delta F_0 / \Delta F_\kappa$) указанные коэффициенты уменьшаются: $\eta_q < 1$, $\mu_q < 1$, $C'_q < C'$ и σ_τ (20) возрастает до $\sigma_{\tau(q)}$ (16). С учетом (6 – 8) и (20) выражение (16) можно

С учетом (6 - 8) и (20) выражение (16) можно записать в виде, аналогичном (5) и (8):

$$\sigma_{\tau(\mathbf{y})} = \left[\sqrt{\left(2 \, \mathbf{E}_{\mathrm{r}} / \mathbf{N}_{0}\right) \cdot \mathbf{A}_{\mathrm{q}}} \, \Delta \Omega_{\mathfrak{I}} \sqrt{\mu_{\mathrm{q}}} \right]^{-1} = \frac{T_{\mathrm{s}} / \sqrt{\mu_{\mathrm{q}}}}{q \sqrt{\mathbf{A}_{\mathrm{q}}} \, a_{2}} = \frac{T_{\mathrm{s}} \, \rho_{\mathrm{q}}}{\left(\mathbf{U}_{\mathrm{r}B\mathrm{b}\mathrm{I}\mathrm{x}} \, \mathbf{1}_{\mathrm{q}} / \sigma_{\mathrm{n}}\right) a_{2}}, \qquad (21)$$

где

$$\sqrt{A_{\mathbf{q}}} = \sqrt{\frac{\overline{E}_{\mathbf{r}} \eta_{\mathbf{q}}}{N_0 + \overline{E}_{\mathbf{r}} \eta_{\mathbf{q}}}} = \sqrt{\frac{1}{1 + N_0 / \overline{E}_{\mathbf{r}} \eta_{\mathbf{q}}}} = l_{\mathbf{q}} \le 1 - (22)$$

коэффициент уменьшения максимального значения амплитуды сигнала на выходе СФ (U_{гвых}) вследствие ЧСЗ входного сигнала;

$$\rho_{\rm q} = 1/\sqrt{\mu_{\rm q}} \ge 1 - \tag{23}$$

коэффициент увеличения длительности $(T_s = a_2 / \Delta \Omega_3)$ сигнала на выходе СФ вследствие ЧСЗ входного сигнала.

Указанные выше эффекты уменьшения амплитуды сигнала на выходе СФ в момент отсчета $(t = \tau + T_s)$ и увеличения его длительности обусловлены рассогласованием по форме огибающей при-

нимаемого сигнала, искаженной из-за ЧСЗ, и заложенной в СФ копии передаваемого сигнала.

На рис. 2 показана аддитивная смесь гауссовского шума n₁(t) и амплитуды напряжения сигнала на выходе СФ и ДО U_{r вых}(t) для случаев прихода сигналов с одинаковыми энергиями E_r и длительностями T_s = a₂ / $\Delta\Omega_3$ при отсутствии ($\Delta F_0 / \Delta F_k \ll 1$) и наличии ($\Delta F_0 / \Delta F_k \gg 1$) в них ЧСЗ.

Рис. 2. Влияние «расплывания» отклика согласованного фильтра из-за частотно-селективных замираний входного сигнала на рост погрешности измерения (σ_τ) его времени запаздывания (τ)

В последнем случае будет иметь место «расплывание» отклика СФ, которое сопровождается уменьшением его амплитуды $U_{r \, Bbix} l_{q} < U_{r \, Bbix}$ и «остроты» (т.е. увеличением ширины основания $T_{s} \rho_{q} > T_{s}$). В силу одновременного действия этих двух величин согласно выражениям (21) и (8) величина СКО времени запаздывания сигнала, подверженного ЧСЗ ($\Delta F_0 / \Delta F_k > 1$), в схеме измерения рис. 1 может существенно возрасти по сравнению со случаем отсутствия ЧСЗ ($l_q = \rho_q = 1$):

$$\sigma_{\tau(\Psi)} = T_{s} \rho_{\Psi} / (U_{r B b I x} l_{\Psi} / \sigma_{n}) a_{2} > \sigma_{\tau} =$$

$$= T_{s} / (U_{r B b I x} / \sigma_{r}) a_{2}. \qquad (24)$$

Анализ рис. 2, и соотношений (8) и (24), показывает, что увеличение ширины спектра передаваемого сигнала $\Delta F_0 = 1/T_s$ за счет уменьшения его длительности $T_{s1} < T_{s2}$ (или прямого расширения спектра, когда

$$\Delta F_0 = B_s / T_s = 1 / T_3$$
,

где $B_s = T_s \Delta F_0 = T_s / T_3 >> 1$ – база ШПС с длительностью элемента сигнала T_3) обеспечит уменьшение СКО времени запаздывания принимаемого сигнала ($\sigma_{\tau 1} < \sigma_{\tau 2}$) только в КС без ЧСЗ ($\Delta F_0 / \Delta F_k << 1$). В трансионосферных КС с ограниченной полосой когерентности (ΔF_k) увеличение ширины спектра сигнала до значений, когда начинает выполняться условие возникновения ЧСЗ ($\Delta F_0 / \Delta F_k > 1$) приведет к

увеличению рассматриваемого СКО ($\sigma_{\tau(q)} > \sigma_{\tau}$). Следовательно, при заданной $\Delta F_{\kappa} = \text{const}$ трансионосферного КС существует оптимальное значение ширины спектра передаваемого сигнала $\Delta F_0 = \Delta F_{0 \text{ opt}}$, при котором достигается минимальная величина погрешности измерения в схеме рис. 1 времени запаздывания $\sigma_{\tau(q)} = \sigma_{\tau(q)\min}$.

Выражение (16) для дисперсии $\sigma_{\tau(\mathbf{y})}^2$ с учетом (17, 18) можно записать в виде суммы:

$$\sigma_{\tau(\mathbf{u})}^{2} = \frac{(1 + 4\Delta F_{0}^{2} / \pi \Delta F_{\kappa}^{2})^{3/2}}{2\pi\Delta F_{0}^{2} \,\overline{\mathrm{E}}_{\mathrm{r}} / \,\mathrm{N}_{0}} + \frac{(1 + 4\Delta F_{0}^{2} / \pi \Delta F_{\kappa}^{2})^{2}}{2\pi\Delta F_{0}^{2} (\,\overline{\mathrm{E}}_{\mathrm{r}} / \,\mathrm{N}_{0})^{2}} \,. (25)$$

Анализ выражения (25) показывает, что для обычно реализуемого в СРНС отношения сигнал/шум $\overline{E}_r / N_0 \ge 10^3$ [1] второе слагаемое будет на порядок меньше первого при значениях $\Delta F_0 / \Delta F_\kappa \le 10^2$. Поэтому для указанных отношений формулу (25) можно записать в приближенном виде как

$$\sigma_{\tau(\mathbf{y})}^{2} \approx (1 + 4\Delta F_{0}^{2} / \pi \Delta F_{\kappa}^{2})^{3/2} / (2\pi\Delta F_{0}^{2} \overline{E}_{r} / N_{0}).$$
(26)

Заметим, что при выполнении условия отсутствия ЧСЗ ($\Delta F_0 / \Delta F_\kappa \ll 1$) выражение (26) сводится к

виду (5) для случая (7) $\Delta \Omega_3 = \sqrt{\pi} \Delta F_0$: $\sigma_\tau^2 \approx [2\pi \Delta F_0^2 (E_r / N_0)]^{-1} = [2(E_r / N_0) \Delta \Omega_3^2]^{-1},$ (27)

Приравняв к нулю производную от функции $\sigma_{\tau(\mathbf{y})}^2$ (26) по ΔF_0 , получим уравнение, решение которого дает искомую формулу для выбора оптимальной ширины спектра передаваемого сигнала по трансионосферному КС с ограниченной полосой когерентности (ΔF_{κ}):

$$\Delta F_0 = \Delta F_{0 \text{ opt}} = \sqrt{0.5 \pi} \,\Delta F_{\kappa} \,. \tag{28}$$

При оптимальной ширине спектра передаваемого сигнала (28) погрешность (СКО) измерения в схеме рис. 1 времени запаздывания сигнала с ЧСЗ (26) будет иметь минимальное значение:

$$\sigma_{\tau(\mathbf{y})} = \sigma_{\tau(\mathbf{y})\min} \approx 3^{3/4} \left[2\pi\Delta F_0^2(\overline{\mathbf{E}}_r / \mathbf{N}_0) \right]^{-1/2},$$
(29)

которое лишь в $3^{3/4} \approx 2,28$ раз превышает погрешность измерения времени запаздывания (σ_{τ}) сигнала без ЧСЗ (27).

В соответствии с выражением (26) на рис. 3 построены графики зависимости погрешности измерения времени запаздывания сигналов $\sigma_{\tau(\mathbf{y})}$ и псевдодальности $\sigma_{R(\mathbf{y})} = c\sigma_{\tau(\mathbf{y})}$ от степени их ЧСЗ ($\Delta F_0 / \Delta F_k = 0, 1...10^2$) при величине $\Delta F_k = 1$ МГц и типовых отношениях сигнал/шум на входе приемника СРНС: $\overline{E}_r / N_0 = 10^3...10^5$ (30...50 дБ) [1]. Анализ этих графиков показывает, что при отношении
$$\begin{split} \Delta F_{0\,opt} \,/\,\Delta F_\kappa &= \sqrt{0,5\,\pi} \approx 1,25 \quad \text{наблюдается минимум} \\ \text{погрешностей } \sigma_{\tau(\mathbf{y})} \,\, \text{и} \,\,\sigma_{R(\mathbf{y})}, \, \text{значение которых воз-} \\ \text{растают почти на порядок при} \quad \Delta F_0 \,/\,\Delta F_\kappa \approx 10^2 \quad (\text{на-} \\ \text{пример}, \,\,\sigma_{R(\mathbf{y})} \approx 500 \text{м для} \,\,\overline{E}_r \,/\,N_0 = 10^3 \,). \end{split}$$

Поскольку $\sigma_{R(\mathbf{y})} = c \sigma_{\tau(\mathbf{y})} > \sigma_{R} = c \sigma_{\tau}$ (согласно

(1)), то в качестве меры возрастания шумовой погрешности измерения псевдодальности по результатам обработки сигналов с ЧСЗ в схеме рис.1 по сравнению со случаем их отсутствия целесообразно использовать величину отношения СКО (16) к (5):

$$\Delta R = \frac{\sigma_{R(q)}}{\sigma_{R}} = \frac{\sigma_{\tau(q)}}{\sigma_{\tau}} = \frac{(2\overline{E}_{r}C_{q}\Delta\Omega_{9}\mu_{q})^{-1/2}}{\left[2(\overline{E}_{r}/N_{0})\Delta\Omega_{9}\right]^{-1/2}} = \\ = \left[1 + \left(\frac{\overline{E}_{r}}{N_{0}}\right)^{-1}\eta_{q}^{-1}\right]^{1/2}\mu_{q}^{-1/2} = (30)$$

$$= \left[1 + \left(1 + \frac{4\Delta F_0^2}{\pi\Delta F_\kappa^2} \right)^{1/2} / \left(\frac{\overline{E}_r}{N_0} \right) \right]^{1/2} \left(1 + \frac{4\Delta F_0^2}{\pi\Delta F_\kappa^2} \right)^{3/4}$$

Анализ полученного выражения (30) показывает, что возрастание шумовой погрешности измерения псевдодальности слабо зависит от входного отношения с/ш (\overline{E}_r/N_0) и определяется в основном степенью ЧСЗ ($\Delta F_0/\Delta F_\kappa$). При выполнении соотношения ($\overline{E}_r/N_0 >> \Delta F_0/\Delta F_\kappa$) формула (30) сводится к виду, соответствующему отношению СКО (26) к (27): $\Delta R = \sigma_{R(q)}/\sigma_R = \sigma_{\tau(q)}/\sigma_\tau \approx (1 + 4\Delta F_0^2/\pi\Delta F_\kappa^2)^{3/4}$. (31)

В соответствии с выражением (30) на рис. 4 построены графики зависимости относительной погрешности измерения псевдодальности в СРНС ($\Delta R = \sigma_{R(\mathbf{u})} / \sigma_{R}$) от превышения полосы их спектра над полосой когерентности КС ($\Delta F_0 / \Delta F_k$) при фиксированных отношениях сигнал/шум ($\overline{E}_r / N_0 = E_r / N_0$).

Рис. 3. Зависимость погрешности измерения времени запаздывания сигнала $\sigma_{\tau(4)}$ от степени ЧСЗ ($\Delta F_0 / \Delta F_K$)

Рис. 4. Зависимость относительной погрешности $\Delta R = \sigma_{\tau(q)} / \sigma_R$ измерения псевдодальности в СРНС от степени ЧСЗ (($\Delta F_0 / \Delta F_K$)

Анализ графиков на рис.4 показывает, что при типовых параметрах сигналов СРНС ($\Delta F_0 \approx 1 M \Gamma \mu$, $E_r / N_0 \approx 10^4$) и сужении полосы когерентности $\Delta F_{\kappa} \sim f_0^2 / \sigma_{\Lambda N}$ трансионосферных КС до значения $\Delta F_{\kappa} \approx 1 M \Gamma$ ц (когда $\Delta F_0 / \Delta F_{\kappa} = 1$) при сильных возмущениях слоя F ионосферы (характеризуемых $\sigma_{\Lambda N} \approx 5 \cdot 10^{13}$ эл/м³), шумовая погрешность измерения псевдодальности $\sigma_{R(4)}$ возрастет в 2 раза, а при $\Delta F_{\kappa} = 100 \, \kappa \Gamma$ ц (когда $\Delta F_0 / \Delta F_{\kappa} = 10$) – в 40 раз по сравнению с обеспечиваемым значением $\sigma_R = 2...6$ м при нормальной ионосфере (когда $\,\sigma_{\Delta N}\approx 5\cdot 10^9\,$ эл/м³, $\Delta F_{\kappa} \approx 10 \Gamma \Gamma$ ц и отсутствуют ЧСЗ). При передаче в СРНС сигналов с $\Delta F_0 = 10 M \Gamma$ ц по КС с $\Delta F_{\kappa} = 100 \, \kappa \Gamma \mu$ (когда $\Delta F_0 / \Delta F_{\kappa} = 100$) относительная шумовая погрешность измерения псевдодальности возрастет до $\sigma_{R(y)} / \sigma_R \approx 10^3$. При этом компенсация роста относительной шумовой погрешности измерения псевдодальности в СРНС из-за ЧСЗ ($\sigma_{R(y)}/\sigma_{R}$) за счет увеличения энергетического отношения сигнал/шум ($E_r / N_0 > 10^5$) невозможна.

Выводы

Таким образом, при возмущениях ионосферы в слое F, вызывающих рост флуктуаций ЭК в неоднородностях ($\sigma_{\Delta N}$) и отношения ($\Delta F_0 / \Delta F_\kappa$) ширины спектра передаваемого сигнала к полосе когерентности трансионосферного канала, шумовая погрешность измерения псевдодальности (σ_R) в СРНС может возрастать по сравнению с условиями нормальной ионосферы ($\sigma_R = 2...6 \,\mathrm{M}$) в 40...1000 раз, достигая значений $\sigma_R \approx 80...6\cdot 10^3 \,\mathrm{M}$. Уменьшить эту погрешность за счет увеличения отношения сигнал/шум на входе приемника (E_r / N_0) невозможно, поскольку она обусловлена рассогласованием по форме огибающей при-

Обробка інформації в складних технічних системах

ЧСЗ нимаемого сигнала. подверженного $(\Delta F_0 / \Delta F_{\kappa} > 1)$, с копией передаваемого сигнала, заложенной в схеме обработки (рис.1). Поэтому наиболее предпочтительным путем уменьшения шумовой погрешности измерения псевдодальности в этих условиях функционирования СРНС является увеличение несущей частоты передаваемого сигнала с $f_0 \sim 1$ ГГц до ~ 20...40 ГГц, что позволяет значительно расширить когерентности трансионосферного полосу КС $\Delta F_{\kappa} \sim f_0^2 / \sigma_{\Delta N}$ и уменьшить степень ЧСЗ ($\Delta F_0 / \Delta F_{\kappa}$).

Список литературы

1. Волков Н.М. и др. Глобальная спутниковая радионавигационная система ГЛОНАСС // Успехи современной радиоэлектроники. – 1997. – № 1. – С. 31-46.

2. Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации. – М.:Наука, 1992. – 304 с.

 Маслов О.Н., Пашинцев В.П. Модели трансионосферных радиоканалов и помехоустойчивость систем космической связи / Прил. к журналу "Инфокоммуникационные технологии". – Самара, ПГАТИ, 2006. – Вып. 4. – 357 с.

4. Пашинцев В.П. Влияние частотно-селективных замираний на измерение времени запаздывания сигналов в системах космической связи // Радиотехника и электроника. – 1998. – Т. 43, № 4. – С. 410-414. 5. Пашинцев В.П., Колосов Л.В., Тишкин С.А., Смирнов А.А. Влияние ионосферы на обнаружение сигналов в системах космической связи // Радиотехника и электроника. – 1999. – Т. 44, № 2. – С. 143-150.

6. Пашинцев В.П., Тишкин С.А., Солчатов М.Э. Влияние частотно-селективных замираний и межсимвольной интерференции на помехоустойчивость высокоскоростных систем космической связи // Известия ВУЗов. Радиоэлектроника. – 2001. – № 9. – С. 49-60.

7. Пашинцев В.П., Стрекалов А.В., Солчатов М.Э., Боровлев И.И. Анализ помехоустойчивости приема сигналов с произвольными базами в каналах космической связи с ограниченной полосой когерентности // Известия ВУЗов. Радиоэлектроника. – 2002. – № 1. – С. 23-32.

8. Пашинцев В.П., Сапожников А.Д., Вититлов Л.Л. Аналитическая методика оценки влияния ионосферы на помехоустойчивость систем космической связи // Радиотехника. – 1991. – № 11. – С. 80 – 83.

9. Пашинцев В.П., Солчатов М.Э., Гахов Р.П. Влияние ионосферы на характеристики космических систем передачи информации: Монография.— М.: Физматлит, 2006. — 184 с.

Поступила в редколлегию 1.08.2007

Рецензент: д-р техн. наук проф. Ю.В. Стасев, Харьковский университет воздушных сил им. И. кожедуба, Харьков.