УДК 528.42

М.Н. Токарев

Харьковский национальный университет строительства и архитектуры, Харьков

# ОСОБЕННОСТИ ТОПОГРАФИЧЕСКИХ СЪЕМОК СОВРЕМЕННЫМИ ТАХЕОМЕТРАМИ

Рассмотрены вопросы производства топографических съемок при помощи роботизированного тахеометра.

**Ключевые слова:** тахеометр, обоснование, привязка снимков, дистанционное управление тахеометром.

#### Введение

Тахеометр — это прибор, в первую очередь предназначенный для топографических съемок, он практически для них и разрабатывался [1]. Однако, после его внедрения оказалось, что данный прибор является универсальным геодезическим прибором для всех наземных геодезических работ. Тахеометр позволил отстранить оператора от нудной и трудоемкой работы снятия и записи отсчетов с прибора. И это сразу же сказалось на производительности труда.

**Цель работы** – разработать эффективный способ производства топографических съемок при помощи роботизированного тахеометра.

# Основной материал

При использовании оптических теодолитов средняя производительность геодезистов в смену составляла порядка 300 пикетов, электронные тахеометры обеспечивают производительность в пределах 3000 пикетов при минимальной эмоциональной нагрузке исполнителей. Использование электронного теодолита и стветодальномера в тахеометре повысило нижний уровень точности данных работ [2].

Если при использовании оптических теодолитов и нитяного дальномера погрешность положения точки на расстоянии 50м от прибора составляет:

$$m = \sqrt{m_D^2 + \left(\frac{m_\beta S}{\rho}\right)^2} , \qquad (1)$$

где m<sub>D</sub> - погрешность линейных измерений;

 $m_{\beta}$  – погрешность угловых измерений;

ρ – число угловых единиц в одном радиане.

Для оптических теодолитов имеем:

при  $m_D = (1/300 \times 50000$ мм)= 167 мм;  $m_\beta = 1'$  получим m=167 мм.

Для тахеометров -

 $m_D = (1/10000 \times 50000$ мм)= 5 мм;  $m_\beta = 10$ " получим m=5.6 мм.

Таким образом, тахеометр оказывается в 30 раз точнее, чем оптический теодолит. Если принять критерий точности съемки равный 15см, то для тахеометра значение предельного расстояния до твердых контуров можно получить, решив выражение (1) относительно расстояния S.

При m=5.6мм,  $m_D$  = (1/10000×50000мм)= 5 мм;  $m_\beta$  = 10" получим S≈200 м.

Следующий момент, определяющий точность съемки. При использовании старых технологий составление плана осуществляется графическим способом, углы откладываются тахеографом ( $m_{\beta} = 0.3^{\circ}$ ), расстояния — масштабной линейкой ( $m_D = 0.3$ мм). Подставив эти данные в формулу (1) получим т = 0.5 мм. С учетом погрешностей съемки, погрешностей графических построений, погрешностей обоснования и деформации бумаги можно с уверенностью констатировать, что погрешность положения точки при тахеометрической съемке старыми методами составляет порядка 1мм, что с учетом масштаба плана, например, 1/500 будет равна 0.5м. При использовании электронных техеометров погрешность положения точки по материалам съемки составляет т=5.6мм, такую же погрешность дадим и для обоснования. Погрешность графических построений отсутствует, так как тахеометр выдает информацию в цифровом виде, а графические материалы составляются только по координатам в векторном виде.

Сделаем промежуточный вывод. Применение тахеометров при выполнении топографических съемок является одним из этапов технологической революции в геодезии. Производительность повышается в 10 раз, точность съемки повышается в 50 раз, эмоциональная нагрузка геодезистов приблизительно уменьшается в три раза. Ориентировочно представим, что процесс съемки состоит из комплекса следующих компонентов: составление абриса и выбор мест установки съемочных точек, снятие отсчетов с приборов, запись отсчетов на носитель и все это составляет 100%. По старой технологии полно-

стью используются все три процесса, то есть 100%. Если съемка выполняется тахеометром, снятие отсчетов, запись и передача информации осуществляется автоматически, следовательно, остается только один процесс составление абриса и выбор мест установки съемочных точек — 30%. Следовательно, наше утверждение, что эмоциональная нагрузка геодезиста уменьшена в 3 раза, имеет место.

Рассмотрим современную методику съемки роботизированным тахеометром.

Закрепляются точки обоснования и тахеометр устанавливается над первой точкой, рис. 1. Последовательно наводится тахеометр на точки 4 и 2 осуществляется их захват. Вводятся параметры измерения и включается автоматический режим. Тахеометр автоматически измеряет горизонтальный угол 1, вертикальные углы на точки 4 и 2 и расстояния  $S_{1-2}$ ,  $S_{1-4}$ .

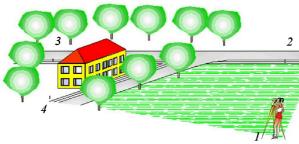



Рис. 1. Создание обоснования

Одновременно тахеометром делается снимок участка тахеометрической станции и на нем намечаются опорные точки, 01, 02, 03 для координатной привязки снимка, рис. 2.



Рис. 2. Привязка снимков

Координирование опорных точек осуществляется совместно с измерениями теодолитного хода. По полученным координатам осуществляется трансформация снимка, то есть выполняется его координатная привязка.

Теперь нажав стилусом на какую либо точку снимка, автоматически в эту точку местности тахеометр развернет свою трубу.

На снимке намечаются съемочные пикеты, рис. 3, и выбирается система обозначения.

Например:

DN – дом N – угол;

BN – бордюр N – точка;

RN – рельеф N – точка;

DerN – дерево N – дерево.

Роботизированные тахеометры позволяют работать даже без речника. Геодезист переключает управление тахеометром на планшетный компьютер, выводит трансформированное и закоординированное изображение участка съемки на дисплей компьютера, включает режим автопоиска.

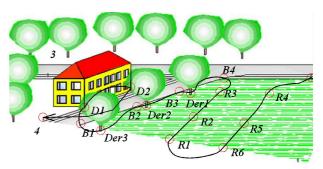
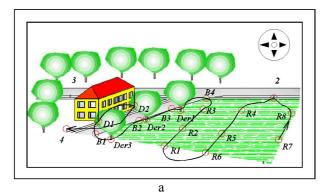



Рис. 3. Расстановка пикетов

Дистанционно управляя тахеометром, он непосредственно на планшете вычерчивает план, рис. 4. В этом случае тахеометрическая съемка приобретает положительные свойства мензульной съемки, а именно, становится возможным составление плана непосредственно в поле.




Рис. 4. Дистанционное управление тахеометром

Экран планшета формируется в зависимости от выполняемых задач.

Например, при выполнении топографических съемок наиболее распространены экраны с координатной привязкой снимка участка съемки, рис. 5, а, поле зрения трубы, рис. 5, б и рабочей зоны программы составления плана, рис. 5, в.

Речник обходит все пикетные точки, в режиме автонаведения тахеометр отслеживает перемещение рейки и по команде геодезиста производит фиксацию точки. При этом геодезист может непосредственно показывать речнику пикетные точки. Используя программное обеспечение для составления плана, рис. 5, б, геодезист имеет возможность непосредственно в поле вычерчивать план, рис. 5, б.

Выходным документом является специализированный файл в специальном формате, свойственном модели тахеометра. Большинство современных тахеометров кроме специального формата имеют открытый текстовой формат, табл. 1.



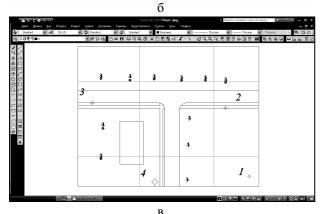



Рис. 5. Виды рабочих экранов для топографической съемки

Таблица 1 Текстовой формат

| №<br>пикета | X         | Y          | Z          | Код<br>условного<br>знака | Примечания |
|-------------|-----------|------------|------------|---------------------------|------------|
| E\$MN       | $X_{E$N}$ | $Y_{E\$N}$ | $Z_{E\$N}$ | М <sub>усл зн</sub>       | S\$        |
|             |           |            |            |                           |            |

выходной информации тахеометра

Здесь E\$ – условное наименование объекта ситуации, например – дом, бордюр;

M – условный номер объекта ситуации, например – дом2;

N – номер пикета на объекте ситуации;

 $X_{\text{E$N}}$  ,  $Y_{\text{E$N}}$  ,  $Z_{\text{E$N}}$  – координаты заданной пикетной точки;

 $M_{\text{усл 3H}}$  – код условного знака по справочнику;

S\$ – дополнительный комментарий.

Такой формат выходной полевой информации позволяет максимально автоматизировать процесс составления топографических материалов. Алгоритм обработки в этом случае будет следующий. Съемка выполняется в произвольном порядке с соблюдением правил формирования выходного файла. После завершения съемки и преобразования текстового файла в табличную форму он сортируется по объектам и номерам пикетов, формируется пакетный файл и программа полигиниями прорисовывает линейные, площадные объекты и наносит по условным знакам точечные объекты.

Таким образом, полностью автоматизируется весь процесс съемки. Исполнителю остается только выбрать места установки пикетных точек.

## Выводы

Геодезист получает возможность управлять тахеометром через планшетный компьютер, что полностью автоматизирует весь процесс съемки.

## Список литературы

- 1. Роботизированный электронный тахеометр Торсоп IS-201 [Электронный ресурс]. Режим доступа к ресурсу: http://gskgeo.ru/catalog/elektronnye\_taheometry/robotizirovannyy\_elektronnyy\_taheometr\_topcon\_is\_201/.
- 2. Отчет о научно-исследовательской работе «Анализ современных геодезических технологий в строительстве относительно действующих нормативных геодезических документов. Исследование современных геодезических технологий». X.: XHYCA, 2015.

Поступила в редколлегию 19.10.2015

**Рецензент:** д-р техн. наук, проф. А.Г. Вандоловский, Харьковский национальный университет строительства и архитектуры, Харьков.

#### ОСОБЛИВОСТІ ТОПОГРАФІЧНИХ ЗЙОМОК СУЧАСНИМИ ТАХЕОМЕТРАМИ

М.М. Токарєв

Розглянуті питання виробництва топографічних зйомок за допомогою роботизованого тахеометра. **Ключові слова:** тахеометр, обгрунтування, прив'язка знімків, дистанційне керування тахеометром.

#### TOPOGRAPHICAL SURVEYS FEATURES BY MODERN TACHYMETERS

M.N. Tokarev

The questions of production of topographical surveys are considered through robotized tachymeter. **Keywords:** tachymeter, ground, attachment of pictures, remote control of tachymeter.