УДК 680.3

 Γ . А. Поляков¹, Γ . Геахпур², Р.В. Бублик², Е.Г. Толстолужская²

 1 Белгородский Государственный национальный исследовательский университет, Белгород 2 Харьковский национальный университет им. В. Н. Каразина, Харьков

АЛГОРИТМ СРАВНИТЕЛЬНОЙ ОЦЕНКИ СЛОЖНОСТЕЙ ОБМЕНА СООБЩЕНИЯМИ ПРИ ФРАГМЕНТАЦИИ ВРЕМЕННЫХ ПАРАЛЛЕЛЬНЫХ МОДЕЛЕЙ ЗАДАЧ ДЛЯ РАСПРЕДЕЛЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ

В статье представлен алгоритм сравнительной оценки сложностей обмена сообщениями при фрагментации временных параллельных моделей задач для распределенных вычислительных сетей. Дается сравнительная оценка эффективности фрагментации на основе двух подходов: применение логики назначения операторов на свободный в текущий момент времени ВУ и решение задачи назначения фрагментов задачи на ВУ сети с использованием формальных полиномов. Алгоритм иллюстрируется на примере одной из тестовых задач Ливерморских циклов.

Ключевые слова: параллельная времяпараметризованная модель задачи, распределенная вычислительная сеть (PBC), вычислительный узел (BУ), структуры семантико-числовой спецификации (СЧС), формальный полином, сложность фрагментации (количество обменов сообщениями).

Введение

Быстрое расширение областей применения РВС приводит к постоянному росту требований к их эффективности, в первую очередь – к производительности/пропускной способности, времени выполнения задач, достоверности обработки информации.

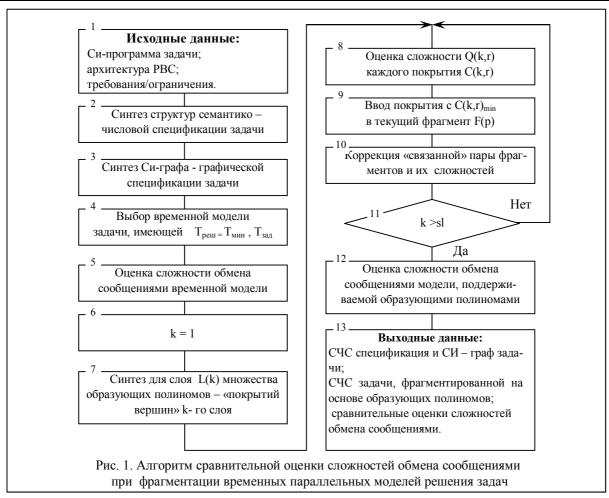
Существенным фактором повышения эффективности РВС является минимизация количества обменов сообщениями между вычислительными узлами сети в сочетании с оптимизацией временных затрат на основе фрагментации решаемых задач. Анализ литературы показывает [1 – 4], что вопросы формального решения проблемы фрагментации в настоящее время решены лишь частично. В статье исследуется возможность сокращения количества обменов сообщениями между узлами РВС при фрагментации задач на основе аппарата структур семантико-числовых спецификаций задач и образующих полиномов.

Постановка задачи

Исходные данные: Си-программа задачи; архитектура РВС (состав и классы ВУ, топология связей ВУ, длительности выполнения вычислительных и коммуникационных операций); требования/огРаничения. Требуется: разработать алгоритм сравнительной оценки сложностей обмена сообщениями при фрагментации временных параллельных моделей задач для распределенных вычислительных сетей.

Этапы решения задачи

В основу алгоритма сравнительной оценки сложностей обмена сообщениями положено выполнение следующих действий: 1) выбор или синтез параллельной фрагментированной времяпараметри-


зованной эталонной модели исследуемой задачи; 2) синтез параллельной времяпараметризованной модели исследуемой задачи, фрагментированной на основе аппарата формальных полиномов; 3) анализ сложности межузлового обмена сравниваемых моделей задачи и оценка результирующего эффекта.

Обобщенный алгоритм сравнительной оценки сложностей обмена сообщениями при фрагментации временных параллельных моделей решения задач представлен на рис. 1(1-й этап — символы 2-5, 2-й этап — символы 6-10, 3-й этап — символы 11-13).

Иллюстрационный пример

Проиллюстрируем содержание основных этапов алгоритма на примере одной из тестовых задач Ливерморских циклов (Kernel-2). Си-программа задачи представлена на рис. 2. Результаты синтеза структур семантико-числовой спецификации Сипрограмм (символ 2 рис. 1) представляет табл. 1 (структура СF связей операторов не приводится) [2].

В структуре ВF операторов (табл. 1) N – номера ј «операторов» P_j Си-программы (имен исходных/выходных данных, имен входов ввода и вывода данных, идентификаторов инструкций); МЕТ – метки операторов; ТҮР –типы операторов; NSJ(P_j) – указатели на начало цепочки номеров і операторов P_i , являющихся операндами для P_j (сопряженное множество); SJD(P_j) – количество sjd(P_j) «сопряженных» для P_j операторов P_i ; ВЈ – номера естественных частей Си-программы (неразветвляющихся фрагментов операторов); NWJ(P_j) – указатели пwj на начало цепочки номеров і «внешних» операторов, использующих результат оператора P_j ; WJD(P_j) – количество wjd «внешних» для P_j операторов P_i ; MP1, MP2 — метки операторов; VH и VIH — количество


```
#include <stdio.h>
                                                                                 dw = 0.200 * d0;
                                                                       for (k=0;k<(n-1);k++)
void main(void)
                                                                                 { di = y[k] - g[k] / (xx[k] + dk); }
 { int k,n;
            float d0,di,dw,dn,dk,t,s,min;
                                                                                   dn = dw;
            float y[15],x[15],g[15],w[15];
                                                                                 if (di!=0)
            float xx[15],z[15],v[15],u[15],vx[15];
                                                                                   dn = s
            n = 15:
                                                                                             min = t:
            scanf("%f%f%f%f",&d0,&dk,&t,&s);
                                                                                             if (t > (z[k] / di))
                                                                                              min = z[k] / di;
for(k=0;k< n-1;k++)
             { scanf("%d",&y[k]);
                                                                                             if (dn < min)
                        scanf("%d",&g[k]);
                                                                                              dn = min;
                        scanf("%d",&z[k]);
                        scanf("%d",&w[k]);
                                                                                  x_{[k]}^{J} = ((w_{[k]} + v_{[k]} * dn) * xx_{[k]} + u_{[k]}) / (vx_{[k]} + v_{[k]} * dn);
xx_{[k+1]} = (x_{[k]} - xx_{[k]}) * dn + xx_{[k]};
                        scanf("%d",&v[k]);
                        scanf("%d",&u[k]);
                        scanf("%d",&xx[k]);
                                                                                              printf(" %5.2f %5.2f",x[k],xx[k]);
                        scanf("%d",&vx[k]);
             }
                            Рис. 2. Си-программа задачи Ливерморский цикл (Kernel-2)
```

входов (операндов) и количество выходов (выходных данных) операторов; RES – имена данных и инструкций/ функций [2, 5].

Для иллюстрационного примера в качестве эталона для сравнения использован результат фрагментации задачи Kernel-2 для случая NM = 4 вычислительных узлов ВУ (с логикой назначения операторов на младший из свободных в текущий момент времени ВУ – символ 5 рис. 1).

Количество и детализацию (до связей между парами операторов, принадлежащих различным

фрагментам $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$ эталонной модели и выполняемых различными BУ: NM=0, NM=1, NM=2. NM=3) представляет следующее «коммуникационное» множество $CM_{\text{эт}} = \{i,j\}$: (38-39), (35-39), (34-39), (33-39), (62-41), (41-44), (45-46), (41-48), (45-48), (41-50), (45-50), (45-52), (41-54), (45-54), (41-56), (45-56), (45-58), (41-60), (45-60), (33-65), (45-67), (46-47), (50-51), (52-53), (54-55), (56-56), (45-

57), (58-59), (60-61), (61-63), (59-63), (57-63), (55-63), (53-63), (51-63), (49-63), (47-63), (67-68), (137-70), (70-72), (70-74), (73-74), (73-75), (70-76), (66-84), (73-84),

Таблица 1

Структура BF операторов СЧС спецификации Си-программы задачи

	Структура в гоператоров СчС спецификации Си-программы задачи																								
Z	MET	TYP	NSI	SJD	BJ	NWJ	WJD	MP1	MP2	VH	VIH	RES	z	MET	${\rm TYP}$	NSI	SJD	BJ	NWJ	WJD	MP1	MP2	$^{\text{VH}}$	VIIH	RES
0	0	58	-1	0	0	0	1	0	0	0	1	d0_in	71	0	2	94	3	4	143	1	0	0	3	1	-
1 2	0	58 58	-1 -1	0	0	1 2	1 1	0	0	0	1 1	dk_i n t in	72 73	$0 \\ 0$	25 51	97 99	2	4 4	144 14 5	1 5	0 204	0 205	2	1 2	< upl
3	0	58	-1	0	0	3	1	0	0	0	1	s_i n	74	204	39	100	3	5	150	1	0	0	3	1	&
4	0	58	-1	0	0	4	1	0	0	0	1	y_i n	75	0	39	103	3	5	151	1	0	0	3	1	&
5 6	0	58 58	-1 -1	0	0	5 6	1 1	0	0	0	1 1	g_in zin	76 77	0	39 44	106 109	3 1	5 5	152 153	1	0	0	3 1	1 1	& *
7	0	58	-1	0	0	7	1	0	0	0	1	w_i n	78	0	1	110	2	5	154	1	0	0	2	1	+
8	0	58	-1	0	0	8	1	0	0	0	1	v_i n	79	0	44	112	1	5	155	1	0	0	1	1	*
9 10	0	58 58	-1 -1	0	0	9 10	1 1	0	0	0	1	u_in xx in	80 81	0	4 44	113 115	2	5 5	156 157	1	0	0	2	1 1	*
11	0	58	-1	0	0	11	1	0	0	0	1	vx_in	82	0	2	116	2	5	158	1	0	0	2	1	-
12 13	0	47 47	-1 -1	0	0	12 16	4 1	0	0	0	2	К	83 84	0	12 12	118 120	2 3	5 5	159 162	3	0	0	2	1 1	=
14	0	47	-1 -1	0	0	17	1	0	0	0	2	n d0	85	0	24	123	2	5	165	1	0	0	2	1	_ !=
15	0	47	-1	0	0	18	1	0	0	0	2	di	86	0	51	12 5	1	5	166	4	1	3	1	2	upl
16 17	0	47 47	-1 -1	0	0	19 20	1	0	0	0	2 2	dw dn	87 88	1	12 12	126 129	3	6	170 -1	1	0	$0 \\ 0$	3	1 1	=
18	0	47	-1	0	0	23	1	0	0	0	2	dk	89	0	39	132	3	6	171	1	0	0	3	1	&
19	0	47	-1	0	0	24	1	0	0	0	2	t	90	0	44	13 5	1	6	172	1	0	0	1	1	u
20 21	0	47 47	-1 -1	0	0	25 26	1 2	0	0	0	2	s min	91 92	0	4 26	136 138	2 2	6	173 174	1	0	0	2 2	1 1	/ >
22	0	47	-1	0	0	28	2	0	0	0	2	У	93	0	51	140	1	6	175	2	4	6	1	2	upl
23	0	47	-1	0	0	30	2	0	0	0	2	X	94	4	39	141	3	7	177	1	0	0	3	1	&
24 25	0	47 47	-1 -1	0	0	32 34	2 2	0	0	0	2	g W	95 96	0	44 4	144 14 5	1 2	7 7	178 179	1	0	0	1 2	1 1	* /
26	0	47	-1 -1	0	0	36	6	0	0	0	2	XX	97	0	12	147	2	7	180	3	6	0	2	2	=
27	0	47	-1	0	0	42	3	0	0	0	2	Z	98	6	54	149	2	8	183	1	0	0	2	1	1.0
28 29	0	47 47	-1 -1	0	0	45 48	3 2	0	0	0	2	V u	99 100	0	25 51	151 154	3 1	8 8	184 185	1 2	0 7	0 9	3 1	1 2	< upl
30	0	47	-1 -1	0	0	50	2	0	0	0	2	vx	101	7	12	155	3	9	187	1	9	0	3	2	upi =
31	0	57	-1	0	0	52	1	0	0	0	1	C15_	102	9	54	158	2	10	188	1	3	0	2	1	1.0
32 33	0	12 12	0 2	2	0	53 56	3 2	0	0	2 2	2	=	103 104	3	54 39	160 162	2 3	11 11	189 201	12 1	0	0	2	1 1	1.0 &
34	0	12	4	2	0	58	2	0	0	2	2	=	105	0	39	165	3	11	202	1	0	0	3	1	&
35	0	12	6	2	0	60	3	0	0	2	2	=	106	0	39	168	3	11	203	1	0	0	3	1	&
36 37	0	12 57	8 -1	2	0	63 65	2	0	0	2	2	= C0	107 108	0	44 3	171 172	1 2	11 11	204 205	1	0	0	1 2	1 1	*
38	0	12	10	2	0	68	2	0	0	2	2	=	109	0	44	174	1	11	206	1	0	0	1	1	*
39	0	50	12	6	0	70	1	203	0	6	1	bp	110	0	1	175	2	11	207	1	0	0	2	1	+
40 41	203	54 53	18 20	2 2	1 1	71 72	1 9	0	0	2	1 1	l.o a.o	111 112	0	39 44	177 180	3 1	11 11	208 209	1	0	0	3 1	1 1	& *
42	0	57	-1	0	1	81	5	0	0	0	1	cl_	113	0	3	181	2	11	210	1	0	0	2	1	*
43	0	2	22	3	1	86	1	0	0	3	1	-	114	0	39	183	3	11	211	1	0	0	3	1	&
44 45	0	25 51	25 27	2	1	87 88	1 11	0 201	0 202	2	2	< upl	115 116	0	44 1	186 187	1 2	11	212 213	1	0	0	2	1	+
46	201	39	28	3	2	99	1	0	0	3	1	&	117	0	39	189	3	11	214	1	0	0	3	1	&
47 48	0	12 39	31 33	2	2	100 101	1	0	0	2	2	=	118 119	0	39 44	192 195	3	11 11	215 216	1	0	0	3 1	1 1	& *
49	0	12	36	3 2	2	102	1 1	0	0	2	1 2	& =	120	0	3	196	1 2	11	217	1 1	0	0	2	1	*
50	0	39	38	3	2	103	1	0	0	3	1	&	121	0	44	198	1	11	218	1	0	0	1	1	*
51 52	0	12 39	41 43	2	2	104 105	1 1	0	0	2	2	= &	122 123	0	1 4	199 201	2 2	11 11	219 220	1	0	0	2 2	1 1	+ /
53	0	12	46	2	2	106	1	0	0	2	2	=	124	0	12	203	2	11	221	2	0	0	2	2	=
54	0	39	48	3	2	107	1	0	0	3	1	&	125	0	1	205	3	11	223	1	0	0	3	1	+
55 56	0	12 39	51 53	2	2	108 109	1 1	0	0	2	2	= &	126 127	0	39 39	208 210	2	11 11	224 225	1	0	0	2	1 1	& &
57	0	12	56	2	2	110	1	0	0	2	2	=	128	0	39	213	3	11	226	1	0	0	3	1	&
58	0	39	58	3	2	111	1	0	0	3	1	&	129	0	44	216	1	11	227	1	0	0	1	1	*
59 60	0	12 39	61 63	2	2	112 113	1 1	0	0	2	2 1	= &	130 131	0	44 2	217 218	1 2	11 11	228 229	1 1	0	0	1 2	1 1	*
61	0	12	66	2	2	114	1	0	0	2	2	=	132	0	3	220	2	11	230	1	0	0	2	1	*
62	0	10	68	3	2	115	2	0	0	3	2	++	133	0	39	222	3	11	231	1	0	0	3	1	& *
63 64	0	52 57	71 -1	9	2	117 118	1 1	203 0	0	9 0	1	bpv C0.200	134 135	0	44 1	225 226	1 2	11 11	232 233	1 1	0	0	1 2	1 1	+
65	202	3	80	3	3	119	1	0	0	3	1	*	136	0	12	228	2	11	234	2	0	0	2	2	=
66	0	12 12	83	2	3	120 122	2	0	0	2	2	= =	137	0	10 52	230 233	3	11	236 238	2	0 206	0	3	2	++ hnv
67 68	0	50	85 88	3 2	3	124	2	0 206	0	3 2	2	= bp	138 139	0 205	52 49	236	3 1	11 12	238 -1	1	206	0	3 1	1	bpv stop
69	206	54	90	2	4	12 5	1	0	0	2	1	1.0	140	0	48	237	1	12	-1	0	0	0	1	0	x_out
70	0	53	92	2	4	126	17	0	0	2	1	a. o	141	0	48	238	1	12	-1	0	0	0	1	0	xx_out

(34-78), (79-80), (81-82), (36-87), (86-87), (35-88), (86-88), (70-89), (35-92), (70-94), (87-99), (70-104), (103-104), (103-105), (70-106), (84-108), (109-110), (70-111), (112-113), (70-114), (103-114), (114-115), (70-17), (103-117), (70-118), (103-118), (119-120), (84-120), (121-122), (103-125), (70-127), (103-127), (70-128), (103-128), (130-131), (84-132), (70-133), (103-133), (133-134), (132-135), (134-135), (103-137), (115-116), (135-136), (122-123), (104-124), (137-138), (136-138), (136-141). Сложность эталонного варианта фрагментации $Q_{\rm эт} = 94$.

Синтез исследуемого варианта фрагментации задачи Kernel-2 (на основе аппарата формальных полиномов [6]) обеспечивается выполнением символа 7 рис. 1. Символ 7 порождает оптимизированное множество образующих полиномов для каждого слоя (яруса) временной эталонной модели (начиная с выходного яруса с номером k=1 до входного слоя модели). Например, для слоев с k=1,2,3 L(k) включают: L(1)={ $P(k)^1$, $P(k)^2$, $P(k)^3$ }, где

 $P(1)^1 = x_1q_1 + x_2q_2 + x_3q_3...$

 $P(1)^2 = x_1q_1 x_2q_2 + x_1q_1 x_3q_3 + x_2q_2x_3q_3...$

 $P(1)^3 = x_1q_1 x_2q_2 x_3q_3...$

 $L(2)=P(2)^1=x_4q_4$, $L(3)=P(3)^1=x_5q_5$. Для слоя с номером k=7 L(7) включает полиномы:

 $P^1 = x_{11}q_{11} + x_{12}q_{12} + x_{13}q_{13...}$

 $P^2 = x_{11}q_{11}x_{12}q_{12} + x_{11}q_{11}x_{13}q_{13} + x_{12}q_{12}x_{13}q_{13}$

 $P^3 = x_{11}q_{11}x_{12}q_{12} x_{13}q_{13}$

Символы 8,9,10 рис. 1 обеспечивают оценку сложности Q(k,r) каждого покрытия C(k,r), выбор покрытия с минимальной сложностью $C(k,r)_{min}$ и его включение в текущий фрагмент F(p), а также коррекцию состава операторов «связанной» пары текущих фрагментов и их сложностей [6].

Состав сформированных фрагментов операторов имеет следующий вид: $\Phi(0)=\{36, 54, 55, 56, 57, 67, 68, 69, 71, 72, 73, 76, 77, 87, 105, 106, 107, 127, 139\}.$ $\Phi(1)=\{34, 35, 50, 51, 52, 53, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 141\}.$ $\Phi(2)=\{32, 38, 39, 40, 41, 43, 44, 45, 58, 59, 60, 61, 62, 63, 111, 112, 114, 115, 140\}.$ $\Phi(3)=\{33, 46, 47, 48, 49, 65, 66, 84, 108, 110, 113, 116, 117, 118, 119, 120, 121, 122, 123, 124, 137, 138\}.$

Количество и детализацию (до связей между парами операторов, принадлежащих различным фрагментам $\Phi(0)$, $\Phi(1)$, $\Phi(2)$, $\Phi(3)$ синтезированной модели и выполняемых различными BУ: NM=0, NM=1, NM=2. NM=3) представляет следующее «коммуникационное» множество $CM_{\text{син}} = \{i,j\}$: (33-39), (34-39), (35-39), (36-39), (41-46), (41-48), (41-50), (41-52), (41-54), (41-56), (45-46), (45-48), (45-50), (45-52), (45-54), (45-56), (45-65), (45-67), (47-63), (49-63), (51-63), (53-63), (55-63), (57-63), (66-68), (67-70), (69-138), (70-72), (70-76), (70-105), (70-106), (70-

111), (70-114), (70-117), (70-118), (70-127), (73-74), (73-75), (73-84), (77-78), (86-87), (87-99), (84-132), (103-105), (103-106), (103-111), (103-114), (103-117), (103-118), (103-127), (103-137), (104-124), (107-108), (109-110), (112-113), (115-116), (124-140), (127-129), (136-138), (137-70).

Сложность фрагментации задачи на основе формальных полиномов составляет $Q_{\text{син}} = 60$.

Таким образом уменьшение количества обменов сообщениями при фрагментации исследуемой задачи на основе формальных полиномов составляет 36%.

Выводы

- 1. Показано, что применение структур семантико-числовой спецификации Си-программ задач и аппарата образующих полиномов обеспечивает формализованное решение задачи фрагментации параллельных времяпараметризованных моделей алгоритмов для распределенных вычислительных сетей.
- 2. Показано, что применение формальных полиномов при фрагментации обеспечивает уменьшение количества обменов сообщениями по сравнению с вариантом применения логики назначения операторов на младший из свободных в текущий момент времени ВУ. Для рассматриваемой задачи при фрагментации на 4 вычислительных узла сети сокращение количества обменов сообщениями составляет 36%.

Список литературы

- 1. Воеводин В.В. Параллельные вычисления / В.В. Воеводин, Вл.В. Воеводин. СПб.: БХВ–Петербург, 2002. 608 с.
- 2. Синтез и анализ параллельных процессов в адаптивных времяпараметризованных вычислительных системах: монография / Г.А. Поляков, С.И. Шматков, Е.Г. Толстолужская, Д.А. Толстолужский: Х.: XHV им. В.Н. Каразина, 2012. 672 с.
- 3. Олифер В.Г. Компьютерные сети, Принципы, технологии, протоколы: учеб. для вузов; 3-е изд. / В.Г. Олифер, Н.А. Олифер. СПб.: Питер, 2008. 958 с.
- 4. Таненбаум Э. Распределенные системы. Принципы и парадигмы / Э. Таненбаум, М. Ван Стен. — СПб.: Питер, 2003. — 489 с.
- 5. Поляков Г.А. Аппарат структур временной семантико-числовой спецификации как основа синтеза параллельных аппаратно-программных средств / Г.А. Поляков, Е.Г. Толстолужская // Всероссийская научная конференция с элементами научной школы для молодежи «параллельная компьютерная алгебра» 11–15 октября 2010 г.: сборник научных трудов. С. 31-39.
- 6. Поляков Г.А. Метод фрагментации задач для однородных вычислительных сетей с использованием аппарата формальных полиномов / Г.А. Поляков, Е.Г. Толстолужская, С.И. Шматков, Г.Р. Геахпур // Радиоэлектроника и информатика. 2009. N 1(44). С. 50-56.

Поступила в редколлегию 6.06.2013

Рецензент: д-р техн. наук, проф. Е.Л. Казаков, Харьковский университет Воздушных Сил имени Ивана Кожедуба, Харьков.

АЛГОРИТМ ПОРІВНЯЛЬНОЇ ОЦІНКИ СКЛАДНОЩІВ ОБМІНУ ПОВІДОМЛЕННЯМИ ПРИ ФРАГМЕНТАЦІЇ ЧАСОВИХ ПАРАЛЕЛЬНИХ МОДЕЛЕЙ ЗАДАЧ ДЛЯ РОЗПОДІЛЕНИХ ОБЧИСЛЮВАЛЬНИХ МЕРЕЖ

Г.О. Поляков, Г. Геахпур, Р.В. Бублик, О.Г. Толстолузька

У статті представлений алгоритм порівняльної оцінки складнощів обміну повідомленнями при фрагментації часових паралельних моделей задач для розподілених обчислювальних мереж. Дається порівняльна оцінка ефектівності фрагментації на основі двох підходів; вживання логіки призначення операторів на вільний на даний час ОВ і рішення задачі призначення фрагментів задачі на ОВ мережі з використанням формальних поліномів. Алгоритм ілюструється на прикладі однієї з тестових задач Ліверморських циклів.

Ключові слова: паралельна часопараметризована модель задачі, розподілена обчислювальна мережа (РОМ), обчислювальний вузол (ОВ), структури семантико-числової специфікації (СЧС), формальний поліном, складність фрагментації (кількість обмінів повідомленнями).

ALGORITHM OF COMPARATIVE ESTIMATION OF COMPLICATIONS OF EXCHANGE BY REPORTS DURING FRAGMENTATION OF TEMPORAL PARALLEL MODELS OF TASKS FOR DCN

G.A. Polyakov, G. Geakhpur, R.V. Bublik, E.G. Tolslolujskaiia

In the article the algorithm of comparative estimation of complications of exchange is presented by reports during fragmentation of temporal parallel models of tasks for DCN. The comparative estimation of efficiency of fragmentation is given on the basis of two approaches: application of logic of setting of operators on free in present moment to time of CK and decision of task of setting of fragments of task on CK of network with the use of formal polynomials. An algorithm is illustrated on the example of one of test problems of Livermor of cycles.

Keywords: parallel timeparametrized model of task, DCN, calculable knot (CK), structures of semantiko-numerical specification (SNS), formal polynomial, complication of fragmentation (amount of exchanges by reports)..