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SOME CONSIDERATIONS ABOUT VALIDITY OF A MONTE-CARLO METHOD  
FOR EVALUATING MEASUREMENT UNCERTAINTY 

 
Uncertainty calculation task is discussed in the paper. Monte-Carlo method for uncertainty evaluation is 

covered. It is used for uncertainty evaluation of a proposed measurement scenario. In order to validate the 
Monte-Carlo method, long-run success rate estimation procedure is presented. Application of such procedure 
showed unexpected invalid  results of uncertainty evaluation. A modification of the Monte-Carlo method is pro-
posed that appears to deliver more valid results. 
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Introduction 

A statement of the result of a measurement is only 
complete if it provides an estimate of the quantity con-
cerned (often known as the measurand) and a quantita-
tive measure of the reliability of that estimate, namely, 
the uncertainty associated with it. 

Generally, several approaches to provide an estimate 
of the measurand, and the associated uncertainty (e.g. a 
coverage interval) for the measurand that is needed for 
conformity assessment and other decision making can be 
used. These approaches include Principle of Maximum 
Entropy, Bayesian treatment (probabilistic modeling) and 
Propagation of distributions (functional modeling) [1]. The 
latter is used to relate the measurand to model input quanti-
ties about which information is available, and іs the basis 
of obtaining the probability density function (PDF) for the 
measurand from the PDFs assigned to the input quantities. 
In some simplest cases the PDF for the measurand can be 
obtained analytically. Otherwise, approximate and numeri-
cal implementations of the propagation of distributions are 
available, such as the ISO Guide’s uncertainty framework 
[2] and a Monte Carlo method (MCM) [3]. The preferred 
use of MCM comparing to approximate analytical methods 
is shown in a number of studies [3 – 5].  

In this paper, it is assumed that a model and PDFs for 
all input quantities are given. Thus, the second phase “cal-
culation” of uncertainty evaluation procedure is discussed. 

The goal of this paper is to highlight invalid solu-
tion of a simple measurement scenario by the MCM and 
therefore a need for its (possible) improvement and in-
dependent validation of usability of all candidate solu-
tion approaches. Section 2 gives an account of MCM in 
brief. Section 3 covers the measurements scenario and 
uncertainty evaluation results by the MCM. Section 4 
presents modification of MCM intended to provide 
more valid results. Summary and draws of some conclu-
sions are given in the Conclusions. 

1. Monte-Carlo method 

Regardless of the field of application, the physical 
quantity of concern, the model output quantity, can 

rarely be measured directly. Rather, it is determined 
from a number of contributions, or input quantities, that 
are themselves estimated by measured values or other 
information available. 

The fundamental relationship between the input 
quantities and the output quantity is considered to be the 
model [6]. The input quantities, , say, in number, are 
denoted by and the output quantity by 

. The model  can be a 
mathematical formula, a step-by-step calculation proce-
dure, numerical software or other prescription. Let us 
assume that PDF for and are 
known. Estimate y  of quantity Y is the measurement 
result. Then, the problem of uncertainty evaluation is 
the estimation of PDF of the output value g(  (or the 
distribution function ) and therefore the estimation 
of moments and coverage regions(intervals for scalar) 
for y. The latter are needed for conformity assessment 
and decision making purposes, so its evaluation is the 
main result of uncertainty evaluation procedure. 

n
T

1 nX (X ,...,X )=
T

1 nY (Y ,...,Y )= Y f (X)=

T
1 nX (X ,...,X )= f (X)

y)
G(y)

According to the so-called Markov formula, if 
( )δ ⋅ denotes the Dirac delta function and denotes 

the joint PDF of input quantities, the PDF g( could be 
generally found as [3]: 

ing (x)
y)

in n n 1 1g(y) ... g (x) (y f (x))dx dx ...dx
∞ ∞ ∞

−
−∞ −∞ −∞

= δ −∫ ∫ ∫ .(1) 

It would rarely be a practical proposition to use the 
integral expression (1) as the basis for the numerical 
determination of the PDF for the output quantity. A 
multivariate quadrature rule would need to be devised 
that was capable of delivering a prescribed numerical 
accuracy for each choice of . Rather than attempting 
to evaluate the expression (1), an application of a MCM 
[3] encompasses an entirely different approach, based 
on the following considerations.  

y

MCM uses pseudorandom numbers to obtain repre-
sentative draws of possible values of the input quantities 
in order to generate a discrete representation of the output 
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quantities via the given model[3]. The MCM computes 
from these draws the expectations and covariance matrix 
for the output quantities and a frequency distribution that 
approximates the joint PDF for the output quantities, the 
use of which provides best estimates of the output quanti-
ties and the associated uncertainty matrix (covariance 
matrix). Furthermore, the marginal PDF for any output 
quantity can be approximated accordingly and used to 
form coverage intervals for that quantity. If rules are 
given, MCM can also be used to determine, from the joint 
PDF, coverage regions for the output quantities. MCM 
provides approximations to the exact results that would 
be provided by analytical methods[4].  

As stated in a number of studies [3 – 5], the quality 
of these approximations generally improves with the 
number of draws, and therefore a check on the conver-
gence of MCM and careful ‘validation’ of the procedure 
are required. Some criteria and recommendations that 
come out in an adaptive MCM with reduced computing 
complexity are given [7]. 

2. The measurement scenario  
and MCM calculation 

Let us consider a measurement of the magnitude of a 
complex valued quantity  [8]. Measurements 
of the real and imaginary components yield 

1 iΩ = Ω + Ω2

1 2z z iz= + , 
from which an estimate of | |  can be found: Ω

2 2
1 2| z | z z= + .                            (2) 

We further consider that and  are independ-
ent and have standard uncertainties equal to a known 
value u associated with a Gaussian distribution. 

1z 2z

Application of the adaptive MCM[7] is used here. 
The application of this method can be described in a 
series of steps. 

1). Generate a sequence of samples  and , 
where  by drawing from a Gaussian distribution 
with mean  and , and variance u

1iz 2iz
i 1,.., L=

1z 2z 2 for both of them. 
 is not chosen a prior but adaptively by means of proce-

dure, described in[7] for a required accuracy for estimates. 
In our scenario case, we require accuracy, that 
shall be enough for purposes described later in this section. 

L

0.01ε =

2). Calculate according to Eq. (2) for 
. 

i| z |
i 1,.., L=

3). Sort the values of in ascending order. i| z |
4). Take the 0.025Lth value of  as the lower 

bound of the uncertainty interval; Take the 0.975Lth value 
of  as the upper bound of the uncertainty interval. 

i| z |

i| z |
The result is an interval said to have 95% probability 

of containing | |  [3]. Other coverage probabilities can 
also be applied with use of respective quantiles in step 4. 

Ω

In order to assess the long-run success rates of the 
MCM, a series of simulated measurement results is 
processed. Pairs of data ( , ), , are 
simulated and each pair is used as if it were the data 

obtained from an independent measurement of the same 
fixed measurand. The procedure is as follows. 

1z [ j] 2z [ j] j 1,..,10000=

1). A value for 1 i 2Ω = Ω + Ω is selected. 
2). A sequence of pairs ( , ) is drawn 

from independent Gaussian distributions with means 
1z [ j] 2z [ j]

1Ω  and 2Ω , respectively, and variances u2. 
3). For each pair, a 95% uncertainty interval is cal-

culated as described above and a counter is incremented 
if that interval contains | |Ω . 

4). The success rate of a procedure is estimated 
from the respective counter value divided by the total 
number of runs and multiplied by 100%. 

These steps assess the success rate of a procedure 
at one fixed value of the measurand. In order to investi-
gate a procedure’s performance over a range of values, 
the method should be repeated with different measurand 
values, selected at step 1. 

The symmetry of the scenario means that perform-
ance will be independent of the radial coordinate of the 
measurand in the complex plane. So, without loss of gen-
erality, ten | | /uΩ values lying along the real axis were 
chosen. For each measurand value, simulated experi-
ments provided 10000 sets of input data for the MCM 
uncertainty estimation. The results are summarized in 
Table 1. The second column of this table report the per-
cent of successes. We should note, that some variability 
in the percent of successes observed can be expected. For 
a success rate of p = 0.95, the standard deviation of the 
percent of successes observed is 100%* Np(1 p) / N−  , 
which is approximately equal to 0.22% in our case. 

An unexpected fall in the success percents occurs 
when the measurand is close to the origin. The method 
fails to reach the required percents of success for 
| | /u 2.0Ω <  and fails on every occasion when 
| | /u 0.224Ω < . The core of this problem seems to be in 
asymmetry of the | |Ω  PDF, if we use MCM with 

1z 0=  and 2z 0=  and a standard uncertainty u = 1. 
The lower bound of the 95% uncertainty interval for this 
data is i| z | 0.224= , and we should expect this bound to 
increase for any other MCM sample, so any measurand 
| | 0.224Ω <  will fall outside the uncertainty intervals 
that can be generated. This explains the success rate of 
zero in the first four rows of Table 1. 

Table 1 
Percent of successes for the MCM 

/ uΩ  Success rate 
0.01 0% 
0.05 0% 
0.1 0% 
0.2 0% 
0.4 66,34% 
1.0 90.25% 
2.0 93.44% 
4.0 95.12% 
10.0 94.94% 
100.0 95.17% 
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With the importance of traceability in metrology, 
methods used to calculate uncertainty should perform 
well in an event-based paradigm [2, 8], because it is 
ultimately the accuracy of measurement and calibration 
events that is required. Failure of a method to do so is 
surely of concern. Consequently, valid methods of un-
certainty calculation must achieve acceptable rates of 
success in the intended measurement scenarios. 

What metrological meaning should be given to a 
nominal 95% coverage interval that is unlikely to con-
tain the value of the quantity intended to be measured? 
We consider such a solution interval to be invalid in 
terms of long-run success rate. For our measurement 
scenario MCM should be treated as valid only with de-
fined limits of usability, that is if | |  in our 
case, e.g. if standard uncertainty is twice less the meas-
urand value. It may be useful to note, that if we increase 
dimensionality of the magnitude measurement problem 
that “usability limit” is intended to increase. 

/u 2Ω >

3. Modified adaptive MCM 

A modification of the MCM is proposed in attempt to 
overcome the problem described above. It is proposed to  
find a coverage interval such as the shortest interval that 
contains pL  MCM trials, where p  is a coverage probabil-
ity. Such interval should be used instead of one found at 
step 4) of the MCM procedure. Such approach is expected 
to take asymmetry of PDFs into account. 

It should be clear that such an interval could be not 
unique(e.g. for rectangular distribution). Such cases 
should be treated properly. For example, we can take 
the interval that is the most closest to the center of all 
sample values of the MCM. 

Because the array of MCM samples is sorted, the 
problem can be simplified to finding the argument value 
of the minimum difference. It can be written as: 

( )
k pL k

k 1.. 2L/1 p
arg min (z z )+
= −

− .                     (3) 

Appropriate intuitive algorithm for solution of 
Eq.(3) can be implemented straightforward. Solution of 
this task will not invest a computing problem. It is obvi-
ous that computing time is , that will slightly in-
crease overall computing time of the MCM [3,7]. We 
should also note that MCM (even adaptive, the one we 
use here) is a comprehensive computational task[7,9], 
method improvements to decrease computational time 
should be developed.  

O(L)

If  gives the solution of Eq.(3), thus, the 
lower bound of uncertainty interval is the smallest 
MCM sample, application of the adaptive procedure [7] 
could cause difficulties. Consequent discussion and pos-
sible solution is beyond the scope of this paper.  

k 1=

To assess the long-run success rates of the pro-
posed modification of the MCM, the procedure, de-
scribed in Section III is implemented for the same 
measurement scenario for ten values of | | . The 
results are summarized in Table 2. 

/uΩ

Table 2 
Percent of successes for the modified MCM 
/ uΩ  Success rate 

0.01 0% 
0.05 0% 
0.1 5.09% 
0.2 59.11% 
0.4 82,34% 
1.0 92.31% 
2.0 94.99% 
4.0 94.85% 
10.0 95.13% 
100.0 95.19% 

 
An increased performance of the modification compar-

ing to MCM results can be observed. The modification 
should be treated as valid with  limit of usability 
in our case that is wider then for the MCM.  Better perform-
ance should be expected in general case of a measurement 
problem, which is to be investigated in future work. 

| | /u 1Ω >

The result obtained means that modification can be 
used even if standard uncertainty and the measurand 
value are approximately equal and will yield invalid 
results if uncertainty is greater than measurand value. 

Conclusions 

In this paper, an adaptive MCM procedure for un-
certainty calculation is used to evaluate coverage inter-
vals for measurement scenario of magnitude measure-
ment of a complex valued quantity.  

The validation procedure for the MCM is proposed 
and implemented for the measurement scenario. Results 
of such validation discovered invalid results of coverage 
intervals calculation for the values close to the origin 
with comparatively high uncertainty. 

Modification of the MCM is presented. Modifica-
tion is based on finding the smallest interval that con-
tains respective number of MCM samples. Validation of 
such approach showed significantly better performance 
results, with appropriate wider scope. Such modified 
MCM should be used in practice as a more valid one 
instead of original MCM. 

Further work will include wider research of the 
modified adaptive MCM, improvements of the method 
and its implementation on multiple processors and dis-
tributed computing systems. 
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В.В. Новіков, Ю.О. Тимошенко  
В статті обговорена проблема обчислення невизначеності. Розглянуто метод Монте-Карло для оцінювання неви-

значеності. Він використаний для оцінювання невизначеності пропонованої моделі вимірювання. Для валідації (оціню-
вання придатності) методу Монте-Карло, представлено метод оцінювання «відношення успішних запусків». Застосу-
вання такої процедури показало неочікувані недостовірні результати оцінювання невизначеності. Запропонована мо-
дифікація методу Монте-Карло, що надає більш достовірні результати. 

Ключові слова: невизначеність вимірювання, достовірний розв’язок, чисельні методи, метод Монте-Карло. 
 

n dnqŠnbepmnqŠh leŠnd` lnmŠe-j`pkn dk“ n0emhb`mh“ menopedekemmnqŠh b hglepemh“u 

В.В. Новиков, Ю.А. Тимошенко  
В статье обговорена проблема вычисления неопределенности. Рассмотрен метод Монте-Карло для оценивания 

неопределенности. Он использован для оценивания неопределенности предложенной модели измерения. Для валида-
ции(оценивания пригодности) метода Монте-Карло, представлен метод оценивания «отношения успешных запусков». 
Применение такой процедуры показало неожиданные недостоверные результаты оценивания неопределенности. Пред-
ложена модификация метода Монте-Карло, что предоставляет более достоверные результаты. 

Ключевые слова: неопределенность измерения, достоверное решение, численные методы, метод Монте-Карло. 
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