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Introduction 

Vectorial Boolean functions play very important 

role in ensuring high-level security for modern ciphers. 

They are used in cryptography as nonlinear combining 

or filtering functions in the pseudo-random generators 

(stream ciphers) and as substitution boxes (S-boxes) 

providing confusion in block ciphers. Up to date an 

important question of generation of vectorial Boolean 

functions with optimal characteristics to prevent all 

known types of attacks remains open. Sometimes 

equivalence (i.e. EA or CCZ) is used for achieving 

necessary properties without losing other ones (e.g.  

-uniformity, nonlinearity) [1, 2]. 

However, very often, inverse problem occurs: it is 

needed to check several functions for equivalence. For 

instance, when finding a new vectorial Boolean function 

it is necessary to verify whether it is equivalent to 

already known ones as it happens in some of block 

ciphers, where several substitutions are used [3 – 5].  

The complexity of exhaustive search for checking 

extended affine (EA) equivalence of functions from 

n n
2 GF(2 )F  to itself equals 

23n 2nO(n ) . When 

n 6  the complexity is already 2
120

 that makes it 

impossible to perform exhaustive computing. 

In the paper [1] Alex Biryukov et al. have shown 

that in case when given functions are permutations of 

n
2F , the complexity of determining restricted extended 

affine equivalence (REA) equivalence equals 

2 nO(n 2 )  for the case of linear equivalence and 

2nO(n 2 )  for affine equivalence. In this paper we 

consider more general cases of REA-equivalence for 

functions from n
2F  to m

2F  and specify results, when 

time complexity can be reduced to polynomial. The 

complexities of our algorithms and the best previous 

known ones are given in Table 1. 

Table 1 

Complexities for solving REA-equivalence problem 

Restricted EA-equivalence Complexity m G(x) Source 

1 2F(x) M G(M x)    2 nO(n 2 )  m n  Permutation [1] 

1 2 2 1F(x) M G(M x V ) V      2nO(n 2 )  m n  Permutation [1] 

1 2 1F(x) M G(x V ) V     2n 1O(2 )  m 1  † Sec. 3 

1 2 1F(x) M G(x V ) V     3nO(m 2 )  m 1  Arbitrary Sec. 3 

2 2 1F(x) G(M x V ) V     2 mO(n 2 )  m 1  Permutation Sec. 3 

2 3 1F(x) G(x V ) M x V      nO(n 2 )  m 1  Arbitrary Sec. 3 

1 2 3 1F(x) M G(x V ) M x V       2n 1O(2 )
 m 1  ‡ Sec. 3 

1 2 3 1F(x) M G(x V ) M x V       3nO(m 2 )  m 1  Arbitrary Sec. 3 

† – G is under condition {2i 0   i   m – 1}  img (G’) where G'(x) G(x) G(0)  . 

‡ – G is under condition {2i 0   i   m – 1}  img (G’) where G'(x)  is defined as (5). 

©  L. Budaghyan, O. Kazymyrov2 
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Preliminaries 

For any positive integers n and m, a function F 

from n
2F  to m

2F  is called differentially  -uniform if 

for every n
2a \{0}F  and every m

2bF , the equation 

F(x) F(x a) b    admits at most   solutions [6]. 

Vectorial Boolean functions used as S-boxes in block 

ciphers must have low differential uniformity to allow 

high resistance to differential cryptanalysis [7].  In the 

important case when m n , differentially 2-uniform 

functions, called almost perfect nonlinear (APN), are 

optimal (since for any function 2  ). 

The notion of APN function is closely connected 

to the notion of almost bent (AB) function [8], which 

can be described in terms of the Walsh transform of a 

function n m
2 2F:F F : 

n
2

v F(x) u x

x

(u, v) (-1) ,  



  
F

 

where "  " denotes inner products in n
2F  and m

2F , 

respectively. The set  n m
2 2(u, v) (u,v) , v 0   F F  

is called the Walsh spectrum of F and the set 

 n m
2 2(u, v) (u,v) , v 0   F F  the extended Walsh 

spectrum of F. If m n  and the Walsh spectrum of F 

equals 

n 1

20, 2

 
 

 
  

 then the function F is called AB [8]. 

AB functions exist for n odd only and oppose an 

optimum resistance to linear cryptanalysis [9]. Every 

AB function is APN but the converse is not true in 

general (see [10] for comprehensive survey on APN and 

AB functions). 

The natural way of representing F as a function 

from n
2F  to m

2F  is by its algebraic normal form (ANF): 

m
I i I 2

I {1, ,n} i I

a x , a ,

 

 
 

 
 

  F  

the sum being calculated in m
2F . The algebraic degree 

deg(F)  of F is the degree of its ANF. F is called affine 

if it has algebraic degree at most 1 and it is called linear 

if it is affine and F(0) 0 . 

Any affine function n m
2 2A :F F  can be 

represented in matrix form 

 A(x) M x C     (1) 

where M is an n m  matrix and m
2CF . All 

operations are performed in 2F , thus (1) can be 

rewritten as 

0,0 0,n 10 0 0

1,0 1,n 11 1 1

m 1,0 m 1,n 1m 1 n 1 m 1x

k ka x c

k ka x c

k ka x c





    

      
      
        
      
       

      

 

with m
i i i j,s 2a ,x ,c ,k F . 

Two functions n m
2 2F,G :F F  are called 

extended affine equivalent (EA-equivalent) if there exist 

an affine permutation 1A of m
2F , an affine permutation 

2A of n
2F  and a linear function 3L  from n

2F  to m
2F  

such that 

1 2 3F(x) A G A (x) L (x).   

Clearly 1A  and 2A  can be presented as 

1 1 1A (x) L (x) c   and 2 2 2A (x) L (x) c   for some 

linear permutations 1L  and 2L  and some m
1 2c F , 

n
2 2c F . 

Definition 1. Functions F and G are called 

restricted EA-equivalent (REA-equivalent) if some 

elements of the set  1 2 3 1 2L (x),L (x),L (x),c ,c  are in 

 0, x . 

There are two special cases 

– linear equivalence when 

 3 1 2L (x),c ,c {0,0,0} ; 

– affine equivalence when 3L (x) 0 . 

In matrix form EA-equivalence is represented as 

follows 

 1 2 2 3 1F(x) M G M x V M x V       , 

where elements of  1 2 3 1 2M ,M ,M ,V ,V  have 

dimensions  m m,n n,m n,m,n   . 

We say that functions F and F' from n
2F  to m

2F  

are Carlet Charpin Zinoviev (CCZ) equivalent if there 

exists an affine permutation L  of n m
2 2F F  such 

that F F'G G L( ) , where  n
H 2G (x,H(x)) | x F , 

 H F,F' . CCZ-equivalence is the most general 

known equivalence of functions for which differential 

uniformity and extended Walsh spectrum are invariants. 

In particular every function CCZ-equivalent to an APN 

(respectively, AB) function is also APN (respectively, 

AB). EA-equivalence is a specific case of CCZ-

equivalence [11]. The algebraic degree of a function is 

invariant under EA-equivalence but, in general, it is not 

preserved by CCZ-equivalence. 

Verification of Restricted  
EA-equivalence 

Special types of REA-equivalence, which are 

considered in this paper, are shown in Table 2. 

Hereinafter assume that obtaining the value F(x)  

for any x takes one step. Pre-computed values of 

function 
1F(x), F (x)

 and corresponding substitutions 

are used as input for the algorithms.  
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Table 2 

 Special types of REA-equivalence 

REA-equivalence Type 

1 1F(x) M G(x) V    I 

2 2F(x) G(M x V )    II 

3 1F(x) G(x) M x V     III 

1 3 1F(x) M G(x) M x V      IV 

 

Thereafter, complexity of representing functions in 

needed form is not taken into account, as well as 

memory needed for data storage. These assumptions are 

introduced to be able to compare complexities of 

algorithms of the present paper with those of [1] where 

the same assumptions were made. 

There are n m2   choices of linear mappings. The 

complexity of obtaining the m n  matrix M satisfying 

the equation 

F(x) M G(x)   

using exhaustive search method is n m nO(2 2 ) , where 

m nO(2 )  and nO(2 )  are the complexities of checking 

all matrices for all possible n
2xF . Another natural 

method is based on system of equations. The 

complexity in this case depends only on the largest of 

the parameters n and m. Indeed, for square matrices we 

can benefit from the asymptotically faster Williams 

method based on system of equations with complexity 

2.3727O(n )  [12]. Besides, for n 64  we can use 64-bit 

processor instructions to bring the complexity to 2O(n )  

because of two rows (columns) can be added in 1 step 

[13]. Since any system of m equations with n variables 

can be considered as a system of k equations with k 

variables where k max{n,m}  then the complexity of 

solving such system is 

2O(k )  ,                             (2) 

which gives the complexity of finding M by this 

method. 

Proposition 1. Any linear function n m
2 2L :F F  

can be converted to a matrix with the complexity O(n) . 

Proof. We need to find an m n  matrix M 

satisfying L(x) M x  . Suppose 

 M ijrows (i) (m ), j 0,1, ,n 1    , 

 M ijcols ( j) (m ), i 0,1, ,m 1     

are the i
th

 row and the j
th

 column of matrix M, 

respectively. Each value of  ix 2 0 i n 1     is 

equivalent to a vector with 1 at the i
th

 row 

0 1 n 1

1 0 0

0 1 0
2 2 2 .

0 0 1



     
     
       
     
     
     

 

Clearly, every column, except the i
th

, becomes zero 

when multiplying the matrix M by x. Hence, each 

column of the matrix M can be obtained using equation 

 i
Mcols (i) L(2 ), i 0,1, ,n 1 .    

For obtaining all columns of M it is necessary to 

compute n values of iL(2 ) , 0 i n 1   . Consequently 

the complexity of transformation is O(n) .  □ 

Proposition 2. Any n n  matrix M can be 

converted to a linear function n n
2 2L :F F  with the 

complexity 3O(n )  filed operations. 

Proof. Any linear transformation has the form 

 
in 1

2
i

i 0

M x L(x) x ,




     (3) 

where  in n2
F . Then using (3) for every 

ix 2 , 0 i n 1    , the equation could be rewritten as 

0 1 n 1

0 1 n 1

0 1 n 1

M

M

M

0 2 0 2 0 2

0

1 2 1 2 1 2
1

n 1n 1 2 n 1 2 n 1 2

cols (0)

cols (1)

cols (n 1)

(2 ) (2 ) (2 )

(2 ) (2 ) (2 ) .

(2 ) (2 ) (2 )





   

 
 
  
 
 

 

 
  

      
  
  
  

 

 

The complexity of acquiring vector 

 0 1 n 1, , ,     is corresponding to obtaining the 

inverse matrix and equals 3O(n )  field operations.  □ 

In practice, the Lagrange interpolation method [14] 

works faster for n 6  and much slower otherwise.  

Proposition 3. Let n m
2 2F,G :F F  and 

G'(x) G(x) G(0)  . Then the complexity of checking 

F and G for REA-equivalence of type I equals 

– n 1O(2 )  in case when for any  i 0, ,m 1   

there exists n
2xF such that  iG'(x) 2 ; 

– 2nO(m 2 )  in case G is arbitrary. 

Proof. Let F'(x) F(x) F(0)  . Then REA-

equivalent of type I 

1 1 1F'(x) F(0) M G'(x) M G(0) V       

can be rewritten in the following form 

 
1 1

1

F(0) M G(0) V ;

F'(x) M G '(x).

  


 
 (4) 

In case of G(0) 0 , 1V  equals F(0) , but in general it's 

necessary first to find 1M  from equation 

1F'(x) M G'(x)  . If the set  i2 0 i m 1    is the 
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subset of the image set of G ' , then the problem of 

finding m m  matrix 1M  is equivalent to the problem 

of converting linear function to matrix form with 

additional testing for all x in n
2F . It is possible to find 

1M  with the complexity O(m)  as was shown in 

Proposition 1. The complexity of finding the pre-images 

of G '  of elements i2 ,  i 0, ,m 1    equals nO(2 )  

as well as the complexity of checking 

1F'(x) M G'(x)   for given 1M . In cryptography, in 

most cases n2 m , so the complexity O(m)  can be 

neglected. Therefore, the total complexity of 

verification for equivalence of F and G equals 

n n n 1O(2 2 m) O(2 )   . 

Let now G be arbitrary and iF'(x)  be the i
th

 bit of 

F'(x) . Denote img(G ')  the image set of G '  and 

G'u img(G ')  the number of elements in img(G ') . 

Let also G 'N  be any subset of n
2F  such that 

G' G 'N u  and  G' G 'G'(a) a N u  . 

Then to find 1M  it is necessary to solve a system 

below for all  i 0, ,m 1   

1j i M j j G' G'F'(x ) rows (i) G'(x ), x N , 0 j u 1         

1

1

G ' 1 G '

0 i M 0

1 i M 1

u 1 i M u 1

F'(x ) rows (i) G '(x );

F '(x ) rows (i) G '(x );

F '(x ) rows (i) G '(x ). 

 


 
 


  


 

For every i in  0, ,m 1 , the complexity of 

solving the system highly depends on G 'u  and m and 

equals 2
G'O(max{u ,m} )  according to (2). Then the 

total complexity of obtaining 1M  for all m bits is 

2
G'O(m max{u ,m} ) . If value n

G 'u 2 , then 

2nO(m 2 ) .  □ 

Remark 1. If it is known in advance that functions 

F and G in Proposition 3 are REA-equivalent of type I, 

then the complexity of verification 1F'(x) M G'(x)   

can be ignored and the total complexity for the case 

 i2 0 i m 1 img(G ')     becomes nO(2 ) . 

Proposition 4. Let G be a permutation and 

n n
2 2F,G :F F . Then the complexity of checking F 

and G for REA-equivalence of type II is 2O(n ) . 

Proof. Denote 
1H(x) G (F(x)) . Then the equation 

2 2F(x) G(M x V )    takes the form 

2 2H(x) M x V   . 

Obviously for satisfying REA-equivalence H must 

be linear and invertible. Arbitrary linear function from 

n
2F  to m

2F  has the form (3) thence consists at most of n 

monomials. Suppose (n)  the complexity of obtaining 

binary Hamming weight of the monomials exponents in 

H. Consequently the complexity for checking linearity 

of H with equals O(n (n)) . For the most of modern 

processors including Intel the value (n)  is equal to 

O(1)  [15]. Taking x 0  we obtain 2V H(0)  and the 

equivalence can be represented as 2H'(x) M x  , 

where H'(x) H(x) H(0)  . For satisfying REA-

equivalence conditions the matrix 2M  must be 

nonsingular. Therefore, the total complexity is equal to 

the sum of checking linearity of H ( O(n) ), obtaining 

matrix 2M  ( O(n) ) and checking it on invertibility 

( 2O(n ) ) and approximately equals 2O(n ) .□ 

Proposition 5. Let n m
2 2F,G :F F . Then the 

complexity of checking F and G for REA-equivalence 

of type III equals O(n) . 

Proof. Denote H(x) F(x) G(x)  , then REA-

equivalence 

3 1F(x) G(x) M x V     

takes the form 

3 1H(x) M x V    

The situation is the same as in Proposition 4, but 

with arbitrary m n  matrix. Thus the complexity of 

obtaining 3M  and 1V  equals O(n) . □ 

Every vectorial Boolean function admits the form 

 HH(x) H'(x) L (x) H(0)   ,  (5) 

where HL  is a linear function and H'  has terms of 

algebraic degree at least 2. 

Proposition 6. Let G '  be defined by (5) and 

n m
2 2F,G :F F . Then the complexity of checking F 

and G for REA-equivalence of type IV equals 

– n 1O(2 )  in case  i2 0 i m 1 img(G ')    , 

– 2nO(m 2 )  in case G is arbitrary. 

Proof. Using (5) REA-equivalence of type IV can 

be rewritten as 

F 1 1 G

3 1 1

F'(x) L (x) F(0) M G'(x) M L (x)

M x M G(0) V

      

    
 

and gives the system of equations 

1

F 1 G 3

1 1

F'(x) M G '(x)

L (x) M L (x) M x

F(0) M G(0) V

 


   
   

 

It's easy to see that for a given 1M  one can easily 

compute 3M  and 1V  from the second and the third 

equations of the system. The first equation of the system 

leads to the two different cases for the function G '  

considered in Proposition 3. Hence, according to 

Proposition 2, the total complexity for finding G '  
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equals n 1O(2 )  and 2nO(m 2 ) , respectively. It should 

be noted that the complexity of finding the matrix 3M  

is not taken into account since n 12 n  .  □ 

If we add one of 1 2V ,V  values to REA-

equivalence, then the complexity will increase in m2  or 

n2  times respectively. REA-equivalance with 1 2V ,V  

and corresponding complexities are shown in Table 1. It 

should be mentioned that types I and III of REA-

equivalence are particular cases of type IV. But taking 

into account different restrictions for the function G it is 

necessary to check all these types of EA-equivalence. 

An algorithm for the type IV of REA-equivalence 

in case  i2 0 i m 1 img(G ')     is given below. 

 

 

Conclusions 

The present paper studies complexities of checking 

functions for special cases of EA-equivalence and it is 

shown that for some of this cases the complexity of 

checking takes polynomial time. Obtained results give a 

practical method for checking functions on equivalence. 

The best result is with the complexity 2n 1O(2 )  for 

checking REA-equivalence of the form 

1 2 3 1F(x) M G(x V ) M x V       under some 

condition on G. 
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ПЕРЕВІРКА ВЕКТОРНИХ БУЛЕВИХ ФУНКЦІЙ НА ОБМЕЖЕНУ РОЗШИРЕНО АФІННУ ЕКВІВАЛЕНТНІСТЬ 

Л. Будагян, О. Казимиров  

У статті представлені алгоритми для вирішення проблеми обмеженої расширено афінної еквівалентності (ОРА-
еквівалентності) у разі довільної m-мірної векторної булевої функції від n змінних. Кращий з отриманих алгоритмів має 

складність 
2n 1O(2 )

 для ОРА-еквівалентності 1 2 3 1F(x) M G(x V ) M x V      . Складності розроблених 

методів порівнюються з запропонованими раніше Бірюковим та ін. алгоритмами для вирішення проблем лінійних та 
афінних еквівалентностей. 

Ключові слова: РА-еквівалентність, матричне уявлення, S-блок, векторні булеві функції. 
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ПРОВЕРКА ВЕКТОРНЫХ БУЛЕВЫХ ФУНКЦИЙ  
НА ОГРАНИЧЕННУЮ РАСШИРЕННО АФИННУЮ ЭКВИВАЛЕНТНОСТЬ 

Л. Будагян, А. Казимиров  

В статье представлены алгоритмы для решения проблемы ограниченной расширенно аффинной эквивалентности 

(ОРА-эквивалентности) в случае произвольной m-мерной векторной булевой функции от n переменных. Лучший из 

предложенных алгоритмов имеет сложность 
2n 1O(2 )

 для ОРА-эквивалентности 1 2 3 1F(x) M G(x V ) M x V      . 

Сложности разработанных методов сравниваются с предложенными ранее Бирюковым и др. алгоритмами для решения 

проблем линейных и аффинных эквивалентностей. 

Ключевые слова: РА-эквивалентность, матричное представление, S-блок, векторные булевы функции. 

 


