УДК 621.342

Н.Ф. Линник

Национальный технический университет «ХПИ», Харьков

ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ СЛОЖНЫХ ФАЗО-ЧАСТОТНО МОДУЛИРОВАННЫХ СИГНАЛОВ

В данной статье проведен сравнительный анализ энергетических спектров различных параллельных фазочастотно модулированных сигналов одного ансамбля. В результате проведенных исследований установлено, что сигналы одного ансамбля имеют существенные различия, достигающие 2,5 раза, в эффективной ширине спектра. Направление дальнейших исследований – рассмотреть к чему (с точки зрения энергетики и помехоустойчивости) приводит выбор той или иной полосы канала, необходимой для передачи указанных сигналов.

Ключевые слова: параллельные фазо-частотно модулированные сигналы, эффективная ширина спектра, энергетический спектр.

Введение

В настоящее время все больше ощущается нехватка радиочастотного ресурса [1 – 3]. На использование определенных полос частот претендуют несколько компаний. Согласно [1, 2] необходимо обеспечить максимальное и эффективное использование радиочастотного ресурса Украины. Одним из путей эффективного использования радиочастотного ресурса есть исследование и применение новых переносчиков информации, которые способны переносить большее количество информации за тоже время и в той же полосе частот.

Цель статьи. Исследование спектральных характеристик сложных параллельных фазо-частотно модулированных сигналов.

Основной материал

В [4] обоснованы преимущества параллельных фазо-частотно модулированных (ПФЧМ) сигналов по удельным затратам полосы частот г_F и энергииг_E на передачу элементарного дискретного символа (в двоичных системах – бита).

Математическая модель ПФЧМ сигналов вида Lf – Мф, где L=2 α (б = 1, 2, 3 ...) – число поднесущих частот f, каждая из которых имеет M=2 β (в = 1, 2, 3...) вариантов модуляции по фазе ц, имеет вид [5]:

$$S(t) = \sum_{i=1}^{L/2} \sum_{r=0}^{1} S_{0i}^{r}(t) \sin \left\{ \left[\omega + (-1)^{r} (i - 0, 5) \Delta \omega \right] t + (1) + \varphi_{ij}^{r} + \varphi_{i0}^{r} \right\},$$

где $S_{0i}^{r}(t)$ – амплитуда і-й (г-й) огибающей, причем, в простейшем случае прямоугольной огибающей $S_{0i}^{r}(t) =$ ñonst на интервале времени T для всех i, r; ω_0 – средняя (несущая) частота в спектре ПФЧМ сигнала; ϕ_{ij}^{r} – фазовый сдвиг і-й (r-й) частотной компоненты, принимающий одно из значений ряда $\phi_{ij}^{r} \in k \cdot (2\pi / M)$ (k=0...М–1); ϕ_{i0}^{r} – начальная фаза і-й (г-й) поднесущей, в дальнейшем полагаемая равной нулю для всех i, r; $\Delta \omega$ – сдвиг частот поднесущего ПФЧМ сигнала, причем $\Delta \omega = \pi / T$ для M=2, $\Delta \omega = 2\pi / T - для \hat{I} \ge 4$, что обусловлено условием взаимной ортогональности элементарных сигналов на поднесущих частотах. Выполнение данного требования к величине $\Delta \omega$ обеспечивает взаимную ортогональность всех частотных компонент сигнала в пространстве Гилберта. Это дает возможность рассматривать каждую поднесущую частоту как отдельный независимый подканал передачи информации, не влияющий на другие подканалы и не испытывающий их влияния при идеальной синхронизации в системе передачи информации.

Формула (1) показывает, что в составе ПФЧМ сигнала содержатся пары поднесущих частот (r=0,1), смещенные симметрично в обе стороны от центральной частоты ω_0 на величину \pm (i=0,5) $\Delta\omega$, где i – номер соответствующей пары.

Информационно-технические характеристики ПФЧМ сигналов к настоящему времени в некоторой степени изучены [5, 6]. Представляет интерес разработки методики описания спектральных характеристик последовательностей сигналов, в том числе и после их прохождения по каналам с ограниченным частотно-энергетическим ресурсом. Основным отличием разрабатываемой методики от известных является то, что определение эффективной ширины энергетического спектра должно осуществляться не «в среднем», как принято в известных работах [6 – 8], а для каждой конкретной реализации ПФЧМ сигнала с учетом значений модуляционных параметров: частоты и фазы, как на текущем, так и на соседних интервалах модуляции.

Энергетический спектр ФЧМ сигнала любого типа может быть представлен в виде суммы двух квадратурно связанных спектров фазомодулированных сигналов [7, 8]. Известно [6, 9], что спектр случайной последовательности (достаточно длинной) равновероятных сигналов совпадает с математическим ожиданием спектра одного отдельно взятого сигнала. Несмотря на ортогональность отдельных частотных, модулированных по фазе компонент многочастотного сигнала, составляющие их спектров взаимно не ортогональны. Это проявляется в возникающей амплитудной модуляции результирующей огибающей по комбинационному закону, даже в случае прямоугольности элементарных огибающих $S_{oi}^{r}(t)$, $t = 0 \div T$. Поэтому простое алгебраическое суммирование спектров составляющих колебаний при определении полного спектра сигнала является некорректным.

Влияние интерференции составляющих спектров может приводить как к расширению, так и к сужению результирующего спектра. В этой связи представляет интерес дополнительное исследование спектров многочастотных сигналов, которое поможет выявить свойства частотной интерференции и определить пути минимизации внеполосных излучений.

При передаче информации с помощью какоголибо ансамбля сигналов одним из основных является вопрос о необходимой частотной полосе пропускания канала связи. В этой связи на первый план выдвигается задача правильного определения эффективной ширины спектра последовательностей сигналов $\Delta F_{90\%}$. В случае использования сигналов с несколькими поднесущими частотами, каждый из них обладает своим собственным значением показателя $\Delta F_{90\%}$.

Спектр последовательности сигналов будем определять по наибольшему значению эффективной ширины $\Delta F_{90\%}$. Доказательство корректности применения данного способа целесообразно рассмотреть на примере конкретного ансамбля сигналов, например, вида $2f - 4\varphi$. Графическая модель такого ансамбля на фазово-частотной плоскости представлена на рис. 1.

Рис. 1. Модель сигнала 2f – 4ф

Число различных сигналов в ансамбле (мощность ансамбля): m = 16. Несмотря на такое значение мощности, все сигналы ансамбля могут быть охарактеризованы тремя типами огибающих функций со своим значением эффективной ширины спектра $\Delta F_{90\%}$ (рис. 2 – 4).

Группа 1:

Таблица 1

		15	
N⁰	Фазы поднесущих		Огибающая
Π/Π	φ ₀	ϕ_1	Отпоающая
1	0	0	s=cos[t· π/T]
2	π/2	π/2	
3	π	π	$s=-\cos[t\cdot\pi/T]$
4	$3\pi/2$	$3\pi/2$	

Сигналы 1-й группы

Эффективная ширина спектра для сигналов из первой группы составляет: $\Delta F_{90\%}\approx 4,133/T$ Гц. Это самое большое значение для сигналов данного ансамбля.

Группа 2:

Таблица 2

Сигналы 2-й группы

N⁰	Фазы поднесущих		Opufarouna
п/п	ϕ_0	ϕ_1	Огиоающая
1, 2	0	π/2; 3π/2	s=cos[t· π /T+ π /4]
3,4	π/2; 3π/2	π	
5,6	π	$\pi/2, 3\pi/2$	s=-cos[t· π /T+ π /4]
7	π/2	0	
8	$3\pi/2$	π	

Tpynna 3:

Таблица 3

Огибающая	Фазы поднесущих		N⁰
	ϕ_1	ϕ_0	п/п
s=sin[t π/T]	π, 0	0, π	1, 2
$s=-\sin[t\cdot\pi/T]$	$3\pi/2$	π/2	3
	$\pi/2$	$3\pi/2$	4

Эффективная ширина спектра для сигналов из третьей группы составляет: $\Delta F_{90\%} \approx 1,56/T$ Гц. Это минимальное значение для данного ансамбля. Сигналы третьей группы обладают самым низким уровнем внеполосных излучений.

Выводы

Таким образом, рассмотренные характеристики позволяют утверждать, что сигналы одного и того же ансамбля, имеющие одинаковый вид модуляции и фиксированные несущие частоты, обладают, тем не менее, различными спектрами. Минимальная эффективная ширина спектра составляет 1,56/Т Гц, максимальная – 4,13/Т Гц, а средняя по всему ансамблю – 2,28/Т Гц.

Направление дальнейших исследований: представляет интерес рассмотреть к чему (с точки зрения энергетики и помехоустойчивости) приводит выбор той или иной полосы канала, необходимой для передачи указанных сигналов.

Список литературы

1. Про радіочастотний ресурс України : Закон України від 11.06.2000. — К. : Відомості Верховної Ради України, № 36.

2. Голдсмит А. Беспроводные коммуникации / А. Голдсмит. – М.: Техносфера, 2011. – 904 с.

3. Про Концепцію Національної програми інформатизації України : Закон України від 04.02.1998. – К. : Відомості Верховної Ради України, № 27-28.

4. Линник Н.Ф. Сравнительный анализ радиосигналов для опраделения перспективности их использования системами связи / Н.Ф. Линник, Ю.С. Литвинов // Системи управління, навігації та зв'язку. – К. : ЦНДІНУ, 2012. – Вип. 1(21), т. 1. – С. 138-141.

5. Линник Н.Ф. Исследование явления интерференции в параллельных фазово-частотно-модулированных сигналах / Н.Ф. Линник // Материалы второймеждународной научно-технической конференции «Проблемы информатики и моделирования». – Х. : МОНУ, НАНУ, НТУ «ХПИ», 2002. – С. 40.

6. Сергиенко А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – СПб. : БХВ-Петербург, 2010. – 768 с.

7. Макаров С.Б. Передача дискретных сообщений по радиоканалам с ограниченной полосой пропускания / С.Б. Макаров, И.А.Цикин. – М.: Радио и связь, 1988. – 304 с.

8. Ирвин Дж. Передача данных в сетях: инженерный подход / Дж.Ирвин, Д. Харль. – С.-Пб.: «БХВ-Петербург», 2003. – 405 с.

9. Цикин И.А. Дискретно-аналоговая обработка сигналов / И.А.Цикин. – М.: Радио и связь, 1982. – 160 с.

Поступила в редколлегию 11.07.2013

Рецензент: д-р техн. наук, проф. С.Г. Рассомахин, Харьковский национальный университет им. В.Н. Каразина, Харьков.

ДОСЛІДЖЕННЯ ЕНЕРГЕТИЧНИХ СПЕКТРІВ СКЛАДНИХ ФАЗО-ЧАСТОТНО МОДУЛЬОВАНИХ СИГНАЛІВ

М.Ф. Линник

У даній статті проведений порівняльний аналіз енергетичних спектрів різних паралельних фазо-частотно модульованих сигналів одного ансамблю. По результатах проведених досліджень встановлено, що сигнали одного ансамблю мають значну різницю, яка досягає 2,5 рази, в ефективній ширині спектру. Напрямок подальших досліджень – розглянути до чого (з точки зору енергетики та завадостійкості) приводить вибір тієї чи іншої смуги каналу, яка необхідна для передачі вказаних сигналів.

Ключові слова: паралельні фазо-частотно модульовані сигнали, ефективна ширина спектру, енергетичний спектр.

RESEARCH OF POWER RANGES IT IS DIFFICULT FAZO FREQUENCY THE MODULATED SIGNALS

N.F. Linnik

In this article the comparative analysis of power ranges various parallel a phase is carried out - is frequency the modulated signals of one ensemble. As a result of the conducted researches it is established that signals of one ensemble have the essential distinctions reaching 2,5 times, in the effective width of a range. The direction of further researches – to consider to what (from the point of view of power and a noise stability) leads a choice of this or that strip of the channel necessary for transfer of specified signals. **Keywords:** the parallel phase - frequency modulated signals, effective width of a range, a power range.