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VERIFICATION OF RESTRICTED EA-EQUIVALENCE
FOR VECTORIAL BOOLEAN FUNCTIONS

We present algorithms for solving the restricted extended affine equivalence (REA-equivalence) problem for
any m-dimensional vectorial Boolean functions in n variables. The best of them has complexity 0(22”+1) for REA-
equivalence F(xX) =M;-G(x®V,) ®M3-x@V, . The algorithms are compared with previous effective algorithms

for solving the linear and the affine equivalence problem for permutations by Biryukov et. al.
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Introduction

Vectorial Boolean functions play very important
role in ensuring high-level security for modern ciphers.
They are used in cryptography as nonlinear combining
or filtering functions in the pseudo-random generators
(stream ciphers) and as substitution boxes (S-boxes)
providing confusion in block ciphers. Up to date an
important question of generation of vectorial Boolean
functions with optimal characteristics to prevent all
known types of attacks remains open. Sometimes
equivalence (i.e. EA or CCZ) is used for achieving
necessary properties without losing other ones (e.g.
8-uniformity, nonlinearity) [1, 2].

However, very often, inverse problem occurs: it is
needed to check several functions for equivalence. For
instance, when finding a new vectorial Boolean function
it is necessary to verify whether it is equivalent to
already known ones as it happens in some of block
ciphers, where several substitutions are used [3 — 5].

The complexity of exhaustive search for checking
extended affine (EA) equivalence of functions from

2
& =GF(2") to itself equals O(n>" *2") .
2120

When
n=6 the complexity is already that makes it
impossible to perform exhaustive computing.

In the paper [1] Alex Biryukov et al. have shown
that in case when given functions are permutations of
TZ“ , the complexity of determining restricted extended
affine (REA)

O(n2-2”) for the case of linear equivalence and

equivalence equivalence  equals

O(n-22”) for affine equivalence. In this paper we
consider more general cases of REA-equivalence for
functions from %' to " and specify results, when

time complexity can be reduced to polynomial. The
complexities of our algorithms and the best previous
known ones are given in Table 1.

Table 1
Complexities for solving REA-equivalence problem

Restricted EA-equivalence Complexity m G(x) Source

F(X) =M, -G(M, -x) O(n2 2™ m=n | Permutation [1]

F(X) =M;-G(M, - x®V,)®V, o(n- 22n) m=n | Permutation [1]
F(X)=M;-G(x®V,) &V, o(2°"h m=>1 T Sec. 3
F(X) =M; -G(x®V,) &V, o(m-2°") m=>1 Arbitrary Sec. 3
F(X)=G(My-x®V,) ®V, o(n?-2™M) m>1 | Permutation | gec 3
F(X) =G(X®V,) ®M3-x®V; o(n-2") m=>1 Arbitrary Sec. 3
F(X)=M;-G(X®V,) ®M3-x DV, o(2°" m=>1 i Sec. 3
F(x) =M -G(X®V,) ®M3-x®V; o(m-2%") m>1 Arbitrary Sec. 3

1 — G is under condition {2'| 0 < i< m—1} cimg (G*) where G'(X) = G(X) +G(0).
1 — G is under condition {2'| 0 < i< m—1} cimg (G’) where G'(X) is defined as (5).
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Preliminaries
For any positive integers n and m, a function F
from ' to " is called differentially & -uniform if

for every ae® \{0} and every be®", the equation
F(X)+F(x+a)=b admits at most & solutions [6].

Vectorial Boolean functions used as S-boxes in block
ciphers must have low differential uniformity to allow
high resistance to differential cryptanalysis [7]. In the
important case when m=n, differentially 2-uniform
functions, called almost perfect nonlinear (APN), are
optimal (since for any function &> 2).

The notion of APN function is closely connected
to the notion of almost bent (AB) function [8], which
can be described in terms of the Walsh transform of a

function F: &' > &":
7\.(U, V) — z (_1)V-F(X)+U.X,
XE(an

where " ." denotes inner products in &' and %",

respectively. The set {k(u,v)| (u,V)eTznxsz,V;tO}
is called the Walsh spectrum of F and the set
{|k(u,v)||(u,v)e?2n><T2m,v;t0} the extended Walsh

spectrum of F. If m=n and the Walsh spectrum of F
n+1

equals O,izT then the function F is called AB [8].

AB functions exist for n odd only and oppose an
optimum resistance to linear cryptanalysis [9]. Every
AB function is APN but the converse is not true in
general (see [10] for comprehensive survey on APN and
AB functions).

The natural way of representing F as a function

from &' to #" is by its algebraic normal form (ANF):
> a [Hxi} a em",
IcfL...n} \iel
the sum being calculated in %" . The algebraic degree
deg(F) of F is the degree of its ANF. F is called affine
if it has algebraic degree at most 1 and it is called linear
if it is affine and F(0)=0.
Any affine function A:%® " can be
represented in matrix form
AX)=M-x&C (1)
where M is an nxm matrix and Ce®" . All
operations are performed in % , thus (1) can be
rewritten as

ao k0,0 koyn71 XO Co
a | _| kuo Kina || X |l @
am-1)y  \(Km-10 Kman-1) (Xp1) \Cma

with ai,Xi,Ci,kj‘S G‘Fzm.

Two functions F,G:% " are called
extended affine equivalent (EA-equivalent) if there exist
an affine permutation A, of &", an affine permutation
A, of &' and a linear function L; from &' to "
such that

F(X) = Al oG OA2 (X) + L3(X).

Clearly A; and A,

A(X) =L (X)+c; and A,(Xx)=L,y(x)+c, for some

can be presented as

linear permutations L; and L, and some ¢ e %",
Cy € ‘an .

Definition 1. Functions F and G are called
restricted EA-equivalent (REA-equivalent) if some
elements of the set {L(x),L,(x),Lg(X).c;,Cp} are in
{0,x} .

There are two special cases

- linear equivalence

{Lg(x),c1,¢,} ={0,0,0};
— affine equivalence when L3(x)=0.

In matrix form EA-equivalence is represented as
follows

F(x) = Ml'G(M2 'X@Vz)@M3~X@V1,
M1, M3, M3, V, Vs |

when

where elements of have

dimensions {mxm,nxn,mxn,m,n}.

We say that functions F and F' from %' to &"
are Carlet Charpin Zinoviev (CCZ) equivalent if there
exists an affine permutation £ of & x#" such

that G = £(Gg. ) , where Gy ={(X,H(X))|XGT2n} ,

He{FF} .
known equivalence of functions for which differential
uniformity and extended Walsh spectrum are invariants.
In particular every function CCZ-equivalent to an APN
(respectively, AB) function is also APN (respectively,
AB). EA-equivalence is a specific case of CCZ-
equivalence [11]. The algebraic degree of a function is
invariant under EA-equivalence but, in general, it is not
preserved by CCZ-equivalence.

CCZ-equivalence is the most general

Verification of Restricted
EA-equivalence

Special types of REA-equivalence, which are
considered in this paper, are shown in Table 2.
Hereinafter assume that obtaining the value F(x)

for any x takes one step. Pre-computed values of
function F(x), F_l(x) and corresponding substitutions
are used as input for the algorithms.
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Table 2
Special types of REA-equivalence
REA-equivalence Type
F(xX)=M;-G(X)®V; |
F(X) =G(M5 -x®V,) 1
F(X)=G(x)®&Mj3-x®V; 1l
F(X)=M;-G(X)®M3-x®V; v

Thereafter, complexity of representing functions in
needed form is not taken into account, as well as
memory needed for data storage. These assumptions are
introduced to be able to compare complexities of
algorithms of the present paper with those of [1] where
the same assumptions were made.

There are 2"™ choices of linear mappings. The
complexity of obtaining the mxn matrix M satisfying
the equation

F(X) =M-G(x)

. 2m'n

using exhaustive search method is O(2" ), where

0(2™™") and O(2") are the complexities of checking

all matrices for all possible x €5 . Another natural

method is based on system of equations. The
complexity in this case depends only on the largest of
the parameters n and m. Indeed, for square matrices we
can benefit from the asymptotically faster Williams
method based on system of equations with complexity

0(n?3727) [12]. Besides, for n <64 we can use 64-bit

processor instructions to bring the complexity to O(nz)

because of two rows (columns) can be added in 1 step
[13]. Since any system of m equations with n variables
can be considered as a system of k equations with k
variables where k = max{n, m} then the complexity of

solving such system is

n=0(k?), (2)
which gives the complexity of finding M by this
method.

Proposition 1. Any linear function L: %' > &"
can be converted to a matrix with the complexity O(n) .
Proof. We need to find an mxn matrix M
satisfying L(xX) =M-x. Suppose
rowsy (i) = (m;), Vi€ {0,1,...,n -1},
colsy (j) = (my), Vie{0,1,...,m -1}
are the i" row and the j™ column of matrix M,
respectively. Each value of XE{Zi |Osi£n—l} is

equivalent to a vector with 1 at the i'" row

1 0 0
20 _|9] x_|1 on-1_
0 0 1

Clearly, every column, except the i, becomes zero
when multiplying the matrix M by Xx. Hence, each
column of the matrix M can be obtained using equation

colsy, (i) =L(2"), ie{01,....,n-1}.

For obtaining all columns of M it is necessary to
compute n values of L(2i) , 0<i<n-1. Consequently
the complexity of transformation is O(n) . o

Proposition 2. Any nxn matrix M can be
converted to a linear function L: %' @& with the
complexity O(n3) filed operations.

Proof. Any linear transformation has the form

n-1 ;
Mx=L(x)=3 &x, ©)
i=0
where [ in Fyn Then wusing (3) for every

X = 2i, 0<i<n-1, the equation could be rewritten as

colsp, (0)
colsp; (D)
colsyy (n-1)
0 1 -1
(297 (@) %7 5
0 1 -1
ey @y @ | &
(2n—1)20 (anl)zl (2n—1)2”’1 8n_1
The  complexity  of  acquiring  vector

{89.81,....8,_1} s corresponding to obtaining the

inverse matrix and equals O(n3) field operations. o

In practice, the Lagrange interpolation method [14]
works faster for n <6 and much slower otherwise.

Proposition 3. Let FG:® %" and
G'(X) =G(x) ®G(0) . Then the complexity of checking
F and G for REA-equivalence of type | equals

— 0(2™) in case when for any i e {0,...,m-1}

there exists X € 7 such that G'(x) = 2';

- O(m'22”) in case G is arbitrary.
Proof. Let F'(X)=F(x)®F0) .
equivalent of type |

FX)@F0)=M;-G'(x)®@M,-G(0) DV,

can be rewritten in the following form

FO)=M;-G(0)®V,;

{F'(x) =M;-G'(x).
In case of G(0) =0, V; equals F(0), but in general it's
find M,

Then REA-

(4)

necessary first to from equation

Fi(x)=M;-G'(x) . If the set {2‘ | osism—l} is the
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subset of the image set of G', then the problem of
finding mxm matrix M, is equivalent to the problem
of converting linear function to matrix form with
additional testing for all x in &' . It is possible to find
M; with the complexity O(m) as was shown in
Proposition 1. The complexity of finding the pre-images
of G' of elements 2, Vi €{0,...,m-1} equals O(2")
as well as the complexity of checking
F'(x)=M;-G'(x) for given M. In cryptography, in

most cases 2" >>m, so the complexity O(m) can be

neglected. Therefore, the total complexity of
verification for equivalence of F and G equals

02" +2" +m) ~0(2"*).

Let now G be arbitrary and F'(x); be the i™ bit of
F'(x) . Denote img(G" the image set of G' and
Ug' =|img(G")| the number of elements in img(G") .

Let also Ng. be any subset of &' such that
INg:|=ug: and |{G'(a)| ae NG-}| =Ug: .
Then to find My it is necessary to solve a system
below for all i< {0,...,m-1}
F‘(xj)i :rowle(i)-G'(xj),VXj eNg.0<j<ug -1
F'(Xo)i =rowsy, (i)-G'(Xo);
Fi(x1)i = rowsy, (1)-G'(xy);

F(Xug-1i = rowspy, (1) -G (Xyg.-1)-

For every i in {0,...,m-1}, the complexity of
solving the system highly depends on ug. and m and
equals O(max{uG-,m}Z) according to (2). Then the
total complexity of obtaining M; for all m bits is
o(m-max{ug.,my?) . If value ug ~2" , then

o(m-22"y. o
Remark 1. If it is known in advance that functions
F and G in Proposition 3 are REA-equivalent of type I,
then the complexity of verification F'(x) =M;-G'(x)
can be ignored and the total complexity for the case
{Zi lo<i< m—1} cimg(G') becomes O(2").
Proposition 4. Let G be a permutation and
F.G:® & . Then the complexity of checking F

and G for REA-equivalence of type Il is O(nz) .

Proof. Denote H(x)=G_1(F(x)). Then the equation
F(X) =G(M, -x®V,) takes the form
H(X) =M, -x®V,.

Obviously for satisfying REA-equivalence H must

be linear and invertible. Arbitrary linear function from

F' to " has the form (3) thence consists at most of n
monomials. Suppose y(n) the complexity of obtaining
binary Hamming weight of the monomials exponents in
H. Consequently the complexity for checking linearity
of H with equals O(n-y(n)). For the most of modern
processors including Intel the value w(n) is equal to
O(1) [15]. Taking x =0 we obtain V, =H(0) and the
equivalence can be represented as H'(X)=M,-x ,
where H'(x)=H(xX)®H(0) . For satisfying REA-
equivalence conditions the matrix M, must be
nonsingular. Therefore, the total complexity is equal to
the sum of checking linearity of H (O(n) ), obtaining
matrix M, (O(n) ) and checking it on invertibility

(O(nz)) and approximately equals O(n2) .0

Proposition 5. Let F,G:# > ®" . Then the
complexity of checking F and G for REA-equivalence
of type 11l equals O(n) .

Proof. Denote H(X)=F(X)®G(x) , then REA-
equivalence

F(x)=G(x)®M3-x®V;
takes the form
H(X)=M3-x®V;

The situation is the same as in Proposition 4, but
with arbitrary mxn matrix. Thus the complexity of
obtaining M3 and V; equals O(n).

Every vectorial Boolean function admits the form

H(X) = H'(x) ® L (x) ®H(0) , ®)
where Ly is a linear function and H' has terms of
algebraic degree at least 2.

Proposition 6. Let G' be defined by (5) and
F.G:% %" . Then the complexity of checking F
and G for REA-equivalence of type IV equals

— 02" in case {2‘ lo<is< m—1} cimg(G),

— O(m-2%"Y in case G is arbitrary.
Proof. Using (5) REA-equivalence of type IV can
be rewritten as

F(X)®L(X)®F0)=M{-G'(X)®@M-Lg(X)®
SMz-x@&M;-G(0)dV;
and gives the system of equations
F'(x)=M;-G'(x)
Le(X) =M -Lg(X) ®Mj3-X
FO)=M;-G(0)®V;
It's easy to see that for a given M; one can easily
compute M3 and V; from the second and the third

equations of the system. The first equation of the system
leads to the two different cases for the function G’
considered in Proposition 3. Hence, according to
Proposition 2, the total complexity for finding G'
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equals O(2"*1) and O(m-2%"), respectively. It should
be noted that the complexity of finding the matrix My

is not taken into account since 2" >>n .
If we add one of Vi, V, values to REA-

equivalence, then the complexity will increase in 2™ or
2" times respectively. REA-equivalance with Vj,V,

and corresponding complexities are shown in Table 1. It
should be mentioned that types | and Il of REA-
equivalence are particular cases of type V. But taking
into account different restrictions for the function G it is
necessary to check all these types of EA-equivalence.
An algorithm for the type IV of REA-equivalence

in case {Zi |0 <i<m —1} cimg(G") is given below.

Algorithm 1 Checking Functions for REA-equivalence of Type IV
Input: F'(z), Lr(z), F(0),G'(z), La(z),G(0)
Output: True if F is EA-equivalent to G
for V2 =0 to 2" do
H'(z) + G'(z & V2);
Lu(z) + La(z ® Va);
H(0) + G(Va);
fori=0tom—1do

X 2*;

Find(2' == G(y));

SetColumn( M ,i,H (y));
end for

Vi + M- H(0) & F(0);
fori=0ton—1do
X+ 2"
SetColumn(Ms,i,Lr(z) @ My » Ly (x));
end for
for i =0to 2" — 1 do
if F(r)!=M, -H(z®Vo)® Mz -x@V; then
goto next Va;
end if
end for
return True
end for
return False

Conclusions

The present paper studies complexities of checking
functions for special cases of EA-equivalence and it is
shown that for some of this cases the complexity of
checking takes polynomial time. Obtained results give a
practical method for checking functions on equivalence.

The best result is with the complexity 0(22”+1) for

checking REA-equivalence of the
F(X)=M;-G(X®V,)®M3-x®V;  under
condition on G.

form
some
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Penenzent: 1-p texH. Hayk, npod. I.11. T'opberko, XapkiBchKHit
HalliOHAJIHUI YHIBEPCUTET paJliOeNeKTPOHIKH, XapKiB.

NEPEBIPKA BEKTOPHUX BYNEBUX ®YHKLUIA HA OBMEXEHY PO3LUUPEHO A®IHHY EKBIBANEHTHICTb
JI. Bynarsin, O. Kazumupos

YV emammi npedcmasneni ancopummu 0151 eupiuients npodiemu obmedicenoi pacwupeno aginnoi exsisarenmuocmi (OPA-
exgiganenmuocmi) y pasi 008iibHOT m-mipHOi 6ekmopHoi Oynesoi pyrryii 610 n sminnux. Kpawuii 3 ompumanux aneopummise mae

cKnaduicme 0(22n+l) ons  OPA-exsisanenmnocmi F(X) =M -G(XD®V,)DM3-X®V, . Crradnocmi  pospobrenux
Memo0ie NopisHI0IOMbCA 3 3anponoHosanumu paviue bipiokosum ma in. aneopummamu 0ns eupiweHHa npoorem JiHIUHUX ma

aginnux exgisarenmuocmeil.

Knirouogi cnosa: PA-exsieanenmuicmo, mampuune yseienns, S-610K, 6eKmopHi 6ynesi Qynryii.
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NPOBEPKA BEKTOPHbIX BYJIEBbIX ®YHKLUNA
HA OrPAHUYEHHYIO PACLULMPEHHO A®UHHYIO 3KBUBAJIEHTHOCTb

JI. bynarsn, A. Kazumupos

B cmamve npedcmasnenvi ancopummer 015 pewienus npoonemvl OZPAHUYEHHOU PACUUPEHHO AQ@UHHON IKEUSATEHMHOCIU

(OPA-sxeusanenmnocmu) 8 ciyuae NpOU3BONLHOU M-MEPHOU eKMOPHOU 0yegoll QyHkyuu om n nepemeHuvix. Jhyuwui u3
2n+1

npeonosicennwix anzopummos umeem crosichocms O(2°7"") ons OPA-sxsusanenmuocmu F(X) =My -G(X@V,) @Mz - XDV, .

Crodichocmu paspabomanHbix Memoo08 CPAGHUBAIOMCSL C NPeOodiCeHHbIMU panee buprokosvim u Op. aneopummamu 015 peuieHus
npoonem TUHEUHbIX U APOUHHBIX IKEUBAIEHMHOCELL.
Knrwuesvie cnosa: PA-sxsusanenmuocms, mampuunoe npeocmasienue, S-6J10Kk, 6eKmopHvle 0Yi1ebl PYHKYUU.
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