# Е.Д. Прилепский

## Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков

# ОПТИМАЛЬНЫЙ СИНТЕЗ ЧАСТОТНО-ПЕРЕДАТОЧНОЙ ФУНКЦИИ ДВУЗРАЧКОВОЙ ОПТИЧЕСКОЙ СИСТЕМЫ

Для двузрачковой некогерентной оптической системы получено решение задачи оптимальной аппроксимации частотно-передаточной функции достаточно общего вида. Оптимальные фазовые и зрачковые функции определены методом последовательных приближений.

некогерентная оптика, пространственная фильтрация

### Введение

Использование некогерентной оптики в системах оптической обработки информации ограничивается тем, что функция рассеяния точки (ФРТ) таких систем является действительной положительной функцией. Частотно – передаточная функция (ЧПФ) некогерентной оптической системы  $\tau(\omega) = \tau(\omega_x, \omega_y)$ имеет максимум на нулевой частоте и  $|\tau(\omega)| \leq \tau(0)$ . Таким образом, некогерентная система пространственной фильтрации является фильтром низких частот. Это не позволяет выполнять такие операции, как обратная свертка, полосовая фильтрация, дифференцирование и другие, требующие двухполярную ФРТ и ЧПФ с провалом на низких частотах [1, 2]. Для преодоления этих ограничений в [3] предложен метод двузрачковой некогерентной пространственной фильтрации. В соответствии с этим методом представим двухполярную ФРТ S(x) в виде суммы положительной  $S_{+}(x)$  и отрицательной S\_(x) частей

$$S(\mathbf{x}) = S_{+}(\mathbf{x}) - S_{-}(\mathbf{x}),$$
 (1)

где обе функции  $S_+(x)$  и  $S_-(x)$  – положительны; x – обобщенная координата в плоскости изображений. Функции  $S^{\pm}(x)$  связаны со зрачковыми функциями (3Ф)  $P^{\pm}(\rho)$  соотношениями

$$S \pm (\mathbf{x}) = |F[P \pm (\boldsymbol{\rho})]|^2, \qquad (2)$$

где F [] — знак преобразования Фурье;  $\rho$  — обобщенная координата в плоскости зрачка. Предположим, что уравнения (2) решены относительно P± ( $\rho$ ). Тогда синтез требуемой ЧПФ предполагает реализацию двух некогерентных оптических систем, одна из которых имеет ЗФ P<sub>+</sub> ( $\rho$ ), а другая P<sub>\_</sub>( $\rho$ ) и последующее вычитание изображения, полученного первой системой из изображения, которое получено второй системой. При этом результирующая ЧПФ будет равна

$$\tau(\boldsymbol{\omega}) = \tau_{+}(\boldsymbol{\omega}) - \tau_{-}(\boldsymbol{\omega}) = F[S_{+}(\mathbf{x})] - F[S_{-}(\mathbf{x})]. \quad (3)$$

Для зрачка бесконечных размеров уравнение (2) имеет решение

$$P \pm (\boldsymbol{\rho}) = F^{-1} \left[ \sqrt{S_{\pm}(\mathbf{x})} \exp \left\{ i \Psi_{\pm}(\mathbf{x}) \right\} \right]$$

при любых ФРТ S $\pm$ (x) и произвольной фазе  $\Psi_+$ (x). Для зрачка конечных размеров ( $P \pm (\rho) = 0$  вне зрачка) уравнения (2), вообще говоря, не имеют решения. Поэтому, как отмечалось в [1 – 3], большое значение имеет разработка приближенного метода обращения уравнений (2) для зрачка конечных размеров. При этом погрешность аппроксимации оказывается зависящей от выбора фазы  $\Psi_+(\mathbf{x})$ . В [4] фаза  $\Psi_+(\mathbf{x})$ полагалась равной нулю, что не обеспечивает наименьшей погрешности аппроксимации. В [5] описан метод расчета чисто фазовой зрачковой функции, основанный на использовании геометрического приближения для фазы, используемой в качестве начального шага итерационной процедуры Гершберга-Сакстона. Чисто фазовая ЗФ обеспечивает максимальное просветление зрачка и наибольшее значение ЧПФ на нулевой пространственной частоте. С другой стороны, поскольку амплитуднофазовая 3Ф имеет по сравнению с чисто фазовой добавочную степень свободы - амплитуду, то с ее помощью можно в принципе получить большую точность аппроксимации и большее отношение сигнал/шум при синтезе ряда ЧПФ, например, тех, которые имеют острый максимум на ненулевой пространственной частоте.

Целью настоящей статьи является решение задачи определения оптимальных фазовых функций  $\Psi_{\pm}(\mathbf{x})$ , обеспечивающих минимум погрешности аппроксимации для ЧПФ  $\tau(\boldsymbol{\omega})$  достаточно общего вида. Метод итераций для определения оптимальных решений аналогичен рассмотренному в [6] для нахождения токового распределения антенны по заданному модулю диаграммы направленности.

### Постановка и решение задачи

В общем случае требуемая ЧПФ  $\tau^0(\omega)$  имеет двухполярную ФРТ S<sup>0</sup>(x), определяемую выражением

$$S^{0}(\mathbf{x}) = F^{-1}[\tau^{0}(\boldsymbol{\omega})].$$
(4)

В соответствии с принципом псевдокогерентности преобразования [3] разделим ФРТ S<sup>0</sup>(**x**) на положительную

$$\mathbf{S}^{0}_{+}(\mathbf{x}) = \mathbf{R}[\mathbf{S}^{0}(\mathbf{x})] \ge 0 \tag{5}$$

и отрицательную

$$S_{-}^{0}(\mathbf{x}) = R[-S^{0}(\mathbf{x})] \ge 0$$
(6)

части. В выражениях (5), (6) функция R[z] определяется так

$$R[z] = \begin{cases} z; z > 0, \\ 0; z \le 0. \end{cases}$$
(7)

Рассматривая  $S^0_{\pm}(\mathbf{x})$  как ФРТ некогерентных оптических систем с ЧПФ  $\tau^0_{\pm}(\boldsymbol{\omega})$ , получим требуемую ЧПФ  $\tau^0(\boldsymbol{\omega})$  двузрачковой оптической системы в виде

$$\tau(\boldsymbol{\omega}) = \tau_{+}(\boldsymbol{\omega}) - \tau_{-}(\boldsymbol{\omega}). \tag{8}$$

Задача сводится к определению ЗФ Р<sub>±</sub> (**р**) зрачка конечных размеров, для которых ошибка аппроксимации минимальна.

Среднеквадратичное отклонение синтезируемой ФРТ от заданной ФРТ  $S^{0}(\mathbf{x})$  (4) имеет вид

$$\sigma^2 = \sigma_+^2 + \sigma_-^2, \qquad (9)$$

где

$$\sigma_{\pm}^{2} = \left[\int S_{\pm}^{0}(\mathbf{x}) d\mathbf{x}\right]^{-1} \times$$

$$\times \left[\int |F[P_{\pm}(\boldsymbol{\rho})] - \sqrt{S_{\pm}^{0}(\mathbf{x})} \exp\{i\Psi_{\pm}(\mathbf{x})\}|^{2} d\mathbf{x}\right].$$
(10)

Приравнивая нулю вариацию функционала  $\sigma^2$  (9), получим уравнения для оптимальных фазовых функций  $\Psi_{\pm}(\mathbf{x})$ , и соответствующих им зрачковых функций  $P_{\pm}(\mathbf{p})$ :

$$\Psi_{\pm}(\mathbf{x}) = \arg[\int K(\mathbf{x}, \mathbf{x}') \sqrt{S_{\pm}^{0}(\mathbf{x}')} \exp\{i\Psi_{\pm}(\mathbf{x}')\} d\mathbf{x}'], (11)$$

$$P_{\pm}(\boldsymbol{\rho}) = \begin{cases} P_{\pm}^{0}(\boldsymbol{\rho}); \boldsymbol{\rho} \in D, \\ 0; \boldsymbol{\rho} \notin D, \end{cases}$$
(12)

где

$$P_{\pm}^{0}(\boldsymbol{\rho}) = F^{-1}[\sqrt{S_{\pm}^{0}(\mathbf{x})} \exp\{i\Psi_{\pm}(\mathbf{x})\}], \qquad (13)$$

а ядро уравнения (11) имеет вид

$$K(\mathbf{x}, \mathbf{x}') = \int_{\boldsymbol{\rho} \in D} \exp\{i\boldsymbol{\rho}(\mathbf{x} - \mathbf{x}')\}d\boldsymbol{\rho}.$$
 (14)

Здесь D – область, занимаемая зрачком оптической системы. Минимальная величина среднеквадратичного отклонения  $\sigma^2$  (9), достигаемая на оптимальных функциях  $\Psi_{\pm}(\mathbf{x})$  (11) и  $P_{\pm}(\mathbf{p})$  (12), равна

$$\mathrm{мин}\sigma^2 = \mathrm{мин}\sigma_+^2 + \mathrm{мин}\sigma_-^2, \qquad (15)$$

где мин $\sigma_{\pm}^2$  получается подстановкой выражений (12), (13) в (10) и имеет вид

мин
$$\sigma_{\pm}^2 = 1 - [\int_{\rho \in D} |P_{\pm}^0(\rho)|^2 d\rho] [\int |P_{\pm}^0(\rho)|^2 d\rho]^{-1}$$
 (16)

Соотношения (13), (16) показывают, что в рассматриваемом классе фазовых функций  $\Psi_{\pm}(\mathbf{x})$  оптимальной будет такая функция, которая приводит к ЗФ  $P_{\pm}(\mathbf{p})$ , максимально просветляющей зрачок.

Решение уравнения (11) может быть получено методом последовательных приближений по формуле

$$\Psi_{\pm}^{(n+1)}(\mathbf{x}) = \arg[\int K(\mathbf{x}, \mathbf{x}') \sqrt{S_{\pm}^{0}(\mathbf{x}')} \exp\{i\Psi_{\pm}^{(n)}(\mathbf{x}')\} d\mathbf{x}']; (17)$$
  
n = 0,1,...

В [6] показано, что процесс итерации (17) сходится. Более того, процесс итерации (17) построен так, чтобы на каждом шаге минимизировать линейную по функции  $\exp{\{i\Psi_{\pm}^{(n)}(\mathbf{x})\}}$  часть приращения функционала  $\sigma^2$  (9), т.е. обеспечивает быструю сходимость.

Ограничимся в дальнейшем случаем более просто реализуемых вещественных  $3\Phi P_{\pm}(\mathbf{p})$ . Тогда фазовые функции  $\Psi_{\pm}(\mathbf{x})$  будут принимать два значения 0 и  $\pi$ . Обозначив через  $Q_{\pm}(\mathbf{x}) = \exp\{i\Psi_{\pm}(\mathbf{x})\}$ , получим уравнение для итераций

$$Q_{\pm}^{(n+1)}(\mathbf{x}) = \text{sign}[\int K(\mathbf{x}, \mathbf{x}') \sqrt{S_{\pm}^{0}(\mathbf{x}')Q_{\pm}^{(n)}(\mathbf{x}')d\mathbf{x}'}]; \quad (18)$$
$$n = 0, 1...$$

Перейдем теперь к решению конкретной задачи синтеза изотропной ЧПФ  $\tau^{0}(\boldsymbol{\omega}) = \tau^{0}(|\boldsymbol{\omega}|) = \tau^{0}(\boldsymbol{\omega})$ для круглого зрачка.

## Синтез изотропной ЧПФ

В задачах оптической обработки сигналов часто возникает необходимость в изотропной ЧПФ двух типов: узкополосной ЧПФ и ЧПФ с подавлением низких пространственных частот и подъемом вблизи предельной частоты. Оба типа ЧПФ могут быть получены из двухполярной ФРТ

$$S^{0}(\mathbf{x}) = S^{0}(|\mathbf{x}|) = S^{0}(\mathbf{x}) = CJ_{0}(\omega_{0}\mathbf{x})\exp(-2\alpha\mathbf{x})$$
, (19)  
где  $J_{0}(\mathbf{z})$  – нулевая функция Бесселя; ( $\omega_{0}, \alpha$ ) – за-  
данные постоянные, величина которых определяет-  
ся требованиями к синтезируемой ЧПФ; С — нор-  
мировочная постоянная. ЧПФ, соответствующая  
ФРТ  $S^{0}(\mathbf{x})$  (19), равна [7]:

$$\tau^{0}(\Omega) = 4C\delta\pi^{-1}\omega_{0}^{-2}[(\Omega-1)^{2}+4\delta^{2}] \times$$

$$\times [(\Omega+1)^{2}+4\delta^{2}]^{-1/2}E(2\Omega^{1/2}[(\Omega+1)^{2}+4\delta^{2}]^{-1/2}),$$
(20)

где  $\Omega = \omega \omega_0^{-1}; \delta = \alpha \omega_0^{-1}; E(\cdot)$  – полный эллиптический интеграл. На рис. 1 приведены ЧПФ  $\tau^0(\Omega)$  при различных значениях  $\delta$ . В частности, при  $\delta \le 0, 2$ получаем ЧПФ в виде узкополосного изотропного фильтра с максимумом, соответствующим радиальной пространственной частоте  $\omega = \omega_0; (\Omega = 1)$ . При  $\delta \approx 0,25 \div 0,4$  получается ЧПФ с подъемом в области предельной частоты. Ядро (14) будет вещественной функцией

$$K(x, x') = 2\pi \int_{0}^{1} J_{0}(\rho x) J_{0}(\rho x') \rho d\rho, \qquad (21)$$

а уравнение итераций для  $\, Q^{(n)}_{\pm}(x) \,$  будет иметь вид

$$Q_{\pm}^{(n+1)}(x) = \operatorname{sign}[\int K(x, x') \sqrt{R[\pm J_0(\omega_0 x')]} Q_{\pm}^{(n)}(x') \times \exp(-\alpha x') x' dx']; \qquad (22)$$
$$n = 0, 1...$$



Рис. 1. Изотропная ЧПФ круглого зрачка  $\tau^0(\Omega)$  при различных значениях параметра  $\delta$ 

Хотя процесс итераций, как было сказано, сходится при любой начальной функции, он может приводить к разным решениям для различных начальных функций, так как уравнение (11) имеет, вообще говоря, не единственное решение. Однако асимптотический вид всех решений при  $x \to \infty$  легко установить. Действительно, при  $x \rightarrow \infty$  соядро  $K(x, x') \rightarrow x^{-1}J_1(x)$ , где  $J_1(x)$  – функция Бесселя. Следовательно, асимптотически при  $x \rightarrow \infty$  функция  $Q_+(x) = \text{sign}J_1(x)$ . Отсюда, кстати, вытекает, что функция Q<sub>+</sub>(x)=1, использованная в [4], не является оптимальной. Поскольку перебрать все начальные функции в поисках той, которая приводит к глобальному экстремуму, невозможно, то ограничимся двумя альтернативными начальными функциями, приводящими к двум типам решений. Первая из них

вторая

$$Q_{+}^{(0)}(x) = \begin{cases} +1; x \in T_{2k}^{+}, \\ -1; x \in T_{2k+1}^{+}, \end{cases}$$

 $Q_{+}^{(0)}(x) = 1$ ,

(23)

$$Q_{-}^{(0)}(x) = \begin{cases} +1; x \in T_{2k}^{-}, \\ -1; x \in T_{2k+1}^{-}, \end{cases} \quad k = 0, 1, \dots,$$
(24)

где T<sub>k</sub><sup>+</sup> и T<sub>k</sub><sup>-</sup> – интервалы, занумерованные в порядке возрастания х, на которых отличны от нуля функ- $S^0_{\perp}(x) = R[J_0(\omega_0 x)]exp(-\alpha x)$ шии И  $S_{-}^{0}(x) = R[-J_{0}(\omega_{0}x)] \exp(-\alpha x)$ . Используя функции (23) или (24) в качестве начального шага и выполнив процесс итераций, можно затем для каждого вида начальных функций найти  $3\Phi P_{+}(\rho)$  и  $P_{-}(\rho)$ ,  $\Psi\Pi\Phi$  $\tau_{+}(\omega), \tau_{-}(\omega), \tau(\omega) = \tau_{+}(\omega) - \tau_{-}(\omega)$  и погрешность аппроксимации  $\sigma^2$  для разных значений  $\omega_0$  и  $\delta$ . Назовем условно решение, которое получается при начальной функции (23), «четным», а при начальной функции (24) - «нечетным». Условность в том, что четными (знакопостоянными) или нечетными (знакопеременными) являются, вообще говоря, только начальные функции  $Q_{\pm}^{(0)}(x)$ . Сравнивая погрешность аппроксимации для двух типов решений, можно выбрать из них тот, который обеспечивает меньшую погрешность. Оказывается, что при различных значениях величины ω<sub>0</sub> предпочтительней с точки зрения погрешности аппроксимации будет либо один, либо другой тип решений. Вместе с тем от величины  $\omega_0$ оказывается зависящей и амплитуда синтезированной ЧПФ  $\tau(\Omega)$ , что также необходимо учитывать при выборе одного из типов решений.

Для проверки изложенного метода оптимального синтеза ЧПФ двузрачковой оптической системы были произведены расчеты для заданной ЧПФ  $\tau^{0}(\Omega)$  вида (20). Минимальные значения функционала (9), полученные для «нечетного» и «четного» решений для различных величин δ, ω показывают, что при  $\delta < 0, 4; 1, 0 < \omega_0 < 1, 6$  «нечетное» решение предпочтительнее. Когда  $\delta > 0, 4$ , для всех представляющих практический интерес  $\omega_0$  «четные» и «нечетные» решения фактически совпадают. На рис. 2 приведены в качестве примера оптимальные ЧПФ двузрачковой оптической системы  $\tau_1(\Omega)$  и ЗФ  $P_{l\pm}(\rho)$  (штриховые линии), соответствующие решению уравнения (18) при начальной функции  $Q^{(0)}_{+}(x)$  вида (24) («нечетные» решения), а также ЧПФ и ЗФ  $P_{2+}(\rho)$ ,  $\tau_2(\Omega)$  (сплошные линии), соответствующие начальной функции Q<sup>(0)</sup><sub>+</sub>(x) вида (23) («четные» решения); величины  $\delta = 0,05; \omega_0 = 0,8$ ЧПФ нормированы на квадрат максимума 3Ф, а 3Ф нормированы по максимуму, чтобы выполнялось условие пассивности оптической системы оптической системы  $|P_{1,2\pm}(\rho)| \le 1$ . Для других значений  $\omega_0$ при  $\delta \le 0,2$  графики имеют вид, аналогичный рис. 2.



Рис. 2. Оптимальные ЧПФ двузрачковой оптической системы  $\tau_1(\Omega)$  и ЗФ  $P_{l\pm}(\rho)$  (штриховые линии – «нечетные» решения) и ЧПФ  $\tau_2(\Omega)$  и ЗФ  $P_{2\pm}(\rho)$ , (сплошные линии – «четные» решения) величины  $\delta = 0,05; \omega_0 = 0,8$ 

С ростом б увеличивается ширина полосы фильтрации. С увеличением  $\omega_0$  растет амплитуда ЧПФ  $\tau(\omega)$ , а у ЗФ смещается положение экстремальных точек, которые у P<sub>1±</sub>(р) лежат при  $\rho \approx 2^{-1}\omega_0$ , а у  $P_{2+}(\rho)$  – при  $\rho = 0$  и  $\rho \approx \omega_0$ . С увеличением б всплески ЗФ расширяются. При фиксированных  $\delta \leq 0,2$  и  $\omega_0$  амплитуда ЧПФ  $\tau_1(\Omega)$ больше, чем  $\tau_2(\Omega)$ . При  $\omega_0 > 1$  узкополосная фильтрация с помощью «четных» решений невозможна, так как при этом невозможно реализовать на  $3\Phi$  всплески при  $\rho = \omega_0$ , которые в конечном итоге и обеспечивают узкополосную фильтрацию. Даже для тех  $\omega_0$ , для которых узкополосная фильтрация с помощью «четных» решений возможна, амплитуда ЧПФ оказывается существенно ниже, чем для ЧПФ, реализуемой па решении «нечетного» типа, и различие тем больше, чем меньше δ, т.е. чем уже синтезируемый фильтр. Если учесть, к тому же, возможность для решений «нечетного» типа получить узкополосную фильтрацию и при  $\omega_0 > 1$ , то различие в амплитудах фильтра увеличится. С другой стороны, при некоторых значениях ω<sub>0</sub> (например,  $\omega_0 = 0,8$ ) погрешность аппроксимации для решений «четного» типа меньше. Амплитуда ЧПФ с увеличением  $\omega_0$  (при фиксированном  $\delta$ ) растет.

С этой точки зрения выгодно брать возможно больше  $\omega_0$ . Однако, когда  $\omega_0$  приближается к  $\omega_0 = 1$  для решений «четного» типа или к  $\omega_0 = 2$  для решений «нечетного» типа, резко возрастает погрешность аппроксимации, так как оказывается невозможным аппроксимировать  $3\Phi$  с достаточной точностью в пределах зрачка  $\rho \le 1$ .

В заключение отметим, что для упрощения практической реализации полученные 3Ф можно приближенно заменить на кусочно-постоянные. Эти функции в свою очередь могут быть использованы для минимизации погрешности в процедуре итераций Гершберга-Сакстона.

### Выводы

Предложен метод расчета амплитудно- фазовой зрачковой функции, минимизирующий среднеквадратичное отклонение синтезируемой ФРТ от заданной ФРТ. На входе итерационной процедуры используются две альтернативные начальные функции, приводящие к двум типам решений. Приведены результаты расчета зрачковых функций для реализации узкополосной фильтрации в двухканальном некогерентном оптическом процессоре.

## Список литературы

1. Королев А.Н. Псевдокогерентное преобразование некогерентных изображений // Автометрия. – 1981. – № 1. – С. 46-52.

2. Королев А.Н. Синтез частотной характеристики в некогерентных системах оптической обработки информации // В кн.: Применение методов оптической обработки информации и голографии / Под ред. С.Б. Гуревича, В.К. Соколова. – Л., 1980. – С. 85-89.

3. Lohman A.W., Rhodes W.T. Two – pupil synthesis of optical transfer functions // Applied Optics. – 1978. – V.17. – P. 1141-1149.

4. Королев А.Н., Морозова С.Л. Пространственная фильтрация в некогерентной оптической системе с амплитудно-фазовыми зрачковыми функциями // Оптика и спектроскопия. – 1985. – Вып.2, т. 58. – С. 428-431.

5. Королев А.Н., Морозова С.Л. Использование частных решений обратной задачи в оптике для двузрачкового синтеза ОПФ // В кн.: Современное состояние и перспективы оптических методов передачи, хранения и обработки информации / Под ред. С.Б. Гуревича, Г.А. Гаврилова. – Л., 1984. – С. 43-48.

6. Войтович Н.Н. О синтезе антенны по заданной амплитудной диаграмме излучения // Радиотехника и электроника. – 1972. – №12, Т. 17. – С. 2491-2498.

7. Бейтмен Г., Эрдейи А. Таблицы интегральных преобразований. – М.: Наука, 1970. – 328 с.

#### Поступила в редколлегию 9.01.2008

**Рецензент:** д-р техн. наук, проф. А.И. Стрелков, Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков.