# УДК 621.396

# Е.В. Харченко

Институт радиофизики и электроники им. А.Я. Усикова НАН Украины, Харьков

## АНАЛИЗ ВЛИЯНИЯ ПАРАМЕТРОВ КВАНТОВАТЕЛЯ НА КАЧЕСТВО ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ С РАСШИРЕННЫМ СПЕКТРОМ

Представлены результаты исследования влияния разрядности аналого-цифрового преобразователя на энергетические характеристики демодулятора сложных широкополосных сигналов, принимаемых на фоне гауссовского шума и мощной узкополосной помехи. Показано, что 8...16 уровней квантования на размах совокупности сигнала, шума и помехи в некоторых случаях обеспечивает снижение энергетических потерь на величину порядка 6 дБ по сравнению с двухсторонним идеальным полосовым ограничителем и существенное уменьшение уровня интермодуляционных помех.

аналого-цифровой преобразователь, демодулятор

## Введение

Постановка задачи в общем виде и анализ литературы Аналого-цифровой преобразователь (АЦП) является неотъемлемой частью современных радиоприемных устройств. Известно, что при прохождении совокупности сигналов и шума через нелинейный преобразователь, частным случаем которого является АЦП, наблюдается эффект подавления слабых сигналов сильными и возникают интермодуляционные помехи [1 – 7], что может оказывать существенное влияние на помехоустойчивость приема информации. В то же время оценки влияния количества уровней квантования на энергетические потери и величину интермодуляционных помех при цифровом преобразовании сигнала и совокупности помех получены только для некоторых частных случаев. Наиболее полные результаты количественных оценок имеются для случая прохождения сигнала и помех через идеальный (двухуровневый) полосовой ограничитель [7]. При многоуровневом квантовании результаты аналитических представлений могут быть с достаточной степенью точности интерпретированы только для предельных случаев – очень больших и очень малых отношений сигнала и совокупности помех.

Целью статьи является исследование влияния разрядности аналого-цифрового преобразователя на энергетические характеристики демодулятора сложных широкополосных сигналов, принимаемых на фоне гауссовского шума и мощной узкополосной помехи.

Результаты, полученные методом компьютерного моделирования, сравнивались с известными теоретическими результатами для предельных случаев.

## Основные соотношения

Представление нелинейного устройства с помощью переходной функции, являющейся преобразованием Лапласа от его амплитудной характеристики, было введено Беннетом и Райсом [1] и впервые применено для изучения шумов в нелинейных устройствах Беннетом, Райсом и Миддлтоном [2]. Аналогичный подход для исследования прохождения сигналов и шума использовался в [3, 5].

В ряде работ [4, 6] нелинейное устройство представлялось колебательной характеристикой, являющейся преобразованием Чебышева 1-го порядка от амплитудной характеристики нелинейного преобразователя.

Наиболее полный анализ влияния идеального полосового ограничителя на степень подавления полезного сигнала и относительный уровень интермодуляционных помех при прохождении через него двух сигналов (один из которых является мешающим) и стационарного узкополосного шума с нормальным распределением мгновенных значений представлен в статье [7].



Рис. 1. Нормированное отношение сигнал/шум на выходе идеального полосового ограничителя как функция отношения сигнал/шум на входе

На рис. 1 представлена зависимость нормированного отношения сигнал/шум на выходе  $\left(S_{1}\,/\,N\right)_{\text{вых}}$  от отношения сигнал/шум на входе

 $(S_1 / N)_{BX}$  при различных значениях отношения мощностей подаваемых на вход сигналов  $(S_2 / S_1)_{BX}$ . Из рисунка видно, что отношение величины сигнал/шум на выходе к аналогичной величине на входе ограничителя при наличии двух сигналов и случайного шума может изменяться в диапазоне от 0 до 2, тогда как в случае преобладания одного сигнала при том же шуме эти изменения заключены в пределах от  $\pi/4$  до 2. Верхняя кривая на рис. 1, соответствующая существенному превышению сигнала № 1 над сигналом № 2, совпадает с зависимостью, приведенной Давенпортом [3] для условий, когда в шуме присутствует только один сигнал.

В работе [1] рассмотрено взаимодействие в предельном ограничителе синусоидального сигнала и помехи, распределенной по закону Райса. Огибающая  $A_{\Sigma}$  такой помехи имеет плотность вероятностей

$$p(A_{\Sigma}) = A_{\Sigma} e^{-(A_{\Sigma}^{2} + 2r)/2} I_{0}(\sqrt{2r}A_{\Sigma}), \qquad (1)$$

где  $r = P_{y_{\prod}} / P_{iii}; P_{y_{\prod}} -$ мощность узкополосной (синусоидальной) помехи.

Эффективный коэффициент подавления слабого синусоидального сигнала в присутствии этой сильной помехи в полосовом предельном ограничителе можно рассчитать по формуле [4]

$$R = \frac{\pi}{4}(1+r) \left[ e^{-r/2} I_0 \left( \frac{r}{2} \right) \right]^2.$$
 (2)

В [5] исследовалось влияние квантующего устройства (КУ) на уровень сигнальных составляющих и интермодуляционных помех, когда на вход АЦП после полосового фильтра поступает сумма детерминированных сигналов s(t) с произвольной угловой модуляцией и стационарный гауссовский шум n(t) с нулевым средним значением и дисперсией

численно равной мощности шума  $\sigma_{III}^2 = P_{III}$  :

$$s(t) = \sum_{i=1}^{N} A_{i} \cos[\omega_{i}t + \varphi_{i}(t) + \theta_{i}] = \sum_{i=1}^{N} A_{i} \cos\gamma_{i}; \quad (3)$$
$$n(t) = N(t) \cos(\omega_{0}t + \varphi) = r \cos\gamma_{0}, \quad (4)$$

где  $\phi_i(t)$  – законы фазовой манипуляции, а огибающая N(t) и фаза  $\gamma_0$  имеют соответственно релеевское и равномерное распределения. Амплитудная характеристика квантователя по уровню описывается выражением

$$y = g(x) = \sum_{k=0}^{M-1} \xi_k g_k(x),$$
 (5)

где

$$g_{k}(x) = \begin{cases} 1, x > x_{k}; \\ 0, -x < x < x_{k}; \\ -1, x < x_{k}; \end{cases}$$
(6)

2М – число уровней квантования;  $\xi_k$  – значение

k-го уровня квантования по амплитуде. При равномерном шаге квантования  $\xi_k=\Delta$  при всех k.

Процесс на выходе КУ y(t) может быть представлен в виде регулярной z(t) и шумовой  $\lambda(t)$ составляющих

$$\mathbf{y}(t) = \mathbf{z}(t) + \lambda(t). \tag{7}$$

Полученное в [5] выражение для регулярной составляющей имеет вид

$$z(t) = \frac{1}{2} \sum_{p_1 = -\infty}^{\infty} \dots \sum_{p_N = -\infty}^{\infty} h_{p_1 \dots p_N} \sin\left[\sum_{i=1}^{N} p_i\left(\gamma_i + \frac{\pi}{2}\right)\right], (8)$$

где

$$h_{p_{1}...p_{N}} = \frac{4}{\pi} \sum_{k=0}^{M-1} \xi_{k} \int_{0}^{\infty} \cos(x_{k}v) \prod_{i=1}^{N} J_{p_{i}}(A_{i}v) \exp\left[-\frac{v^{2}P_{III}}{2}\right] \frac{1}{v} dv.$$
(9)

Выражение (9) определяет амплитуды сигнальных и комбинационных составляющих на выходе КУ.

Очевидно, что шумовую составляющую на выходе КУ можно определить из выражений (7), (8).

Для определения сигнальных и шумовых составляющих на выходе КУ необходима оценка выражения (9), которое является достаточно сложным.

В общем виде такая оценка не может быть получена, и поэтому необходим анализ каждого конкретного случая.

При воздействии на КУ одного сигнала и шума показано [5], что сигнальная составляющая имеет вид

$$z(t) = \sum_{p=1}^{\infty} h_p \sin p \left( \gamma_1 + \frac{\pi}{2} \right), \quad (10)$$

а для вычисления амплитуд сигнальной составляющей используется выражение

$$h_{p} = \frac{2}{\pi} \frac{R_{1}^{p}}{p!} \sum_{k=0}^{\infty} \xi_{k} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} \left(2\frac{z_{k}}{l_{0}}\right)^{2n} \times \\ \times \Gamma\left(n + \frac{p}{2}\right)_{1} F_{1}\left(n + \frac{p}{2}, p + 1, -R_{1}^{2}\right),$$
(11)

где  $R_1^2 = (A_1 / \sqrt{2P_{III}})^2$  – отношение сигнал-шум на входе КУ;  $\Gamma(\cdot)$  – гамма-функция;  $_1F_1(\cdot)$  – вырожденная гипергеометрическая функция;  $l_0 = \sqrt{2P_{III}} / \Delta$ ;  $l_1 = A_1 / \Delta$ ;  $z_k = x_k / \Delta$ .

Выражение (11) существенно упрощается при  $R_1^2 << 1$ , что имеет особое значение при обработке сложных сигналов, передаваемых ниже уровня шума

$$h_{p} = \frac{2}{\pi} \frac{R_{1}^{p}}{p!} \sum_{k=0}^{M-1} \xi_{k} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} \left(2\frac{z_{k}}{l_{0}}\right)^{2n} \Gamma\left(n + \frac{p}{2}\right).$$
(12)

Однако и в этом случае оценить аналитическими методами влияние разрядности АЦП на качество обработки сложного сигнала практически невозможно, а численные методы не позволяют оценить степень влияния на выбор разрядности одной или нескольких узкополосных помех.

Для оценки влияния АЦП на энергетические потери при цифровой обработке сложного сигнала в условиях воздействия совокупности помех, были проведены экспериментальные исследования на модели, выполненной в среде MatLab.

Методика и основные результаты моделирования. Компьютерная модель решаемой задачи, выполненная в среде MatLab с использованием пакета Simulink, представлена на рис. 2.



Рис. 2. Компьютерная модель

Источник генерирует сложный широкополосный сигнал с числом элементов N = 31 и, соответственно, базой B =  $T_c \cdot \Delta F_c = 31$ , модулирующий несущее колебание, в результате чего формируется фазоманипулированный сигнал, на который воздействуют аддитивные помехи линии связи.

Моделью помех являются гауссовский шум с

центральной частотой, совпадающей с несущим колебанием ФМ сигнала и шириной спектра превышающей ширину спектра полезного сигнала, в которой сосредоточено 92% энергии. Моделью негауссовской помехи является гармонический сигнал с заданной амплитудой, частота которого находится в спектре полезного сигнала.



в – гауссовский шум с дисперсией на выходе фильтра равной 4,6;

г – сигнал на выходе коррелятора при отношении сигнал/шум на входе 0,3

В качестве модели цифрового приемника выбран корреляционный приемник с АЦП на входе. Количество уровней квантования определяется шагом квантования, который задается программно. На рис. 3 представлены результаты воздействия на корреляционный приемник смеси сигнала, шума и гармонической помехи.

Значение корреляционного интеграла, отображаемое на дисплее компьютерной модели, совпадает с результатом интегрирования на длительности сигнала. Заметим, что отношение сигнал/(шум+помеха) на входе приемника существенно меньше 1, а значение корреляционного интеграла достаточно велико.

При изменении мощности шума и амплитуды помехи размах совокупности сигнала, шума и помехи поддерживается неизменным, путем изменения коэффициента передачи усилителя на входе АЦП. Под определением «размах» будем понимать разность между максимальными и минимальными мгновенными значениями процесса наблюдаемого на интервале интегрирования (на длительности сложного сигнала). При малых отношениях  $P_c/\sigma_{uu}^2$  размах обычно соответствует значениям  $\pm 3\sigma_{uu}$ .

Далее представлены результаты моделирования работы цифрового корреляционного приемника при различном числе уровней квантования в условиях воздействия узкополосной помехи и шума.

В табл. 1 значения корреляционного интеграла соответствуют следующим исходным данным: отношение уровней сигнала и гармонической помехи  $U_c/U_{\rm YII}$ = 1/8 (соответственно  $P_c/P_{\rm YII}$ = 1/64); отношение уровня сигнала к дисперсии гауссовского шума  $P_c \left/ \sigma_{\rm III}^2$ =0,3; количество разрядов квантования  $n = \log_2 \left( 2 \cdot M \right)$ , где 2М – число уровней квантования на размахе входной реализации, изменялось от 2 до 256.

Таблица 1

|                    | Установленные в модели значения уровней квантования по амплитуде |          |          |          |          |          |                                       |
|--------------------|------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------|
|                    | 0,5                                                              | 0,25     | 0,125    | 0,0625   | 0,003125 | 0,015625 | 0,00390625                            |
| №п/п реализации    | Количество уровней квантования по амплитуде                      |          |          |          |          |          |                                       |
| шума               | 2                                                                | 4        | 8        | 16       | 32       | 64       | 256                                   |
|                    | Кол-во разрядов АЦП                                              |          |          |          |          |          |                                       |
|                    | 1                                                                | 2        | 3        | 4        | 5        | 6        | 8                                     |
| 1                  | 1,104                                                            | 0,909    | 1,357    | 1,204    | 1,243    | 1,185    | 1,199                                 |
| 2                  | 0,7224                                                           | 1,441    | 1,335    | 1,441    | 1,403    | 1,431    | 1,408                                 |
| 3                  | 1,447                                                            | 1,684    | 1,337    | 1,818    | 1,694    | 1,689    | 1,684                                 |
| 4                  | 0,3849                                                           | 1,103    | 1,188    | 1,054    | 1,068    | 1,113    | 1,09                                  |
| 5                  | 1,571                                                            | 1,603    | 1,725    | 1,688    | 1,79     | 1,761    | 1,743                                 |
| 6                  | 1,341                                                            | 0,8014   | 1,306    | 1,162    | 1,132    | 1,192    | 1,179                                 |
| 7                  | 0,8628                                                           | 1,566    | 1,443    | 1,291    | 1,279    | 1,32     | 1,288                                 |
| 8                  | 1.016                                                            | 2,568    | 2,049    | 2,066    | 2,067    | 2,045    | 2,056                                 |
| 9                  | 1,261                                                            | 1,26     | 1,352    | 1,257    | 1,365    | 1,318    | 1,317                                 |
| 10                 | 1,155                                                            | 0,7954   | 1,182    | 1,237    | 1,102    | 1,124    | 1,137                                 |
| 11                 | 2,344                                                            | 1,741    | 2,102    | 1,957    | 1,96     | 2,007    | 1,994                                 |
| 12                 | 1,897                                                            | 1,777    | 1,494    | 1,463    | 1,478    | 1,497    | 1,489                                 |
| 13                 | 1,160                                                            | 1,72     | 1,682    | 1,744    | 1,684    | 1,68     | 1,681                                 |
| 14                 | 0,9033                                                           | 1,654    | 1,709    | 1,785    | 1,629    | 1,7      | 1,706                                 |
|                    |                                                                  |          |          |          |          |          |                                       |
| 30                 | 1,232                                                            | 1,714    | 1,395    | 1,731    | 1,677    | 1,662    | 1,655                                 |
| Оценка среднего    |                                                                  |          |          |          |          |          |                                       |
| значения корреля-  | 1,283755                                                         | 1,541687 | 1,486967 | 1,49075  | 1,498767 | 1,497637 | 1,5032467                             |
| ционного интеграла |                                                                  |          |          |          |          |          | +                                     |
| корреляционного    | 0,160325                                                         | 0,237118 | 0,101296 | 0,130672 | 0,121246 | 0,117573 | 0,1186842                             |
| интеграла          |                                                                  |          |          | ,        |          |          | , , , , , , , , , , , , , , , , , , , |

Значения корреляционного интеграла при  $U_c/U_{y\Pi} = 1/8$  и  $P_c/\sigma_{III}^2 = 0.3$ 

Среднее на множестве реализаций шума значение корреляционного интеграла при различной разрядности АЦП представлено на рис. 4.

Очевидно, что при разрядности АЦП превышающей 3 значения корреляционного интеграла стабилизируются. Отношение сигнал/шум на выходе корреляционного приемника при различной разрядности АЦП представлено на рис. 5.

Из рисунка видно, что отношение сигнал/шум стабилизируется при разрядности АЦП, превышающей 4. Сопоставляя результаты представленные на рис. 4 и 5, можно говорить о том, что при разрядности АЦП равной 3, при выбранных параметрах сиг-



Рис. 4. Значение корреляционного интеграла при различной разрядности АЦП

На рис. 6 представлены нормированные значения комбинационных составляющих при различной разрядности АЦП, вычисленные по формуле

$$\lambda_{\rm H}(n) = 1 - \frac{y(n)}{y}, \qquad (13)$$

где у – значение корреляционного интеграла при числе разрядов АЦП стремящемся к бесконечности в отсутствие шума и помех; у(n) – значение корреляционного интеграла при n разрядах АЦП в условиях воздействия сигнала, шума и помехи, находящихся в соотношении U<sub>c</sub>/U<sub>VII</sub> = 1/8 и P<sub>c</sub> /  $\sigma_{\rm m}^2$  =0,3.



Рис. 6. Нормированное значение комбинационных составляющих при различной разрядности АЦП

нала и помех, на энергетические показатели корреляционного приемника могут влиять шумы квантования, увеличивающие дисперсию помехи.



Рис. 5. Отношение сигнал/шум на выходе корреляционного приемника при различной разрядности АЦП

Из рисунка видно, что при количестве разрядов АЦП превышающем 4 суммарный уровень интермодуляционных помех стабилизируется.

Представляет несомненный интерес сравнительная оценка уровня интермодуляционных помех возникающих при использовании предельного ограничителя и аналогичных помех, возникающих при использовании АЦП с заданной разрядностью преобразования.

На рис. 7, а представлена спектральная плотность мощности, полученная на модели представленной на рис. 2, где в качестве нелинейного преобразователя использован предельный ограничитель. Очевидно, что интермодуляционные помехи имеют достаточно большой уровень, а их наибольшая мощность наблюдается в районе 3-ей гармоники.

При использовании АЦП с разрядностью 2 уровень интермодуляционных помех резко уменьшается, что наблюдается на рис. 7, б, а при разрядности АЦП равной 4 – становится пренебрежимо малым (рис. 7, в).

На рис. 8 представлены результаты экспериментального исследования на модели изменения отношения сигнал/шум на выходе корреляционного приемника при различном уровне мешающих воздействий. Значения отношения сигнал/шум нормировались к соответствующему значению, полученному при максимальной разрядности АЦП n = 8.

Полученные результаты свидетельствуют о том, что независимо от размаха сигнала, при числе разрядов АЦП  $n \ge 3$  отношение сигнал/шум изменяется не существенно, а при n > 5 практически не изменяется.



Рис. 7. Спектр сигнала, шума и комбинационных составляющих: а – при использовании предельного ограничителя; б – при использовании АЦП с разрядностью 2; в – при использовании АЦП с разрядностью 4



Рис. 8. Отношение сигнал/шум на выходе корреляционного приемника

#### Выводы

Из результатов, представленных на рис. 4 – 8, видно, что при разрядности АЦП большей 4 значения корреляционного интеграла, отношение сигнал/шум и суммарный уровень интермодуляционных помех изменяются незначительно.

Исследования, проведенные для различных отношений сигнал/шум, показали, что 8...16 уровней квантования (что соответствует разрядности АЦП равной 3 – 4) на размах  $\pm 3\sigma$  смеси сигнала, шума и узкополосных помех обеспечивает снижение энергетических потерь по сравнению с двухсторонним идеальным полосовым ограничителем на величину, существенно зависящую от отношения сигнал/шум на входе корреляционного приемника. Так, например, при отношении сигнал/шум 0,3 переход от предельного ограничителя к четырехразрядному АЦП обеспечивает энергетический выигрыш 1,94 (на 2,55 дБ), а при отношении сигнал/шум 0,05 – соответствующий выигрыш превышает 6 дБ (см. рис.8). Данный результат не в полной мере соответствует теоретическим оценкам (см. рис.1), в соответствии с которыми ожидаемые потери в отношении сигнал/шум не должны превышать  $\pi/4$  (1,05 дБ). Видимо, данные отличия связаны с тем, что теоретические исследования выполнялись для простых сигналов, для которых полоса шума на входе приемника принималась равной ширине спектра обрабатываемого сигнала. В то же время для сложных сигналов корреляционная обработка приводит к эквивалентному уменьшению полосы сигнала в базу раз. Это свидетельствует о необходимости проведения дополнительных исследований, касающихся влияния предельного ограничителя на последующую корреляционную обработку сложных сигналов при различных отношениях сигнал/шум и значениях базы модулирующей последовательности.

Результаты исследования влияния разрядности АЦП на уровень интермодуляционных помех в основном соответствуют известным результатам [5]. В соответствии с проведенными исследованиями использование АЦП с разрядностью 4 приводит к существенному уменьшению уровня интермодуляционных помех по сравнению с предельным ограничителем (см. рис.7). Дальнейшее увеличение разрядности при обработке сложных сигналов, с инженерной точки зрения, нецелесообразно.

#### Список литературы

1. Bennet W.R., Rice S.O. Note on methods of computing modulation products. – Philosophical Magazine, series 7, 18, 422-424, September 1934.

2. Middleton D. Some general results in the theory of noise through nonlinear devices, Quart. Applied Math., 5(4), 445-498, January 1948.

3. Давенпорт В.Б., Рут В.Л. Введение в теорию случайных сигналов и шумов. – М.: Издательство иностранной литературы, 1960. – 468 с.

4. Спилкер Дж. Цифровая спутниковая связь. Пер. с англ./Под ред. В.В. Макарова. – М.: Связь, 1979. – 592 с.

5. Помехозащищенность радиосистем со сложными сигналами / Г.И. Тузов, В.А. Сивов, В.И. Прытков и др.; Под ред. Г.И. Тузова. – М.: Радио и связь, 1985. – 264 с.

6. Тихонов В.И. Статистическая радиотехника. – М: Радио и связь, 1982. – 624 с.

 Джоунс Дж. Идеальное ограничение процесса, состоящего из двух синусоидальных сигналов и случайного шума // Некоторые проблемы обнаружения сигнала, маскируемого флюктуационной помехой. Сборник статей; Под ред. И.И. Шнер. – М.: Сов. радио, 1965. – С. 237-263.

Поступила в редколлегию 6.03.2008

**Рецензент:** д-р техн. наук, проф. Ю.В. Стасев, Харьковский университет Воздушных Сил им. И.Кожедуба, Харьков.

### АНАЛІЗ ВПЛИВУ ПАРАМЕТРІВ КВАНТУЮЧОГО ПРИСТРОЮ НА ЯКІСТЬ ЦИФРОВОЇ ОБРОБКИ СИГНАЛІВ З РОЗШИРЕНИМ СПЕКТРОМ

Харченко О.В.

Представлені результати дослідження впливу розрядності аналого-цифрового перетворювача на енергетичні характеристики демодулятора складних широкосмугових сигналів, що приймаються на тлі гауссівського шуму і потужної вузькополосної перешкоди. Показано, що 8...16 рівнів квантування на розмах сукупності сигналу, шуму і перешкоди в деяких випадках забезпечує зниження енергетичних витрат на величину близько 6 дБ в порівнянні з двостороннім ідеальним смуговим обмежувачем і істотне зменшення рівня інтермодуляційних перешкод.

Ключові слова: аналого-цифровий перетворювач, демодулятор

## THE INFLUENCE ANALYSIS OF QUANTIZER PARAMETERS ON QUALITY DIGITAL PROCESSING OF THE SPREAD-SPECTRUM SIGNAL

Kharchenko H.V.

The results of research of the analog-digital converter on power descriptions of demodulator of the spread-spectrum signals, accepted on a background gausses noise and powerful narrowband hindrance, are represented. It is shown that 8...16 levels of quantum provide the decline of power losses on a value about 6 dB as compared to an ideal bandpass terminator and essential decreasing of intermodulation interference.

Keywords: analog-digital transformer, demodulator.