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STATISTICAL PROPERTIES OF SKEWNESS AND KURTOSIS
OF SMALL SAMPLES FROM NORMAL POPULATION

Statistics of skewness and kurtosis distributions and their basic parameters for a set of samples of certain small
numbers of elements are find. These distributions were determined using the Monte Carlo method. The samples were
repeatedly taken at random from a normally distributed population. Knowledge about statistics of skewness and kurtosis
should allow to obtain a more reliable estimate of the standard deviation and the uncertainty of the measurand value
estimator from samples of a small number of measurement observations, when range of their distribution is known.
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Introduction

In many cases in practice of measurements we can
collect sample of only a small number of measurement
observations for various reasons. A reason of a small
measurement sample might be:

- The lack of a larger number of objects to be
tested (eg. for the validation of the method used in only
a few accredited laboratories).

- High cost of measurements or limited time of
their execution.

- The inability to re-perform the measurements, eg.
in the study of a distant terrain and in medicine.

- The limited number of collected data might be
while object under investigation might be destroyed or
its properties after test are changing irreversibly.

In all above mentioned cases, only a small sample
might be available for further data handling.

According to GUM Guide [2], in determining the
result and uncertainty of measurement any sample of the
data is considered as it comes from a normally distrib-
uted population. The best estimator is regarded as a

mean value of collected data, and the uncertainty of type
A as a parameter, which characterize data scattering,
basing on calculated of the variance of the sample.

Samples from a normally distributed population
and other symmetric distributions can be asymmetric.
The asymmetry of these samples increases with decreas-
ing the number of elements in collected samples.

It was necessary to examine to what extent it can
also be a significant knowledge of other statistical pa-
rameters of small and very small samples, including
skewness and kurtosis of the cases where the type of
distribution of the population is a priori not known.
Here, as the first step of this research will appoint statis-
tics of the skewness and kurtosis of small and very
small samples taken at random from a normally distrib-
uted population. Monte Carlo simulation method was
applied to analyze such small samples.

Pearson’s skewness coefficients
of population and sample

The probability density distribution (pdf) of the
asymmetry of the right tail, with median, mean and
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mode marked, as an example is presented in Fig. 1. For
asymmetric distributions of the mean value p, mode and
median do not overlap with each other.

Probability density
function, pdf

1 2 3 4 5 6 7

Fig. 1. Parameters of the right-asymmetric
distribution function (pdf)

Unified description of various distributions allows
asymmetry is given by Pearson’s coefficient of skew-
ness v
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where p — mean value of distribution, o — standard de-

viation of distribution, p; — third central moment of dis-
tribution.

Then the Pearson’s coefficient of skewness v,
given by Eq. (1) is based on the central moment of
and a standard deviation o of the data population. The
coefficient equals to zero for a symmetric distribution,
and is positive for right-tailed asymmetry distributions
(extended right tail). Also other non-classical skewness
coefficients are used.

Pearson’s skewness coefficient g; for a n-element
sample of x; — X population is determined by this
sample central moments: m, = s? and m; as estimators
of Ly, Y3.

A skewness coefficient of sample g; is given by
formula
n —\3
mg %Ziﬂ(xi B X)

g = = - @
1 mg/z (IZT‘_](Xi _;)2J3/2

The skewness coefficient g; according (2) is bi-
ased. Formula for the unbiased skewness [1] is given
below

n(n - 1)
g=-—"7"g- A3)
n-2
The software supporting statistical calculation for
skewness coefficient of the sample use a bit different

form then given by (2) 1 (3) [3], like given by (4)

SKE - ng(xi —§)3/((n S)n-2)s) @)

and use also a standardised skewness coefficient

SSKE = SKE+/n /6 . (5)

For symmetric population and n > 150 SSKE coef-
ficient is of Normal distribution [3].

The differences between the values of the coeffi-
cient of skewness given by different definitions are not
significant but for the very small samples should be
considered.

Standard deviation
of the skewness coefficient

Variation of the skewness coefficient of g for a
sample of n elements from Normal population, accord-
ing to [2] is

6n(n—1)
(n - 2)(n + 1)(n + 3) '

To estimate variance of D(g) of small samples the
Smirnov formula [4] is also used:

D(g) =
6(n-2 7
_ 6(n-2) _6l,__12 +0L,()
(n+1)(n+3) n 2n + 7 n’
where O(') is a residua part 1/n’.
Equation (7) refers to samples of n > 25 elements.

For larger number of n a residua part in (7) becomes
neglected and variance is tending to: D(g) — 6/n.

D(g) =

(6)

Kurtosis of small samples

Kurtosis of the particular population is given by
the ratio: ps/c*. It serves as a measure of flattening
(slenderness) of distribution, which indicates the con-
centration of its data. For a Normal (Gaussian) distribu-
tion kurtosis is equal to 3.

Kurtosis of the sample is a ratio of its moments:
my, my, SO:

s 4

2 x)
Kurtosis = — =4=L 8
m3 (n-1)s* ®

To compare other distributions with Normal distri-
bution, the excess kurtosis coefficient of the population
defined as: K = Kurtosis — 3 is used, and comparison of
samples, for n > 4 the formula from [3] given below is
applied

K(n) =

n(n+ 1)2(& S VR

(n - 1)(n - 2)(n - 3)54 (n - 2)(n - 3)54 .

The standardised Kurtosis coefficient also is used as

-1/2
SK(n) = K- (EJ
n

(10)
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Monte Carlo modeling of skewness
and kurtosis of small samples

The authors noticed that consideration related to
distribution of skewness coefficient g and excess kurto-
sis coefficient K of very small samples of number of
elements below 25 (n < 25) might of worth of analysis.
Such samples are analysed using Monte Carlo method.
Skewness coefficient g and excess of kurtosis coeffi-
cient K for samples of 3<n < 25 elements are calcu-
lated and results in function of n are presented.

To determine distributions of the Pearson skew-
ness coefficient for samples with n elements drawn from
the population of X with normal distribution (Gaussian)
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was used unencumbered value of p(x;) the standard de-
viation of the sample. From (2)

g == 3% [ Z()J D

i n-l

where m; —the sample third central moment, s —sample
unbiased standard deviation.

The samples of number of elementsn = (3, 4, 5, ...)
were extracted from the Normal distribution population
and 100 000 such samples were analysed. In Fig. 2 se-
lected results are presented. The shape of larger sam-
ples, eg. 50, is very close to Gaussian distribution.
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Fig. 2. Some distributions of skewness coefficient k,= g for samples of low number elements n

For samples of n> 3 from the Normal distribu-

tion the mean of modulus of skewness coefficient @
and its variance D@ and standard deviation

s@ = \/D@ were calculated.

Results are presented in Fig 3 as relations vs. the
number of sample elements n. In addition the standard

deviation s(g) = \/D(g) from the Smirnov formula (7)

is also derived. Mean value of modulus of skewness
|g| and its standard deviation s(g) for the small n-

element sample has a maximum for ca. n = 6 and then
is declining when n decreases.

Using the Monte Carlo simulation with sets of
100 000 of n-element samples from a normally distrib-
uted population, the excess of kurtosis coefficient K
were analyzed.
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Some histograms of them are in Fig. 4, 5 and the
variance of their mean value and other statistical pa-
rameters as a function of n are presented in Fig. 6.

Conclusions

For the collection of small samples from a nor-
mally distributed population, mean value of the coeffi-
cient of skewness deviates significantly from zero, and
the kurtosis — from the value of 3 for this population.
The skewness is a maximum for the number n of ele-
ments of the sample about 6, and excess of kurtosis - n
approx. 20. Then, with increasing n, both parameters
slowly decreases to 0 and to 3 for the population.

Shapes of distributions of both parameter histograms
for small n are also very different from Gaussian pdf.

The skewness and kurtosis are not yet taken into
account in determining whether the value of the sample
mean as an estimator of the measurement result and its
uncertainty as a measure of assessing the accuracy (pre-
cision) of the measurement result.

For samples from a population of distributions other
than normal, e.g. uniform, trapeze and triangular The
skewness and kurtosis functions versus the number of
sample elements n should be also different than for a Nor-
mal pdf. the average value may be not the best estimator of

the measurement result [7 — 9]. Comparison of some skew-
ness statistical parameters of n-element samples from a
normal, uniform and triangular distributions is given in [9].
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Fig. 3. Statistical parameters of skewness g as function

of small number n elements of samples extracted from

Gauss population and ranges of its dispersions at level
of confidence p = 0,95 and 0,99 respectively
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Fig. 4. Histograms of kurtosis excess K-3 of n-element samples from Normal population (n=6, 8, 10, 50)
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Fig. 5. Histograms of kurtosis excess K-3 of n-element samples from Normal population (n=100, 1000)
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CTATUCTUYECKUE CBOUCTBA ACUMMETPUN N SKCLIECCA MAJIbIX BbIBOPOK
13 HOPMAJIbHO PACMNPEOENEHHOU TEHEPANIbHOU COBOKYMNMHOCTHU

3.JI. Bapma M.Jlx. KopunHckuit

Haiidenvi cmamucmuku pacnpeoenenuii acuMmempuu u 9KCYecca U Ux OCHOBHbIX Napamempos 07 8bl0OPOK ONpedeNeHHO20 Ma-
J1020 YUCIA dAemMennos. Imu pacnpeoenenus Obliu onpeoenenvl ¢ nomowbio memooa Monme-Kapno. Beibopku HeoOHokpammo u3éie-
Kanu CydaiunblM 00pasom u3 HOpMAibHO PACNPEOeNeHHOU 2CHEPATLHOU COBOKYNHOCU. SHANUS O CIAMUCIUKE ACUMMEMPUU U IKC-
yecca O0MICHBI NO360TUMb NOAYHUNTL OONIee OOCMOBEPHbIE OYEHKU CIMAHOAPNIHO20 OMKIOHEHUS. U HEONPEOeTeHHOCU OYEHUBAECMO20
SHAYEHUS] UBMEPSEMOUL BETUHUNbL O 8bIOOPKAM C HEDOILLUUM YUCTIOM HAOIOO0eH U, KO20a OUANA30H UX PACHPEOeNeHUS U3BECTEH.
Knrouesvie cnosa: oopabomka b160poK, acummempust, IKCYECc, MOOTUPOBAHUE OAHHBIX.

CTATUCTUYHI BNACTUBOCTI ACUMETPIT | EKCLIECIB MAJTUX BUBIPOK
3 HOPMAJbHO PO3MOAINEHOI FTEHEPANBHOI CYKYMHOCTI

3.JI. Bapma, M.Jl>. KopunHChKHii

3naiioeni cmamucmuku po3noodinie acumempii ma excyecy ma ix OCHOBHUX NAPAMempig 0isl BUOIPOK NEGHO2O MA020 HYUCa efle-
menmig. Lli posnodinu Oynu eusnayeni 3a donomozoro memooy Monme-Kapno. Bubipku neooHopaso6o gumsazyeanu 6UnaoKo8UM YUHOM
3 HOPMANLHO PO3NOOINEHOT 2eHEPANLHOT CYKYRHOCTI. 3HAHHA NPO CIMAMUCMUKY ACUMEMPIT ma excyecy No8UHHI 00380AUMU 00ePAHCAMU
bintbiu 00CMOBIPHI OYIHKU CMAHOGPMHO20 BIOXULEHHS | HEBUSHAYEHOCHI OYIHIOBAHO20 3HAYEHHSL GUMIDIOBAHOT BeNUYUHY 3a BUDIPKAMU 3
HEBENUKUM HUCTIOM CHOCIEPENHCEHb, KON OIANA3oH iX po3nooLty 8i00MuUIL.

Knrouogi cnosa: o6pobxa eubipox, acumempis, excyec, MOOENOBAHHS OaHUX
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