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SOME CONSIDERATIONS ABOUT VALIDITY OF A MONTE-CARLO METHOD
FOR EVALUATING MEASUREMENT UNCERTAINTY

Uncertainty calculation task is discussed in the paper. Monte-Carlo method for uncertainty evaluation is
covered. It is used for uncertainty evaluation of a proposed measurement scenario. In order to validate the
Monte-Carlo method, long-run success rate estimation procedure is presented. Application of such procedure
showed unexpected invalid results of uncertainty evaluation. A modification of the Monte-Carlo method is pro-

posed that appears to deliver more valid results.
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Infroduction

A statement of the result of a measurement is only
complete if it provides an estimate of the quantity con-
cerned (often known as the measurand) and a quantita-
tive measure of the reliability of that estimate, namely,
the uncertainty associated with it.

Generally, several approaches to provide an estimate
of the measurand, and the associated uncertainty (e.g. a
coverage interval) for the measurand that is needed for
conformity assessment and other decision making can be
used. These approaches include Principle of Maximum
Entropy, Bayesian treatment (probabilistic modeling) and
Propagation of distributions (functional modeling) [1]. The
latter is used to relate the measurand to model input quanti-
ties about which information is available, and is the basis
of obtaining the probability density function (PDF) for the
measurand from the PDFs assigned to the input quantities.
In some simplest cases the PDF for the measurand can be
obtained analytically. Otherwise, approximate and numeri-
cal implementations of the propagation of distributions are
available, such as the ISO Guide’s uncertainty framework
[2] and a Monte Carlo method (MCM) [3]. The preferred
use of MCM comparing to approximate analytical methods
is shown in a number of studies [3 — 5].

In this paper, it is assumed that a model and PDFs for
all input quantities are given. Thus, the second phase “cal-
culation” of uncertainty evaluation procedure is discussed.

The goal of this paper is to highlight invalid solu-
tion of a simple measurement scenario by the MCM and
therefore a need for its (possible) improvement and in-
dependent validation of usability of all candidate solu-
tion approaches. Section 2 gives an account of MCM in
brief. Section 3 covers the measurements scenario and
uncertainty evaluation results by the MCM. Section 4
presents modification of MCM intended to provide
more valid results. Summary and draws of some conclu-
sions are given in the Conclusions.

1. Monte-Carlo method

Regardless of the field of application, the physical
quantity of concern, the model output quantity, can

rarely be measured directly. Rather, it is determined
from a number of contributions, or input quantities, that
are themselves estimated by measured values or other
information available.

The fundamental relationship between the input
quantities and the output quantity is considered to be the
model [6]. The input quantities, n, say, in number, are

denoted by X =(X{,....,X, )T and the output quantity by

Y:(Yl,...,Yn)T. The model Y =f(X) can be a

mathematical formula, a step-by-step calculation proce-
dure, numerical software or other prescription. Let us

assume that PDF for X =(Xi,...,X, )T and f(X) are

known. Estimate y of quantity Y is the measurement
result. Then, the problem of uncertainty evaluation is
the estimation of PDF of the output valueg(y) (or the

distribution function G(y) ) and therefore the estimation

of moments and coverage regions(intervals for scalar)
for y. The latter are needed for conformity assessment
and decision making purposes, so its evaluation is the
main result of uncertainty evaluation procedure.
According to the so-called Markov formula, if
3(-) denotes the Dirac delta function and g;, (x) denotes

the joint PDF of input quantities, the PDF g(y) could be
generally found as [3]:

[colue o} o8]
g = [ [ | 2in(O8(y—F(x))dx,dx,,_y...dx; (1)
—00 —00  —00
It would rarely be a practical proposition to use the
integral expression (1) as the basis for the numerical
determination of the PDF for the output quantity. A
multivariate quadrature rule would need to be devised
that was capable of delivering a prescribed numerical
accuracy for each choice of y. Rather than attempting

to evaluate the expression (1), an application of a MCM
[3] encompasses an entirely different approach, based
on the following considerations.

MCM uses pseudorandom numbers to obtain repre-
sentative draws of possible values of the input quantities
in order to generate a discrete representation of the output
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quantities via the given model[3]. The MCM computes
from these draws the expectations and covariance matrix
for the output quantities and a frequency distribution that
approximates the joint PDF for the output quantities, the
use of which provides best estimates of the output quanti-
ties and the associated uncertainty matrix (covariance
matrix). Furthermore, the marginal PDF for any output
quantity can be approximated accordingly and used to
form coverage intervals for that quantity. If rules are
given, MCM can also be used to determine, from the joint
PDF, coverage regions for the output quantities. MCM
provides approximations to the exact results that would
be provided by analytical methods[4].

As stated in a number of studies [3 — 5], the quality
of these approximations generally improves with the
number of draws, and therefore a check on the conver-
gence of MCM and careful “validation’ of the procedure
are required. Some criteria and recommendations that
come out in an adaptive MCM with reduced computing
complexity are given [7].

2. The measurement scenario
and MCM calculation

Let us consider a measurement of the magnitude of a
complex valued quantity Q =Q; +iQ, [8]. Measurements

of the real and imaginary components yield z =z; +iz,,

from which an estimate of | Q | can be found:

|z\=\l212+z%. 2

We further consider that z;and z, are independ-
ent and have standard uncertainties equal to a known
value u associated with a Gaussian distribution.

Application of the adaptive MCM[7] is used here.
The application of this method can be described in a
series of steps.

1). Generate a sequence of samples zj; andz,;,

where i=1,..,L by drawing from a Gaussian distribution
with mean z, and z,, and variance u” for both of them.
L is not chosen a prior but adaptively by means of proce-
dure, described in[7] for a required accuracy for estimates.
In our scenario case, we require €= 0.01accuracy, that
shall be enough for purposes described later in this section.

2). Calculate |z;|according to Eq. (2) for
i=1,.,L.

3). Sort the values of | z; | in ascending order.

4). Take the 0.025Lth value of |z;| as the lower

bound of the uncertainty interval; Take the 0.975Lth value
of | z; | as the upper bound of the uncertainty interval.

The result is an interval said to have 95% probability
of containing | Q| [3]. Other coverage probabilities can
also be applied with use of respective quantiles in step 4.

In order to assess the long-run success rates of the
MCM, a series of simulated measurement results is
processed. Pairs of data (z;[j],2z,[j]), j=1,..,10000, are
simulated and each pair is used as if it were the data

obtained from an independent measurement of the same
fixed measurand. The procedure is as follows.
1). A value for Q = Q) +1Q, is selected.

2). A sequence of pairs (z[j],2z,[j]) is drawn

from independent Gaussian distributions with means
Q, and Q, , respectively, and variances u’.

3). For each pair, a 95% uncertainty interval is cal-
culated as described above and a counter is incremented
if that interval contains | Q|.

4). The success rate of a procedure is estimated
from the respective counter value divided by the total
number of runs and multiplied by 100%.

These steps assess the success rate of a procedure
at one fixed value of the measurand. In order to investi-
gate a procedure’s performance over a range of values,
the method should be repeated with different measurand
values, selected at step 1.

The symmetry of the scenario means that perform-
ance will be independent of the radial coordinate of the
measurand in the complex plane. So, without loss of gen-
erality, ten |Q|/u values lying along the real axis were
chosen. For each measurand value, simulated experi-
ments provided 10000 sets of input data for the MCM
uncertainty estimation. The results are summarized in
Table 1. The second column of this table report the per-
cent of successes. We should note, that some variability
in the percent of successes observed can be expected. For
a success rate of p = 0.95, the standard deviation of the
percent of successes observed is 100% * \/Np(1-p) /N ,
which is approximately equal to 0.22% in our case.

An unexpected fall in the success percents occurs
when the measurand is close to the origin. The method
fails to reach the required percents of success for
|Q]/u<2.0 and fails on every occasion when

| Q| /u<0.224. The core of this problem seems to be in
asymmetry of the |Q| PDF, if we use MCM with
z; =0 and z, =0 and a standard uncertainty u = 1.

The lower bound of the 95% uncertainty interval for this
data is | z; |= 0.224 , and we should expect this bound to

increase for any other MCM sample, so any measurand
|Q]<0.224 will fall outside the uncertainty intervals

that can be generated. This explains the success rate of

zero in the first four rows of Table 1.
Table 1
Percent of successes for the MCM

|]/u Success rate
0.01 0%
0.05 0%

0.1 0%

0.2 0%

0.4 66,34%
1.0 90.25%
2.0 93.44%
4.0 95.12%
10.0 94.94%
100.0 95.17%
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With the importance of traceability in metrology,
methods used to calculate uncertainty should perform
well in an event-based paradigm [2, 8], because it is
ultimately the accuracy of measurement and calibration
events that is required. Failure of a method to do so is
surely of concern. Consequently, valid methods of un-
certainty calculation must achieve acceptable rates of
success in the intended measurement scenarios.

What metrological meaning should be given to a
nominal 95% coverage interval that is unlikely to con-
tain the value of the quantity intended to be measured?
We consider such a solution interval to be invalid in
terms of long-run success rate. For our measurement
scenario MCM should be treated as valid only with de-
fined limits of usability, that is if |Q|/u>2 in our

case, e.g. if standard uncertainty is twice less the meas-
urand value. It may be useful to note, that if we increase
dimensionality of the magnitude measurement problem
that “usability limit” is intended to increase.

3. Modified adaptive MCM

A modification of the MCM is proposed in attempt to
overcome the problem described above. It is proposed to
find a coverage interval such as the shortest interval that
contains pL. MCM trials, where p is a coverage probabil-

ity. Such interval should be used instead of one found at
step 4) of the MCM procedure. Such approach is expected
to take asymmetry of PDFs into account.

It should be clear that such an interval could be not
unique(e.g. for rectangular distribution). Such cases
should be treated properly. For example, we can take
the interval that is the most closest to the center of all
sample values of the MCM.

Because the array of MCM samples is sorted, the
problem can be simplified to finding the argument value
of the minimum difference. It can be written as:

argmin  (Zy,pp, —2Z) - 3)
k=1.(2L/1-p)

Appropriate intuitive algorithm for solution of
Eq.(3) can be implemented straightforward. Solution of
this task will not invest a computing problem. It is obvi-
ous that computing time is O(L), that will slightly in-

crease overall computing time of the MCM [3,7]. We
should also note that MCM (even adaptive, the one we
use here) is a comprehensive computational task[7,9],
method improvements to decrease computational time
should be developed.

If k=1 gives the solution of Eq.(3), thus, the
lower bound of uncertainty interval is the smallest
MCM sample, application of the adaptive procedure [7]
could cause difficulties. Consequent discussion and pos-
sible solution is beyond the scope of this paper.

To assess the long-run success rates of the pro-
posed modification of the MCM, the procedure, de-
scribed in Section III is implemented for the same
measurement scenario for ten values of |Q|/u. The

results are summarized in Table 2.

Table 2
Percent of successes for the modified MCM
||/ u Success rate
0.01 0%
0.05 0%
0.1 5.09%
0.2 59.11%
0.4 82,34%
1.0 92.31%
2.0 94.99%
4.0 94.85%
10.0 95.13%
100.0 95.19%

An increased performance of the modification compar-
ing to MCM results can be observed. The modification
should be treated as valid with| Q| /u >1 limit of usability

in our case that is wider then for the MCM. Better perform-
ance should be expected in general case of a measurement
problem, which is to be investigated in future work.

The result obtained means that modification can be
used even if standard uncertainty and the measurand
value are approximately equal and will yield invalid
results if uncertainty is greater than measurand value.

Conclusions

In this paper, an adaptive MCM procedure for un-
certainty calculation is used to evaluate coverage inter-
vals for measurement scenario of magnitude measure-
ment of a complex valued quantity.

The validation procedure for the MCM is proposed
and implemented for the measurement scenario. Results
of such validation discovered invalid results of coverage
intervals calculation for the values close to the origin
with comparatively high uncertainty.

Modification of the MCM is presented. Modifica-
tion is based on finding the smallest interval that con-
tains respective number of MCM samples. Validation of
such approach showed significantly better performance
results, with appropriate wider scope. Such modified
MCM should be used in practice as a more valid one
instead of original MCM.

Further work will include wider research of the
modified adaptive MCM, improvements of the method
and its implementation on multiple processors and dis-
tributed computing systems.
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LWOoA0 AOCTOBIPHOCTI METOY MOHTE-KAPJIO A1 OUIHKOBAHHSA HEBU3HAYEHOCTI BUMIPHOBAHDb
B.B. Hogikos, }0.0. Tumoienko

B cmammi 0o62060pena npobrema obuuciennsa nesusnauenocmi. Posensinymo memoo Monwme-Kapno 0na oyintoganms Hesu-
3Hayenocmi. Bin uxopucmaHuil 0151 OYIHIOBAHHS HEBU3HAUEHOCI NPONOHOBAHOI MoOel sumiproeanns. /[na eanioayii (oyinio-
sanns npuoamnocmi) memoody Monme-Kapno, npedcmasneno memoo OyiHO6aHHs «BIOHOWIEHHS! YCRIWHUX 3anyCcKigy. 3acmocy-
6AHHA MAKOI NPoYedypu NOKA3AN0 HeOUIKYS8AHI HeOOCOGIPHI Pe3yIbmamu OYiHIOBAHHS HEGUIHAYEHOCMI. 3anponoHo8ana Mo-
ougpixayis memody Monme-Kapno, wo naoae 6inow 00cmogipHi pe3yiomamil.

Knrouogi cnosa: nesusnauenicmo UMIpIO8aHHs, 00CMOGIPHULL PO36 A30K, YucenbHi memoou, memoo Moume-Kapio.

O NOCTOBEPHOCTU METOJA MOHTE-KAPJIO ANA OLLEHMBAHMS HEOMNPEAENEHHOCTU B U3MEPEHMAX
B.B. HoBukos, 10.A. TumoIiieHKo

B cmamve 062060pena npobnema svluucienus Heonpederennocmu. Paccmompen memoo Monme-Kapno 0nsa oyenuearnus
neonpedenennocmu. OH UCNONL306AH OIS OYEHUBAHUS HEONPeOeNeHHOCIU NPeONOHCEHHO Mooenu usmepenus. i eanuoa-
yuu(oyenusanus npueoonocmu) memooa Monme-Kapno, npedcmasien Memoo OyeHUBaHUs «OMHOUWEHUS YCHEUWHBIX 3ANYCKO6Y.
TIpumenenue maxkoi npoyedypvl NOKA3AN0 HEOHCUOAHHbIE HEOOCHOBEPHbIE PE3VIbMAMbL OYeHUsausa Heonpeoeiennocmu. Ilpeo-
nogicena moougurayus memooa Monume-Kapno, umo npedocmasensem 6onee 0ocmosepiule pe3yibmamoi.

Knroueswie cnosa: neonpedeieHHOCHb USMEPEHUs, O0CHOBEPHOE peuleHUe, YUCTeHHble Memoobl, memod Monme-Kapio.
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