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DESCRIPTION OF THE ACCURACY OF BROADLY UNBALANCED SENSOR 

RESISTANCE BRIDGES  

 
After short introduction transfer coefficients of the unloaded four arms bridge of arbitrary variable arm resis-

tances, supplied by current or voltage source, are given in Table 1. Their error propagation formulas are find and 

two rationalized forms of accuracy measures, i.e. related to the initial bridge sensitivities and of double component 

form as sum of zero error and increment error of the bridge transfer coefficients are introduced. Both forms of 

transfer coefficient measures of commonly used bridge - of similar initial arm resistances in balance and different 

variants of their jointed increments, are given in Table 3. As the example limited errors of some resistance bridges 

with platinum Pt100 industrial sensors of class A and B are calculated – Table 4 and analyzed. Presented approach 

is discussed and found as the universal solution for all bridges and also for any other circuits used for parametric 

sensors. 
 

Keywords: accuracy, transfer function, error, standard statistical measure, unbalanced sensor resistance 

bridges. 

 

Introduction 
 

Accuracy of current and voltage supplied strain 

bridges has been analyzed by M. Kreuzer [1], [2], but 

only for very small sensor increments. This paper is 

based on earlier author proposals given in papers [1], 

[6] - [9]. As it has been pointed there, the generalized 

accuracy description of the 4R bridge of arbitrary vari-

able arm resistances was not existing in the literature 

before above papers, but is urgently needed mainly for:  

- initial conditioning circuits of analogue signals 

from broadly variable impedance sensors,  

- identification of the changes of several internal 

parameters of the equivalent circuit of the object work-

ing as twoport X, when it is measured from its terminals 

for testing, monitoring and diagnostic purposes.  

Near the bridge balance state, application of rela-

tive errors or uncertainties is useless, as they are rising 

to  ±∞. In [3], [6- 9] this obstacle was bypassed by re-

lating the absolute value of any bridge accuracy meas-

ure to the initial sensitivity of the current to voltage or 

voltage to voltage bridge transfer function. Initial sensi-

tivities are valuable reference parameters as they do not 

change within the range of the bridge imbalance. In pa-

per [9] the new double component approach to describ-

ing the bridge accuracy is described. It has form of sum 

of the initial  stage and of the bridge imbalance accura-

cy measures. Such double component method of de-

scribing accuracy is commonly used for the broad range 

instruments, e.g. digital voltmeters. Relation of each 

components to accuracy measures of all variable and 

stationery bridge arm resistances have been developed. 

As the example formulas of accuracy measures of two 

bridges used for industrial Pt sensors will be presented 

and their limited errors calculated. 
 

Basic formulas of bridge transfer functions 
 

Four resistances (4R) connected in the closed loop 

can work as twoport type X with two pair of terminals 

AB and CD, shown on Fig 1. If  some of its internal re-

sistances iR  are variable the output voltage DCU'  may 

change sign for some set of them. This circuit is used in 

measurements for long time under the commonly known 

name - bridge. For work with sensors it is specially de-

sign. Preferred to use now is the ideal supply: by current 

const=JIAB  , GR  or by voltage 

const=UAB , 0R G   and also the unloaded output, 

i.e.: LR , 
 DCDC U'U .  

For single variable measurements it is enough to 

know changes of one terminal parameter and the output 

circuit voltage DCU  is mostly used. With notations of 

fig. 1 formulas (1), (2) of  


DC
U  and bridge transfer 

functions (3), (4) together with their rationalized two-

factor product forms are given in Table 1 [3, 4], where:  

ABAB U,I - current or voltage on bridge supply 

terminals A B; 

 i0ii0ii ε1RRΔRR   – arm resistance of ini-

tial value 0iR  and absolute iRΔ and relative iε  in-

crements;  

21r , 21k  – current to voltage and voltage bridge 

transfer functions of the open-circuited output; 
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       – sum 

of bridge arm resistances; 

 iR ε ,   0iR   – its increment and initial value;  

 iεf ,  iE εf  – normalized bridge imbalance 

function of 21r  and of  21k ;  

   iRi ε;εL   – increment of the function  iεf  

numerator. 

 

Fig. 1. Four arms circuit working as the twoport of type 

X with the voltage or current supply source branch 

If transfer function 0r21   or 0k12  , the bridge 

is in balance and from (3) and (4) its conditions of both 

supply cases and generally for any single source are the 

same: 4231 RR=RR . The balance of the bridge can 

occurs for many different combinations of iR , but the 

basic balance state is defined for all i 0  , i.e. when:  

40203010 RRRR                         (5) 
 

Bridge transfer functions (3), (4) =0can be simpli-

fied to products of their initial sensitivities 0t ,

 

0k  in 

the balance and normalized unbalance functions 

 iεf ,  iE εf . Their formulas can be expressed by ini-

tial values i0R  and increments of all resistances, i.e. 

)+(1R=R ii0i   and i0R  referencing to one of the 

first arm, i.e.: 1020 mR=R , 1040 nR=R  and from (3)

 
1030 mnR=R , as is shown in Table 1. 

Table 1 

Open circuit voltage of the resistance bridge and its transfer functions 

a – current supply b – voltage supply 
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Accuracy description  

of broadly variable resistances 
 

The accuracy of measurements depends in compli-

cated way on structure of the instrumentation circuit, 

values and accuracy of its elements including sensors 

and on various environmental influences of natural con-

ditions and of the neighboring equipment. Two type of 

problems have been met in practice: 

- description of circuits and measurement 

equipment by instantaneous and limited values of sys-

tematic and random errors, absolute or related ones, as 

well by statistical measures of that errors, 

- estimation of the measurement result uncertain-

ty, mainly by methods recommended by guide GUM. 

Measures of accuracy (errors, uncertainty) of the 

single value of circuit parameter are expressed by num-

bers, of variable parameter - by functions of its values. 

In both cases they depend on equivalent scheme of the 

circuit, on environmental and parameters of instrumen-

tation used or have to be use in the experiment. 

The measures of broadly variable resistance iR , e.g. 

of the stress or of the temperature sensors, could be ex-

pressed by two components: for its initial value i0R  and 

for its increment iε  as is shown by formulas of Table 2.  

Instantaneous absolute error Ri  (6) and its two 

relative values i  and Ri  referenced to i0R  (see 

Fig. 2) or to iR  are given by formulas (7a,b), relative 

limited errors i , Ri  of the poorest case of values 

and signs of 
0i  and i or i – by (8a,b), and 

standard statistical measure Ri  
for random errors or 

uncertainties - by (9) and (9a,b).  If random errors of 

increment and of initial value of resistance are 

statistically independent then correlation coefficient 

0=ki , but if they are strictly related each to the other 

then 1=ki  . Exact ik  value can only be find 

experimentally. From (8a,b) follows that borders of the 

worse cases i of possible values of i  dependent li-

nearly and  iR of Ri   
dependent nonlinearly on iε  

when 0i  and i or
 i  are constant [3], [6 – 9]. 

Distribution of the initial values and relative increments 
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ei of the sensors set resistances depends on on their data 

obtained in the production process. Its actual values also 

depend on influences of the environmental conditions. 

 Table  2  
Two-component formulas of the sensor resistance accuracy measures 

Sensor resistance iR  )+(1R=R ii0i       if εi > -1                                       (5) 

Absolute error 

nominaliii RR    i0i0ii R)+(1  )R+ ( ii00ii0ii                          (6) 

Relative errors 
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Statistical measure standard 

deviation of Ri  

(for random error  

or uncertainty)  
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 where: 0i , i – standard measures of initial value i0R  and of relative incre-

ment ε of resistance iR , 

             1)1...0...(k i   – correlation coefficient 

Particular cases 

of correlation: 

full:  1=ki   i1
1

0iiR
i
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Description of  the  accuracy  

of bridge transfer functions  
 

Instantaneous values of measurement errors of 

bridge transfer functions 21r  and 21k  result from the 

total differential of analytical equations (3) and (4) from 

Table 1. After ordering all components of Ri

 

 their ac-

tual absolute errors 
21r  and 

21k  are given in the first 

line of the table 3. 

Relative errors are preferable in measurement 

practice, but it is not possible to use them for transfer 

functions near the bridge balance as the ratio of absolute 

error Δr21→Δr210 ≠ 0 and the nominal value r21→ r210 = 

0  (or for the voltage supplied bridge of Δk21 and k21→ 

k210= 0) is rising to ± ∞. Then other possibilities should 

be applied. Proposed are two possible ways to describe 

accuracy of the bridge transfer function r21 (or k21): 

- absolute error of the bridge transfer function 

may be referenced to initial sensitivity factor t0 of r21 (or 

to k0 of k21) or to the range of transfer function r21max - 

r21min (or k21max - k21min);   

- initial error Δr210 have to be subtracted from 

Δr21 and then accuracy could be described by two sepa-

rate terms: for zero and for transfer function increment, 

as it is common for digital instrumentation. 

In the first type method the errors Δr21 and Δr21 

are referenced to the initial sensitivities factors t0 or k0 

as constant for each bridge, then to the full range of r21 

or k21 as they could be change.  

If resistances are expressed as Ri =Ri0 (1+εi),  

Rj =Rj0 (1+εj) and errors iR  of resistances Ri are ex-

pressed as in (7b), by their initial errors δi0 and incremen-

tal  errors δεi, then both these formulas can be generalized 

to (10) and (11) for relative errors δr21 and δk21 of both 

transfer functions. In (10a) multiplier (-1)
i-1

=+1 if i is 1, 3 

or –1 if i is 2, 4. In (10) and (11) one could see that if er-

rors δRi of the neighboring bridge arms have the same 

sign they partly compensate each other.  

From (10) and (11) are find limited relative errors 

(12) and (13) and relative random measures (14), (15). 
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Table 3 

Accuracy measures of the open-circuit 4R bridge in general case 

Bridge type  a) Measures 21r , 21r , 21r  of function 21r  accuracy 

b) Measures 21k ,
21k , 

21k  of function 21k  accu-

racy 

General 

case 
  

 
 

R1 = R10(1+1) 
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R4= R4 0 (1+4) 

εi ≥ -1 

  
  
  
A

ct
u

al
 e

rr
o

rs
: 

 

ab
so

lu
te

 a
n
d

 r
el

at
iv

e 
 

4R
i

212

43R
i

211

12R
i

214

21R
i

213

121r
R

rR
R

R

rR
R

R

rR
R

R

rR
R 





















  

























4

1i
i

i

i
0i

'
Ri

4

1i
iR

'
Ri

0

21r
21r

ε1

ε
ww

t

        (10) 

 
 

 
 4R3R2

43

43
2R1R2

21

21

21k
RR

RR

RR

RR








  

























4

1i
i

i

i
0i

'
ki

4

1i
iR

'
ki

0

21k
21k

ε1

ε
ww

k

     (11) 

where: 
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(15)  

correlation coefficients 0=kij
 

Measures of 

0=r210  
actual error 40302010021  (16) limited error   0i

m
021

 (17) mean square  

measure, 0=kij
  

2
210 i0
   (18) 

 

If some resistance iR  is constant, then εi=0, 

δRi=δi0, but weight coefficient w’Ri of its component in 

error 
21r  or 

21k  still depends on other arm incre-

ments εj≠i.  

In initial balance state, i.e. when all arm incre-

ments εi=0, the nominal transfer functions r21(0)≡r210=0 

and k21(0)≡k210=0, but real resistances Ri have some ini-

tial errors δi0 and usually Δr210=t0δ210≠0, 

Δk210=k0δ210≠0. All measures of balance state are given 

in the last line of Table 3 as formulas (16) – (18). 

Relative error δr21 could be presented as sum:  

  


  i21r210
0

21r
21r

t
         (19) 

where: δ210 = δ10 - δ210 +δ30 – δ40 – initial (or zero) rela-

tive error of r21=0;  

   δr21ε (εi) –relative error of normalized  imbalance 

function f (εi) when r21≠ 0, also referenced to t0. 

Similarly, an δk21 error of the voltage transfer coef-

ficient  k21 is  
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(20) 

Coefficients kik
1'

ki ww
0

 must be determined 

from (11) or (11a). 

Initial relative error δ210 is similar for any mode of 

the supply source equivalent circuit of the bridge as 

twoport. Zero of the bridge may be corrected on differ-

ent ways: by adjustment of the bridge resistances, by the 

opposite voltage on output or by the digital correction of 

converted output signal. In such cases from (19) it is 

 
4 4

ii 1
r21 R i i0 R i i

0 0 ii 1 i 1

1 1
w 1 w

t t 1


 

 


       
    

  . (21) 

From (21) follows that related to t0 error δr21ε of 

r21 increment depends not only on increment errors δεi 

of resistances Ri  but also on their initial errors δi0 ≠ 0 

even when initial error of the whole bridge δ210=0, be-

cause after (12a) weight coefficients of δi0 in (21) de-

pends on εi. The component of particular error δi0 des-

pairs only when δi0=0. Functions of Δεi or δεi may be 

approximated for some εi intervals by constant values.  

In the second type method absolute error of trans-

fer function r21 after subtracting its initial value is 

4 4
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And after referenced it to r21, and substitution wRi 

from (12a)  
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Weight coefficients (23a, b) are finite for any value 

of r21 including r21= 0 because if all εi →0 also ΔL→0.  
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Error δr21r is equivalent to error δεi of the resistance Ri 

increment εi in formulas (7a,b).  From (3) and (20) is: 

for current to voltage transfer function r21 

 Δ r21 = t0 δ210 + r21 δr21r             (24) 

and from (4) similarly for voltage transfer function k21 is 

Δk21 = k0 δ210 + k21 δk21k            (25) 

where t0 δ210=Δ r210 ,  k0 δ210=Δ k210 – absolute er-

rors of initial value r21 or k21  e.g. r210 = 0 or k210= 0 

       δr21r,   δk21k   - related errors of transfer function 

increments r21 - r210  or  k21 - k210  from the initial stage. 

Two component accuracy equation (25) of k21 

transfer function was funded by the same way as for r21.  

Actual values of instantaneous errors of r21 or k21 

could be calculated only if signs and values of errors of 

all resistances are known. In reality it happens very rare. 

More frequently are used their limited systematic errors 

(of the worst case) for describing the permissible 

changes from nominal values of instrumentation para-

meters and statistical measures based on the standard 

deviation of the mean value of repeated measurement 

results. Formulas of this accuracy measures of r21 or k21 

could be obtained after transformation of error formulas 

(10) – (25). All these accuracy measures is possible to 

find in one component or two component forms. One 

component formulas for arbitrary cases of 4R bridge are 

given in the table 3 and main particular cases - in [3], 

[6] - [9].  

With (19) and (21) resulting limited error of trans-

fer function r21 is 
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From (19), (26) implies the inequality 
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For random measures  it is respectively 

;)ε(f

)ε(f

r21r
i

021
2

r21ri
22

02121r




         (28) 

where 



4

1i

0i021 , .
|r| 21

021r21r

r12r




 

Despite the separation of the initial error |δ210|, for 

the unbalanced circuit the limited error |δr21r| of the r21 

increment in (27) may still has components depended in 

part on the limited initial errors |δi0| of resistances Ri, 

and the random measure r21r of the r21 increment in 

(28) - respectively from 0i . Values of measures de-

termined by the right-hand side of the inequalities (27) 

and (28) are slightly overstated, because their compo-

nents are partially dependent.  

         It is also possible to refer the absolute measures of 

transfer coefficients of the 4R circuit to the range of 

their changes. For r21 at any values of increments εi such 

limited error  |δr21m|  is 
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where  |Δf(εi)| Max=| f(εi)max- f(εi)min |. 

This description is similar to that as for the error of 

the digital voltmeter, and other instruments on a large 

range and resolution. The first component is constant 

and inversely proportional to the range of r21 changes 

and the second depends on the ratio of the relative im-

balance function for the measured value and for the 

whole its range. Measures of the 4R bridge with the 

sensor of a certain tolerance are relatively larger for 

smaller ranges. If function r21(ε) is linear then formula 

(29) is simplified, for example, with coupled equal in-

crements of ± ε 

  minmax

r21r

Max

210
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            (30) 

For the finished product, such as IC measurement 

4R circuit, the measures of individual resistance Ri are 

usually not known because the manufacturer provides 

permissible ranges of zero and of values of the transfer 

coefficient distribution, and very rare also distribution 

functions of these parameters. You will usually not be 

able to measure many times the parameters of sensor 

during its application, and used are the data received 

from the manufacturer or the first calibration. In the 

analysis of accuracy must therefore assume certain rela-

tions of the Ri resistance measures in the circuit, for ex-

ample, the same of fixed arms and of the initial sensor 

resistances, i.e. |δi0|=|δ0| and for their increments |δεi| ≡  

≡  |δε|.  

Then |δ210| = Σ|δi0| ≡   4|δ0|. With less accurate sen-

sors the measures of the more exact not variable resis-

tances may also be negligibly small. 
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As an example of the application of the given for-

mulas is to set the accuracy of the output voltage of 4R 

circuit working as twoport X. For supply source of cur-

rent J with RG>>RAB the output voltage is measured at 

the load RL>>RCD with stabilized power supply or its ra-

tio to the current J. From (1) and (24) 

   i00DC21210DC ftJUrrJU 
 .    (31) 

The absolute error ΔU'DC of the output open-

circuit voltage referenced to the current J  is 

 
J

r
J

' J
2121r

DCU





.
               

(32) 

where: ΔJ  - the error with what is known the current J 

value or a certain its instability. 

Regarding the error ΔU'DC to the specified value of 

output voltage, e.g. corresponding to the range of 

coefficient r21 changes, from (31), (32) the follow-

ing relative error is obtained: 
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where: 
J

J
J


  – the relative error of current J.  

When all increments εi=0 but there is an zero error 

δ210 then error 0Um'
 
is of the finite value. From (33) 

can be determinate an limited error (borders of error 

area) and also a random measures of output signal.  

Formulas for the accuracy measures of the voltage sup-

plied 4R circuit can be obtained by the similar way.  

The two-component method of the bridge transfer 

function r21 accuracy representation, separately for its 

initial value (eg. equal to zero) and for increment is sim-

ilar like unified one used for digital instruments and of 

the broad range sensor transmitters. It is especially val-

uable if zero of the measurement track is set handily or 

automatically. Absolute measures could be transformed 

also by the linear or nonlinear function of the sensor set 

to the units of any particular measurand, e.g. in the case 

of temperature sensors - to 
0
C [7 – 9]. 

  

Accuracy measures of 4R bridges  

of equal initial resistances 
  

In the measurement practice the mostly used for 

sensors are four-arm bridge circuits of all resistances Ri0 

equal in the balance state (m=1, n=1). It is despite the 

fact that at the current supply for m>1, n>1 the value of 

initial sensitivity t0 of this circuit is higher and for 

m→∞, n→∞ increases even up to four times. But at the 

same time increases also the power drawn by the system 

and non-standard sensors, such as two- or four-element 

differential sensor of different initial resistances Ri0, are 

need to use. The five basic variants A- E of the 4R10 

bridge circuit used in practice together with their trans-

fer coefficients r21, k21, instant and limited relative er-

rors and random measures in terms of homogeneous and 

two-component form are given in Table 4. Formulas of 

accuracy measures for transfer functions r21 and k21 of 

these particular resistance bridges are much simpler 

then of general cases. Random measures are presented 

with assumption that all correlation coefficients kij=0. 

Formulas of k21 and its errors given are mainly for com-

parison as current supply is preferable one for resistance 

sensors.  

A comparison of the formulas given in Table 4 for 

different variants of the 4R10 circuit shows a number of 

conclusions, including also some new, previously un-

known, but important for the measuring technique.  

    • For the current supply the four variants A - D 

of the 4R10 bridge circuit have the linear transfer func-

tion r21(ε) as of any ε value. For the voltage supply the 

transfer function k21(ε) is linear for two of bridges A 

and B only, since circuit C and D are non-linear (formu-

las of their measures are not given in the Table 3).  

    • When circuit  B - of opposite ±ε variable increments 

of R1, R2 and circuit E - of variable R1 only is supplied 

by voltage, their initial sensitivity k0 and k21(ε) does not 

depend on n and hence from the zero correction pro-

vided in the lower bridge branch R3, R4.  

    • Circuits B and D with opposite ±ε increments of one 

pair resistances R1, R2 or R1, R4 have a similar depen-

dence of r21 on ε. First of them keeps a constant input 

resistance, and the second one - a constant output resis-

tance. In the A circuit with four increments of ±ε both 

of these resistances are constant. If additional resistance 

is connected to the circuit input, or output respectively, 

the linearity is reminded, but the initial circuit sensitivi-

ty may be decreasing. 

 • Transfer functions  r21(ε1) and k21(ε1) of the sin-

gle sensor E circuit as two different hyperbolas intersect 

at ε1=0 are nonlinear functions. The non-linearity of r21 

is less as its denominator varies less on ε1 than of k21. 

 • Related measures are not dependent on the level 

of circuit resistances.   

    • For small ε the impact of measures of initial values 

Ri0 is dominated. 

 • Errors of linear 4R10 circuits in a homogeneous 

form (column a) differently each other depend on ε,   

    • Dependency on ε of the r21 errors of the circuit B 

with variable R1, R2 or circuit D of variable R1, R4 is 

similar, but the resistances R2 and R4 turn into their 

roles.  

    • Despite the correction of zero, for the imbalance 

state of circuits the errors δi0 still partially affect the er-

rors δr21r, δk21k of the increments of transfer coefficients 

r21 and  k21 (see column b).   

    • When limited errors |δi0|=|δ0| of the initial Ri0 values 

of resistances Ri are equal and as well |δεi|=|δε| of their 

±ε  increments, then for the all current supplied circuits 

A - D with linear transfer functions r21(ε) the errors 
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|δr21r| (column b) of increments of r21 are equal and inde-

pendent from |ε|. Their absolute limited measures |Δr21| 

are linear function of ε and of the number zv=(2, 4) of 

variable resistances, i.e: 

r21 0 r21 10 210

v 0

| | = t | |  0,25R  [| | +

 z  | |(| | +| |)].

   

   
          (34) 

Dependences on ε of the limited errors |δr21| and 

|Δr21| of the transfer resistance r21 of these circuits have 

the similar form as for the limited errors |δi| and |Δi| of a 

single resistance Ri  - Figure 2. 

     • Both voltage supplied 4R10 circuits A and B 

also have the same errors |δk21k| and |Δk21|, but different-

ly from the previous ones they dependent on ε: 

| )]| ||+ ||( z + |[| 0,25   || 0
2

v210k21  .   (35) 
  

In imbalance the error |Δk21| depends on the initial 

error |δ0| and on constant error |δε| with coefficients ε
2
 

and |ε|. 

Formulas (34) and (35) are presented for the 

first time and seems to be useful in practice. 

• Error formulas of the linear 4R10 circuits A- D 

with sensors of coupled resistances are simpler than 

those of 

the E circuit with single R1 sensor. 

Table 4 shows that all random measures of A-E 

bridges vary differently on ε and than their limited er-

rors. 
 

Errors of the circuit  

with zero setting 
 

Initial signal is set equal to zero in two ways.  

1
st
. Set to zero the bridge - via analogue or digitally-

controlled regulation of one or two of its resistances Ri, 

such as a potentiometer or resistor ladder with switched 

contact on one of the bridge nodes. May arise small, 

usually negligible additional δεi errors of  regulated re-

sistors. Then error of the bridge balance  δ210=0 and 

from (10a) and (21) follows 
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2
nd

. Setting  to zero the signal of the system per-

forms outside the bridge - for example on its output by 

voltage opposite to the initial one, or after processing 

the analog signal to digital.  

Error of r21function if εi ≠  0 is 
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A comparison of (36a) and (37a) shows that, after 

correction of the initial circuit signal to zero, when r21 ≠  0, 

the first component in error //
21r 


 
is a bit larger than in 

/'
21r 


 
on 2101 R

R 








 
and depends on the sign of the un-

balanced bridge error. Limited errors of zero corrected 

circuits also slightly differ between themselves, i.e. at 

most about 2101

||

R

R 







. Only for systems in which 

εΣR=0 (i.e. bridges A, B, D from Table 2), the two above 

corrections of zero are equivalent but not so fully effec-

tive outside of the bridge balance. Even when errors δεi 

of increments of the resistances Ri are negligible, or 

their proceeds to offset compensate each other, still er-

ror δr21ε ≠   0. Errors δr21ε for both methods of correc-

tion are analyzed further in Example 1. A fully effective 

correction of zero and checking the accuracy of mea-

surement channels with sensors require calibration for 

several values of the measured quantity. The measuring 

channel alone can be calibrated by replacing the sensor 

by other elements with its variable, dependent on mesu-

rand parameters, e.g. by resistances corresponding to 

specified values of the mesurand. 

Table 4 

Accuracy measures of the open-circuit 4R bridges of equal all arm initial resistances 4R10 

N 

o 

Bridge 4R10 

parameters 

Errors 

of Ri 

Related accuracy measures  

of bridge transfer functions r 21 k 21: 

a) related to initial sensitivities t0 or k0  b of increments  r 21-r 210  and  k 21- k 210 
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1 2 3 4 5 

3 Jointed R1,... R4 

εi = ± ε  
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Examples 
 

The following are some examples using the formu-

las of Table 4 to estimate the accuracy of 4R10 circuits. 
  

Example 1. Comparison of the instantaneous and 

limited errors of the 4R10 circuit type A as the bridge 

with sensor of four increments of ±ε, (f(ε)=4ε, 

t0=0,25R10), for two ways of correcting zero: in the 

bridge and beyond. 

If zero is corrected by initial resistances Ri0 then 

the initial error δ210=Σδi0=0, hence: δ10+δ30=δ20+δ40. In 

the instantaneous error δr21 of bridge A – Table 4, line 3 

of column a), the sum of first two components become 

equal to zero and the error δr21=ε (δε1-δε2+δε3-δε4). If ac-

tual values of the Ri increment errors δεi are not known, 

but their limited errors |δεi| are given, then the limited 

relative error |δr21|=|ε|Σ|δεi|, while the absolute error 

|Δr21| ≤  0.25R10 |ε| Σ|δεi|.  

When the circuit 4R is slightly imbalanced for ε=0, 

then the initial zero error δ210 ≠  0. If zero-offset signal 

Jt0δ210 is corrected in the measurement path after the 

bridge, then result obtain from (27) and row 4 of col-

umn b) is greater than limited error estimated above, 

i.e.: |δr21| ≤  4|ε|∙|δr21r| = |ε| (Σ|δi0|+Σ|δεi|). If the tolerance 

is given only for the zero-error |δ210| then the modules 

|δi0| of individual δi0 errors of opposite signs can be 

large, and their participation in the instantaneous and 

limited errors |δr21r| and |δr21| will be also significant. 
 

Example 2. Given are permissible limited errors 

of zero |δ210|max and of transfer function |δr21r|max of the 

variant B current powered bridge 4R10 of variable R1,R2 

increments ±ε, f(ε)=2ε. Accuracy of bridge elements has 

to be find. 

Formulas of errors given in rows 10 and 11 of Ta-

ble 4 now have to be applied. Many combinations of li-

mited errors of bridge elements are possible. Acceptable 

in practice is the case of equal limited errors |δi0|=|δ0| of 

bridge constant resistances R30, R40 and of sensor initial 

resistances R10, R20 and also equal |δε1| = |δε2| ≡  |δε| er-

rors of sensor resistance increments ε1, ε2, than:   

- without corrections of zero:  

|δi0|=0,25|δ210|max , |δε| ≤ |δr21r|max - |δi0| if |ε| ≤ 0,5; 

 r 21r 0
max

1

2| |
    


  if |ε| ≥ 0,5, 

- with such correction: δ210 =0. Limited errors are 

the same as above if all actual errors δi0 are unknown. 

It is also possible to find statistical parameters of 

the distribution of transfer function errors for a given 

bridge and known standard deviations 0i ,
 i of resis-

tances of the sensor set offered by producer.  

Example 3. Limited errors of option E of 4R10 

bridge circuit with single sensor of resistance 

R1 = R10(1+ε1).  

Current supply case: the transfer function r21 has the 

initial sensitivity t0=0,25R10 and imbalance function 
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when |δ10| = |δ0| , ε1 ≤ 8  - row 19. 
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After comparison of denominators one can see that 

last error formula is more nonlinear as function of ε1. 
 

Example 4. Limited errors of the 4R bridge 

with single industrial Pt 100 sensors 

The good example of the broadly variable resis-

tance sensors are platinum sensors Pt 100 of A and B 

classes commonly used in industrial temperature mea-

surements. Tolerated differences from their nominal pa-

rameters are given in standard EN 60751÷A2 1997. 

They are expressed in 
0
C or as permissible resistance 

values in ohms - see |Δ| of class A and class B on Fig 3. 

Characteristic of class A sensors is determined up to 

650
0
C and for less accurate class B – up to 850

0
C. Ini-

tial limited errors |δ10| of both classes are 0,06% and 

0,12% respectively.  

On the base of nominal characteristic of  

Pt 100 sensors the maximum limited error  

|δR1|max ≡  |δ| = |δ10| + |δε1| 

for ε→∞ of both classes is calculated as ratio of  toler-

ances |Δ| and increments of sensor resistance [8 – 10],  

i.e. as  
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0ii
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0ii
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 . 

Obtained values are given on Fig 2.  

 

Fig. 2. Areas of possible values of absolute Δi=Ri-Ri0 (6) 

and  relative  errors δi=Δi/Ri0 (7a)  

of the variable resistance Ri=Ri0(1+εi)  

with given limited relative errors |δi0|, |δεi| 

They are only slightly changing and could be approx-

imated by the single value and related to the maximum or 

mean value of the temperature range of each sensor. In 

the full range of positive 

Celsius temperatures the limited error | | doesn’t 

exceed 0,2% of ε for class A and | | ≤ 0,5% for class B.  

Limited errors |δr21|, |δr21ε|=|δr21- δ210|,|δr21r|,  of the 

4R bridge transfer function r21 with the single industrial 

sensor of A or B class has be calculated from formulas 

of table 4. It was assumed that all limited errors |i0| of 

constant bridge arms are equal and not higher that the 

sensor initial error |δ10|, bridge balance is at 0
o
C, and 

current of supply source is stable enough or ratio of out-

put signal and this current is measured. 

Maximum temperature range (0 - 600)
0
C is taken 

for calculations and for it the relative increment of sen-

sor resistance is: εmax=2,137.   

As example numerical formulas of limited errors 

|δr21| or |δr21| of the class A are also estimated. Limited 

errors of the class B sensor bridge have been similarly 

estimate.  
 

 

Fig. 3. Tolerances |Δ| and maximum limited relative errors |δ|  

of temperature sensors Pt100 type A and B evaluated from their standard characteristic [7 – 9] 
 

For clarifying considerations the lead resistances 

are taken as negligible. Five different cases of measur-

ing circuit are considered, i.e.: bridge without any ad-

justments, outer and internal zero setting, negligible ini-

tial errors only of constant arms or of the sensor arm as 

well. All results are presented in Table 5. 

Ratio of limited errors of the bridge without ad-

justments and Pt sensor is 1,7 for class A and 2,9 for 

class B. If errors of the bridge resistances are negligible 

(line 5) limited error is only slightly higher than for the 

sensor, but if also the initial sensors error is adjusted, 

then the bridge transfer function r21 error is even smaller 

then of the sensor itself ! (line 1). Results for examples  

2, 3 and 4 are between 1 and 6. 

For comparison relative limited errors of the out-

put voltage of the bridge C including two similar Pt100 

sensors of class A or B in opposite arms are calculated 

from line 19 of table 4. For linearity of  the output sig-

nal resistance increments of both sensors should be 

equal. Limited errors of both sensors and temperature 

range 0-600
o
C are the same as before. The output signal 

of this bridge is twice higher that for the single sensor 

bridge E. 

The error related to this signal doesn’t exceed: for 

the class A sensors: 0,51% - without null correction and 

0,39% - if it is corrected, and 0,97% or 0,73% respec-

tively for the class B. These values are slightly higher 

than in Table 4.  

From (26) it follows that for lower temperature 

ranges the bridge limited errors and then also uncertain-

ty type B used for calculation the accuracy of measure-

ment results become higher. 
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Table 5 

Limited errors of few cases of the current supplied 4R bridge  

with the single resistor sensor, e.g. Pt 100 type A or B 

 

General conclusions 
 

Two methods of describing the accuracy measures 

of the arbitrary imbalanced sensor bridges are presented 

together and  compared., i.e.: 

- one component accuracy measure related to initial 

sensitivity of the bridge transfer functions, given before 

in [3], [6] - [9],  

- the new double component one of separately de-

fined measures for zero and transfer function increment.  

The second one is similar as used for the broad 

range instruments, e.g. digital voltmeters. Accuracy 

measures of bridge arms are defined for initial resistances 

and for their increments. Then this methods are indepen-

dent from the sensor characteristic to the measured quan-

tity.  

This methods are discussed using on few examples 

of 4R bridges of equal initial resistances, supplied by cur-

rent or voltage source and with single, double and four 

element sensors.  

Given formulas allow to find accuracy of the 4R 

bridge or uncertainty of measurements with  bridge cir-

cuits if  actual or limited values of errors or standard 

statistical measure of their resistances and sensors are 

known.  

Formulas of general and particular cases of the 

bridge may be used for computer simulation of the ac-

curacy of various sensor bridges and measured objects 

of the X twoport equivalent circuit in different circums-

tances.  

Systematic errors could be calculated also as ran-

dom ones for set of sensor bridges in production or in 

exploitation. If all correlation coefficients are negligible 

obtained values should be smaller than limited errors.  

Similar formulas as presented in this papers, could 

be formulated for any types of impedance sensor cir-

cuits as DC and AC bridges of single and double sup-

ply, active bridges linearized by feedback or multipliers, 

Anderson loop and impedance converters with DSP 

No 

Particular caus-

es of  

4Ri0 bridge 

Limited errors 
21r  (or

 21r
) 

    when: Ri0=R10,  

and   |20|=|30|=|40|≡|0| 

Class 

21   ,  21 ,  21r  in  %  for Pt100  

Arbitrary increments ε1 

and |0| =|10| 

0-600oC  (ε1=2,137) 
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10
1

1R

1R
ε1R










 
A 12,0

ε1
06,0

i

1




  0,14 

(0,44oC) 
 

B 34,0
1

12,0
1

iε


  0,35 

(1,1oC) 
 

2 

Bridge 

without 

adjustments 
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1

110
2
14

1
1011

21r

ε1

δεε23δ1






  
A  2

1

2
111

25,01

015,012,018,024,0






 

21r <0,41 (0,33) 

B 
  2

1

2
111

25,01

03,034,036,048,0






 
21r <0,90 (0,72) 

3 
Null setting out-

sight the bridge  
2

14
1

10110
1

1

02121r21r

)1(

)
16

5

2

1
(

8
1

2

1
























 
A 

2
1

2
11

)25,01(

0113,018,0




  0,143 0,139 

B 
2

1

2
11

)25,01(

023,046,0




  0,38 0,34 

4

4 

Null setting in 

the bridge   2
14

1

10
1

101

21r
)1(

)
42

1
(

2

1






















 

A 
2

1

2
11

)25,01(

015,018,0




  0,193 0,14 

B 
2

1

2
11

)25,01(

03,046,0




  0,48 0,34 

5 

Only errors of 

sensor incre-

ments  

(setting  i0) 

Sensor 

A 
2

1

2
11

)25,01(

015,018,0




  0,081 0,11 0,08 

alone in the circuit 

1
i

1
1R

ε1
 




  

  12
14

1

1
21r δ

ε1

ε





 
B 

2
1

2
11

)25,01(

03,046,0




  0,23 0,22 0,11 

6 

Negligible  

bridge resistance 

errors | 0| 

 

  2
14

1

11011

21r
ε1

ε1







  

( |20|=|30|=|40|→0) 

A 
 

  2
1

11

ε25,01

12,006,0ε1




  

21 = 0,19 (0,14) 

B 
 

  2
1

11

ε25,01

34,012,0ε1






 
21 = 0,47 (0,34) 



Невизначеність вимірювань: електрорадіовимірювання 
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processing. Given in this paper methods of the simplifi-

cation of their accuracy description could be also ap-

plied in many industrial measurements. 

A unified approach as given above to the accuracy 

description of unbalanced bridges and other circuits of 

broadly variable parameters, introduced in [3], [6 – 9], is 

not found so far in literature.  

The first type method of describing the 4R bridge 

accuracy was also used by author for two-parameter 

bridge measurements [3], [5 – 7]. 

The presented method is also valuable for accuracy 

evaluation in testing any circuit from its terminals as 

twoport, which is commonly used in diagnostics and in 

impedance tomography.  
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ОПИС ТОЧНОСТІ  

ШИРОКО НЕВРІВНОВАЖЕНИХ МОСТІВ ОПОРУ ДАТЧИКА  

З.Л. Варша 

Після короткого введення в таблиці 1 наведені коефіцієнти передачі ненавантажених чотирьохплечих мостів до-

вільних змінних опорів плеча, що живляться джерелами струму або напруги. Знайдено їхні формули поширення похибок 

і введено дві раціоналізовані форми мір щодо точності, пов'язані з початковою чутливістю моста й подвійної складо-

вої форми через суму нульової помилки, також збільшують помилку коефіцієнтів передачі моста. У таблиці 3 наведені 

обидві форми мір коефіцієнтів передачі широко застосовуваного моста - подібних початкових опорів плеча в балансі й 

різних варіантів їхніх з'єднаних збільшень. Оскільки приклад обмежується похибками для  деяких мостів опору із пла-

тиною Pt100, обчислені й проаналізовані індустріальні датчики класу A і B. Представлений підхід обговорювався й був 

виявлений як універсальне рішення для всіх мостів, а також для будь-яких інших ланцюгів, використовуваних для пара-

метричних датчиків. 

Ключові слова: точність, функція передачі, похибка, типова статистична характеристика, неврівноважені мо-

сти опору датчика. 

 

ОПИСАНИЕ ТОЧНОСТИ  

ШИРОКО НЕУРАВНОВЕШЕННЫХ МОСТОВ СОПРОТИВЛЕНИЯ ДАТЧИКА  

З.Л. Варша 

После краткого введения в таблице 1 приведены коэффициенты передачи ненагруженных четырехплечих мостов 

произвольных переменных сопротивлений плеча, питаемых источниками тока или напряжения. Найдены их формулы рас-

пространения погрешностей и введены две рационализированные формы мер по точности, связанные с начальной чувст-

вительностью моста и двойной составляющей формы через сумму нулевой ошибки, и увеличивающие ошибку коэффици-

ентов передачи моста. В таблице 3 приведены обе формы мер коэффициентов передачи широко применяемого моста - 

подобных начальных сопротивлений плеча в балансе и различных вариантов их соединѐнных приращений. Поскольку при-

мер ограничивается погрешностями для  некоторых мостов сопротивления с платиной Pt100, вычислены и проанализиро-

ваны индустриальные датчики класса A и B. Представленный подход обсуждался и был обнаружен в качестве универ-

сального решения для всех мостов, а также для любых других цепей, используемых для параметрических датчиков. 

Ключевые слова: точность, функция передачи, погрешность, типовая статистическая характеристика, неурав-

новешенные мосты сопротивления датчика. 

 


