
Математичні моделі та методи

 155

Математичні моделі та методи

УДК 621.3.06

L. Budaghyan
1
, O. Kazymyrov

2

1

University of Bergen, Norway
2

Kharkov National University of Radioelectronics, Ukraine

VERIFICATION OF RESTRICTED EA-EQUIVALENCE
 FOR VECTORIAL BOOLEAN FUNCTIONS

We present algorithms for solving the restricted extended affine equivalence (REA-equivalence) problem for

any m-dimensional vectorial Boolean functions in n variables. The best of them has complexity 2n 1O(2) for REA-

equivalence 1 2 3 1F(x) M G(x V) M x V      . The algorithms are compared with previous effective algorithms

for solving the linear and the affine equivalence problem for permutations by Biryukov et. al.

Keywords: EA-equivalence, matrix representation, S-box, vectorial Boolean function.

Introduction

Vectorial Boolean functions play very important

role in ensuring high-level security for modern ciphers.

They are used in cryptography as nonlinear combining

or filtering functions in the pseudo-random generators

(stream ciphers) and as substitution boxes (S-boxes)

providing confusion in block ciphers. Up to date an

important question of generation of vectorial Boolean

functions with optimal characteristics to prevent all

known types of attacks remains open. Sometimes

equivalence (i.e. EA or CCZ) is used for achieving

necessary properties without losing other ones (e.g.

-uniformity, nonlinearity) [1, 2].

However, very often, inverse problem occurs: it is

needed to check several functions for equivalence. For

instance, when finding a new vectorial Boolean function

it is necessary to verify whether it is equivalent to

already known ones as it happens in some of block

ciphers, where several substitutions are used [3 – 5].

The complexity of exhaustive search for checking

extended affine (EA) equivalence of functions from

n n
2 GF(2)F to itself equals

23n 2nO(n) . When

n 6 the complexity is already 2
120

 that makes it

impossible to perform exhaustive computing.

In the paper [1] Alex Biryukov et al. have shown

that in case when given functions are permutations of

n
2F , the complexity of determining restricted extended

affine equivalence (REA) equivalence equals

2 nO(n 2) for the case of linear equivalence and

2nO(n 2) for affine equivalence. In this paper we

consider more general cases of REA-equivalence for

functions from n
2F to m

2F and specify results, when

time complexity can be reduced to polynomial. The

complexities of our algorithms and the best previous

known ones are given in Table 1.

Table 1

Complexities for solving REA-equivalence problem

Restricted EA-equivalence Complexity m G(x) Source

1 2F(x) M G(M x)   2 nO(n 2) m n Permutation [1]

1 2 2 1F(x) M G(M x V) V     2nO(n 2) m n Permutation [1]

1 2 1F(x) M G(x V) V    2n 1O(2) m 1 † Sec. 3

1 2 1F(x) M G(x V) V    3nO(m 2) m 1 Arbitrary Sec. 3

2 2 1F(x) G(M x V) V    2 mO(n 2) m 1 Permutation Sec. 3

2 3 1F(x) G(x V) M x V     nO(n 2) m 1 Arbitrary Sec. 3

1 2 3 1F(x) M G(x V) M x V      2n 1O(2)
 m 1 ‡ Sec. 3

1 2 3 1F(x) M G(x V) M x V      3nO(m 2) m 1 Arbitrary Sec. 3

† – G is under condition {2i 0  i  m – 1}  img (G’) where G'(x) G(x) G(0)  .

‡ – G is under condition {2i 0  i  m – 1}  img (G’) where G'(x) is defined as (5).

© L. Budaghyan, O. Kazymyrov2

Системи обробки інформації, 2013, випуск 1 (108) ISSN 1681-7710

 156

Preliminaries

For any positive integers n and m, a function F

from n
2F to m

2F is called differentially  -uniform if

for every n
2a \{0}F and every m

2bF , the equation

F(x) F(x a) b   admits at most  solutions [6].

Vectorial Boolean functions used as S-boxes in block

ciphers must have low differential uniformity to allow

high resistance to differential cryptanalysis [7]. In the

important case when m n , differentially 2-uniform

functions, called almost perfect nonlinear (APN), are

optimal (since for any function 2 ).

The notion of APN function is closely connected

to the notion of almost bent (AB) function [8], which

can be described in terms of the Walsh transform of a

function n m
2 2F:F F :

n
2

v F(x) u x

x

(u, v) (-1) ,  



  
F

where "  " denotes inner products in n
2F and m

2F ,

respectively. The set  n m
2 2(u, v) (u,v) , v 0   F F

is called the Walsh spectrum of F and the set

 n m
2 2(u, v) (u,v) , v 0   F F the extended Walsh

spectrum of F. If m n and the Walsh spectrum of F

equals

n 1

20, 2

 
 

 
  

 then the function F is called AB [8].

AB functions exist for n odd only and oppose an

optimum resistance to linear cryptanalysis [9]. Every

AB function is APN but the converse is not true in

general (see [10] for comprehensive survey on APN and

AB functions).

The natural way of representing F as a function

from n
2F to m

2F is by its algebraic normal form (ANF):

m
I i I 2

I {1, ,n} i I

a x , a ,

 

 
 

 
 

  F

the sum being calculated in m
2F . The algebraic degree

deg(F) of F is the degree of its ANF. F is called affine

if it has algebraic degree at most 1 and it is called linear

if it is affine and F(0) 0 .

Any affine function n m
2 2A :F F can be

represented in matrix form

 A(x) M x C   (1)

where M is an n m matrix and m
2CF . All

operations are performed in 2F , thus (1) can be

rewritten as

0,0 0,n 10 0 0

1,0 1,n 11 1 1

m 1,0 m 1,n 1m 1 n 1 m 1x

k ka x c

k ka x c

k ka x c





    

      
      
        
      
       

      

with m
i i i j,s 2a ,x ,c ,k F .

Two functions n m
2 2F,G :F F are called

extended affine equivalent (EA-equivalent) if there exist

an affine permutation 1A of m
2F , an affine permutation

2A of n
2F and a linear function 3L from n

2F to m
2F

such that

1 2 3F(x) A G A (x) L (x). 

Clearly 1A and 2A can be presented as

1 1 1A (x) L (x) c  and 2 2 2A (x) L (x) c  for some

linear permutations 1L and 2L and some m
1 2c F ,

n
2 2c F .

Definition 1. Functions F and G are called

restricted EA-equivalent (REA-equivalent) if some

elements of the set  1 2 3 1 2L (x),L (x),L (x),c ,c are in

 0, x .

There are two special cases

– linear equivalence when

 3 1 2L (x),c ,c {0,0,0} ;

– affine equivalence when 3L (x) 0 .

In matrix form EA-equivalence is represented as

follows

 1 2 2 3 1F(x) M G M x V M x V       ,

where elements of  1 2 3 1 2M ,M ,M ,V ,V have

dimensions  m m,n n,m n,m,n   .

We say that functions F and F' from n
2F to m

2F

are Carlet Charpin Zinoviev (CCZ) equivalent if there

exists an affine permutation L of n m
2 2F F such

that F F'G G L() , where  n
H 2G (x,H(x)) | x F ,

 H F,F' . CCZ-equivalence is the most general

known equivalence of functions for which differential

uniformity and extended Walsh spectrum are invariants.

In particular every function CCZ-equivalent to an APN

(respectively, AB) function is also APN (respectively,

AB). EA-equivalence is a specific case of CCZ-

equivalence [11]. The algebraic degree of a function is

invariant under EA-equivalence but, in general, it is not

preserved by CCZ-equivalence.

Verification of Restricted
EA-equivalence

Special types of REA-equivalence, which are

considered in this paper, are shown in Table 2.

Hereinafter assume that obtaining the value F(x)

for any x takes one step. Pre-computed values of

function
1F(x), F (x)

 and corresponding substitutions

are used as input for the algorithms.

Математичні моделі та методи

 157

Table 2

 Special types of REA-equivalence

REA-equivalence Type

1 1F(x) M G(x) V   I

2 2F(x) G(M x V)   II

3 1F(x) G(x) M x V    III

1 3 1F(x) M G(x) M x V     IV

Thereafter, complexity of representing functions in

needed form is not taken into account, as well as

memory needed for data storage. These assumptions are

introduced to be able to compare complexities of

algorithms of the present paper with those of [1] where

the same assumptions were made.

There are n m2  choices of linear mappings. The

complexity of obtaining the m n matrix M satisfying

the equation

F(x) M G(x) 

using exhaustive search method is n m nO(2 2) , where

m nO(2) and nO(2) are the complexities of checking

all matrices for all possible n
2xF . Another natural

method is based on system of equations. The

complexity in this case depends only on the largest of

the parameters n and m. Indeed, for square matrices we

can benefit from the asymptotically faster Williams

method based on system of equations with complexity

2.3727O(n) [12]. Besides, for n 64 we can use 64-bit

processor instructions to bring the complexity to 2O(n)

because of two rows (columns) can be added in 1 step

[13]. Since any system of m equations with n variables

can be considered as a system of k equations with k

variables where k max{n,m} then the complexity of

solving such system is

2O(k)  , (2)

which gives the complexity of finding M by this

method.

Proposition 1. Any linear function n m
2 2L :F F

can be converted to a matrix with the complexity O(n) .

Proof. We need to find an m n matrix M

satisfying L(x) M x  . Suppose

 M ijrows (i) (m), j 0,1, ,n 1    ,

 M ijcols (j) (m), i 0,1, ,m 1   

are the i
th

 row and the j
th

 column of matrix M,

respectively. Each value of  ix 2 0 i n 1    is

equivalent to a vector with 1 at the i
th

 row

0 1 n 1

1 0 0

0 1 0
2 2 2 .

0 0 1



     
     
       
     
     
     

Clearly, every column, except the i
th

, becomes zero

when multiplying the matrix M by x. Hence, each

column of the matrix M can be obtained using equation

 i
Mcols (i) L(2), i 0,1, ,n 1 .  

For obtaining all columns of M it is necessary to

compute n values of iL(2) , 0 i n 1   . Consequently

the complexity of transformation is O(n) . □

Proposition 2. Any n n matrix M can be

converted to a linear function n n
2 2L :F F with the

complexity 3O(n) filed operations.

Proof. Any linear transformation has the form

in 1

2
i

i 0

M x L(x) x ,




    (3)

where in n2
F . Then using (3) for every

ix 2 , 0 i n 1    , the equation could be rewritten as

0 1 n 1

0 1 n 1

0 1 n 1

M

M

M

0 2 0 2 0 2

0

1 2 1 2 1 2
1

n 1n 1 2 n 1 2 n 1 2

cols (0)

cols (1)

cols (n 1)

(2) (2) (2)

(2) (2) (2) .

(2) (2) (2)





   

 
 
  
 
 

 

 
  

      
  
  
  

 

The complexity of acquiring vector

 0 1 n 1, , ,    is corresponding to obtaining the

inverse matrix and equals 3O(n) field operations. □

In practice, the Lagrange interpolation method [14]

works faster for n 6 and much slower otherwise.

Proposition 3. Let n m
2 2F,G :F F and

G'(x) G(x) G(0)  . Then the complexity of checking

F and G for REA-equivalence of type I equals

– n 1O(2) in case when for any  i 0, ,m 1 

there exists n
2xF such that iG'(x) 2 ;

– 2nO(m 2) in case G is arbitrary.

Proof. Let F'(x) F(x) F(0)  . Then REA-

equivalent of type I

1 1 1F'(x) F(0) M G'(x) M G(0) V     

can be rewritten in the following form

1 1

1

F(0) M G(0) V ;

F'(x) M G '(x).

  


 
 (4)

In case of G(0) 0 , 1V equals F(0) , but in general it's

necessary first to find 1M from equation

1F'(x) M G'(x)  . If the set  i2 0 i m 1   is the

Системи обробки інформації, 2013, випуск 1 (108) ISSN 1681-7710

 158

subset of the image set of G ' , then the problem of

finding m m matrix 1M is equivalent to the problem

of converting linear function to matrix form with

additional testing for all x in n
2F . It is possible to find

1M with the complexity O(m) as was shown in

Proposition 1. The complexity of finding the pre-images

of G ' of elements i2 ,  i 0, ,m 1   equals nO(2)

as well as the complexity of checking

1F'(x) M G'(x)  for given 1M . In cryptography, in

most cases n2 m , so the complexity O(m) can be

neglected. Therefore, the total complexity of

verification for equivalence of F and G equals

n n n 1O(2 2 m) O(2)   .

Let now G be arbitrary and iF'(x) be the i
th

 bit of

F'(x) . Denote img(G ') the image set of G ' and

G'u img(G ') the number of elements in img(G ') .

Let also G 'N be any subset of n
2F such that

G' G 'N u and  G' G 'G'(a) a N u  .

Then to find 1M it is necessary to solve a system

below for all  i 0, ,m 1 

1j i M j j G' G'F'(x) rows (i) G'(x), x N , 0 j u 1       

1

1

G ' 1 G '

0 i M 0

1 i M 1

u 1 i M u 1

F'(x) rows (i) G '(x);

F '(x) rows (i) G '(x);

F '(x) rows (i) G '(x). 

 


 
 


  


For every i in  0, ,m 1 , the complexity of

solving the system highly depends on G 'u and m and

equals 2
G'O(max{u ,m}) according to (2). Then the

total complexity of obtaining 1M for all m bits is

2
G'O(m max{u ,m}) . If value n

G 'u 2 , then

2nO(m 2) . □

Remark 1. If it is known in advance that functions

F and G in Proposition 3 are REA-equivalent of type I,

then the complexity of verification 1F'(x) M G'(x) 

can be ignored and the total complexity for the case

 i2 0 i m 1 img(G ')    becomes nO(2) .

Proposition 4. Let G be a permutation and

n n
2 2F,G :F F . Then the complexity of checking F

and G for REA-equivalence of type II is 2O(n) .

Proof. Denote
1H(x) G (F(x)) . Then the equation

2 2F(x) G(M x V)   takes the form

2 2H(x) M x V   .

Obviously for satisfying REA-equivalence H must

be linear and invertible. Arbitrary linear function from

n
2F to m

2F has the form (3) thence consists at most of n

monomials. Suppose (n) the complexity of obtaining

binary Hamming weight of the monomials exponents in

H. Consequently the complexity for checking linearity

of H with equals O(n (n)) . For the most of modern

processors including Intel the value (n) is equal to

O(1) [15]. Taking x 0 we obtain 2V H(0) and the

equivalence can be represented as 2H'(x) M x  ,

where H'(x) H(x) H(0)  . For satisfying REA-

equivalence conditions the matrix 2M must be

nonsingular. Therefore, the total complexity is equal to

the sum of checking linearity of H (O(n)), obtaining

matrix 2M (O(n)) and checking it on invertibility

(2O(n)) and approximately equals 2O(n) .□

Proposition 5. Let n m
2 2F,G :F F . Then the

complexity of checking F and G for REA-equivalence

of type III equals O(n) .

Proof. Denote H(x) F(x) G(x)  , then REA-

equivalence

3 1F(x) G(x) M x V   

takes the form

3 1H(x) M x V  

The situation is the same as in Proposition 4, but

with arbitrary m n matrix. Thus the complexity of

obtaining 3M and 1V equals O(n) . □

Every vectorial Boolean function admits the form

 HH(x) H'(x) L (x) H(0)   , (5)

where HL is a linear function and H' has terms of

algebraic degree at least 2.

Proposition 6. Let G ' be defined by (5) and

n m
2 2F,G :F F . Then the complexity of checking F

and G for REA-equivalence of type IV equals

– n 1O(2) in case  i2 0 i m 1 img(G ')    ,

– 2nO(m 2) in case G is arbitrary.

Proof. Using (5) REA-equivalence of type IV can

be rewritten as

F 1 1 G

3 1 1

F'(x) L (x) F(0) M G'(x) M L (x)

M x M G(0) V

      

    

and gives the system of equations

1

F 1 G 3

1 1

F'(x) M G '(x)

L (x) M L (x) M x

F(0) M G(0) V

 


   
   

It's easy to see that for a given 1M one can easily

compute 3M and 1V from the second and the third

equations of the system. The first equation of the system

leads to the two different cases for the function G '

considered in Proposition 3. Hence, according to

Proposition 2, the total complexity for finding G '

Математичні моделі та методи

 159

equals n 1O(2) and 2nO(m 2) , respectively. It should

be noted that the complexity of finding the matrix 3M

is not taken into account since n 12 n  . □

If we add one of 1 2V ,V values to REA-

equivalence, then the complexity will increase in m2 or

n2 times respectively. REA-equivalance with 1 2V ,V

and corresponding complexities are shown in Table 1. It

should be mentioned that types I and III of REA-

equivalence are particular cases of type IV. But taking

into account different restrictions for the function G it is

necessary to check all these types of EA-equivalence.

An algorithm for the type IV of REA-equivalence

in case  i2 0 i m 1 img(G ')    is given below.

Conclusions

The present paper studies complexities of checking

functions for special cases of EA-equivalence and it is

shown that for some of this cases the complexity of

checking takes polynomial time. Obtained results give a

practical method for checking functions on equivalence.

The best result is with the complexity 2n 1O(2) for

checking REA-equivalence of the form

1 2 3 1F(x) M G(x V) M x V      under some

condition on G.

References

1. Alex Biryukov, Christophe De Canniere, An

Braeken, and Bart Preneel. A toolbox for cryptanalysis:

Linear and affine equivalence algorithms. In Advances in

Cryptology - EUROCRYPT 2003, Lecture Notes in Computer

Science, pages 33–50. Eli Biham, editor, Springer, 2003.

2. Daemen, J., Rijmen, V. The Design of Rijndael, AES

– The Advanced Encryption Standard. Springer, Heidelberg.

2002. ISBN: 978-3-540-42580-9.

3. Daesung Kwon et al., New Block Cipher: ARIA. In

Jong In Lim and Dong Hoon Lee, editors, ICISC, volume 2971

of Lecture Notes in Computer Science, pages 432-445.

Springer, 2003.

4. R. Oliynykov, I. Gorbenko, V. Dolgov, V.

Ruzhentsev, Symmetric block cipher "Kalyna", Applied Radio

Electronics 6 (2007), 46-63. In Ukrainian.

5. R. Oliynykov, I. Gorbenko, V. Dolgov, V. Ruzhentsev,

Results of Ukrainian National Public Cryptographic Competition,

Tatra Mt. Math. Publ. 47 2010, 99-113.

6. K. Nyberg. Differentially uniform mappings for

cryptography, Advances in Cryptography, EUROCRYPT'93,

LNCS, Springer-Verlag, New York, 765, pp. 55-64, 1994.

7. E. Biham and A. Shamir. Differential Cryptanalysis

of DES-like Cryptosystems. Journal of Cryptology, vol. 4,

No.1, pp. 3-72, 1991.

8. F. Chabaud and S. Vaudenay. Links between

differential and linear cryptanalysis, Advances in Cryptology -

EUROCRYPT'94, LNCS, Springer-Verlag, New York, 950, pp.

356-365, 1995.

9. M. Matsui. Linear cryptanalysis method for DES

cipher. Advances in Cryptology - EUROCRYPT'93, LNCS,

Springer-Verlag, pp. 386-397, 1994.

10. C. Carlet. Vectorial Boolean Functions for

Cryptography. Chapter of the monograph “Boolean Models

and Methods in Mathematics”, Computer Science, and

Engineering, Y. Crama and P. Hammer eds, Cambridge

University Press, pp. 398-469, 2010.

11. C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent

functions and permutations suitable for DES-like

cryptosystems. Designs, Codes and Cryptography, 15(2), pp.

125-156, 1998.

12. Virginia Vassilevska Williams, Breaking the

Coppersmith-Winograd barrier, November 2011. [Electronic

resource] / Mode of access: WWW/URL: http://www.cs.

berkeley.edu/~virgi/matrixmult.pdf – Last access: 2013..

13. Sara Robinson, Toward an Optimal

Algorithm for Matrix Multiplication. From SIAM News,

Volume 38, Number 9, November 2005.

14. R. Lidl and H. Niederreiter. Finite Fields. Volume

20 of Encyclopedia of Mathematics and its Applications.

Cambridge University Press, Cambridge (1997).

15. Intel SSE4 Programming Reference, April 2007.

[Electronic resource] / Mode of access: WWW/URL:

http://software.intel.com/sites/default/files/m/9/4/2/d/5/17971-

intel_20sse4_20programming_20reference.pdf – Last access:

2013. – Title from the screen.

Надійшла до редколегії 22.11.2012

Рецензент: д-р техн. наук, проф. І.Д. Горбенко, Харківський

національний університет радіоелектроніки, Харків.

ПЕРЕВІРКА ВЕКТОРНИХ БУЛЕВИХ ФУНКЦІЙ НА ОБМЕЖЕНУ РОЗШИРЕНО АФІННУ ЕКВІВАЛЕНТНІСТЬ

Л. Будагян, О. Казимиров

У статті представлені алгоритми для вирішення проблеми обмеженої расширено афінної еквівалентності (ОРА-
еквівалентності) у разі довільної m-мірної векторної булевої функції від n змінних. Кращий з отриманих алгоритмів має

складність
2n 1O(2)

 для ОРА-еквівалентності 1 2 3 1F(x) M G(x V) M x V      . Складності розроблених

методів порівнюються з запропонованими раніше Бірюковим та ін. алгоритмами для вирішення проблем лінійних та
афінних еквівалентностей.

Ключові слова: РА-еквівалентність, матричне уявлення, S-блок, векторні булеві функції.

Системи обробки інформації, 2013, випуск 1 (108) ISSN 1681-7710

 160

ПРОВЕРКА ВЕКТОРНЫХ БУЛЕВЫХ ФУНКЦИЙ
НА ОГРАНИЧЕННУЮ РАСШИРЕННО АФИННУЮ ЭКВИВАЛЕНТНОСТЬ

Л. Будагян, А. Казимиров

В статье представлены алгоритмы для решения проблемы ограниченной расширенно аффинной эквивалентности

(ОРА-эквивалентности) в случае произвольной m-мерной векторной булевой функции от n переменных. Лучший из

предложенных алгоритмов имеет сложность
2n 1O(2)

 для ОРА-эквивалентности 1 2 3 1F(x) M G(x V) M x V      .

Сложности разработанных методов сравниваются с предложенными ранее Бирюковым и др. алгоритмами для решения

проблем линейных и аффинных эквивалентностей.

Ключевые слова: РА-эквивалентность, матричное представление, S-блок, векторные булевы функции.

