
Інформаційні технології в технічних системах

 45

УДК 00.004.4

Y.E. Parfyonov, V.M. Fedorchenko

Simon Kuznets Kharkiv National University of Economics, Kharkiv

USING NEW FEATURES OF JAVA SE 8

The paper analyzes new features of Java SE 8, and their using for application development. Discussed date
and time representing, lambda-expressions, references to methods, default methods. Considered basic features of
the Stream API and their application to work with collections in Java SE 8. Noted new possibilities of JavaFX 8
technology to design, build, test, debug and deploy rich client applications that work consistently for different
target platforms.

Keywords: platform, JIT compiler, Java Virtual Machine, Java Development Kit, lambda expressions,

method references, default methods, collections, JavaFX 8, Date-Time API, FXML, XML, CSS, 3D graphics,
multi-touch, immutable-value classes, domain-driven design.

Introduction
As known Java platform is a set of several com-

puter software and specifications initially developed
by Sun Microsystems, which provides tools for devel-
oping application software and deploying it in a cross-
platform computing environment.

Java is widely used in a lot of computing plat-
forms from embedded devices and mobile phones to
enterprise servers and supercomputers [1].

The heart of the Java platform is the concept of a
"virtual machine" that executes Java bytecode pro-
grams. This bytecode is the same no matter what
hardware or operating system the program is running
under.

There is a JIT compiler within the Java Virtual
Machine, or JVM. The JIT compiler translates the Java
bytecode into native processor instructions at run-time
and caches the native code in memory during execu-
tion.

The use of bytecode as an intermediate language
permits Java programs to run on any platform that has
a virtual machine available.

There are several editions of java platform, each
targeting a different class of devices:

Java Platform, Micro Edition (Java ME):
specifies several different sets of libraries
(known as profiles) for devices with lim-
ited storage, display, and power capaci-
ties. Often used to develop applications
for mobile devices, PDAs, TV set-top
boxes, and printers.

Java Platform, Standard Edition (Java SE): for
general-purpose use on desktop PCs, serv-
ers and similar devices.

Java Platform, Enterprise Edition EE (Java
EE): Java SE plus various APIs useful for
multi-tier client-server enterprise applica-
tions.

The main part
Java SE is a platform for development and de-

ployment of portable applications for desktop and
server environments. It defines a wide range of general
purpose APIs – such as Java APIs for the Java Class
Library – and includes the Java Language Specifica-
tion and the Java Virtual Machine Specification. One
of the most well-known implementations of Java SE is
Oracle Corporation's Java Development Kit (JDK) [2].

From the very beginning, Java SE used the ob-
ject-oriented Java programming language as its single
target language. Actually, it was listed as a core part of
the Java platform not so much time ago. Therefore the
language and runtime were commonly considered a
single unit.

However, many modern programming lan-
guages support several programming paradigms and
are typically outside of the scope of the phrase
"platform". It allows improving the "platform" and
the languages independently. So, an effort was made
with the Java 7 specification to more clearly treat
the Java language and the Java virtual machine as
separate entities, so that they are no longer consid-
ered a single unit.

Java has undergone several changes since the re-
lease of JDK 1.0 on, as well as numerous additions of
classes and packages to the standard library.

On February 19, 1997 Sun Microsystems released
JDK 1.1. Major additions included an extensive retool-
ing of the AWT event model, inner classes added to
the language, JavaBeans and JDBC.

J2SE 1.2 was released on December 8, 1998. This
and subsequent releases through J2SE 5.0 were re-
branded Java 2 and the version name "J2SE" (Java 2
Platform, Standard Edition) replaced JDK. Major addi-
tions included reflection, collections framework, Java

IDL (an interface description language imple-
mentation for CORBA interoperability), and the inte-

© Y.E. Parfyonov, V.M. Fedorchenko

Системи обробки інформації, 2015, випуск 4(129) ISSN 1681-7710

 46

gration of the Swing graphical API into the core
classes. A Java Plug-in was released, and Sun's JVM
was equipped with a JIT compiler for the first time.

Notable changes in J2SE 1.3 (May 8, 2000) in-
cluded the bundling of the HotSpot JVM, JavaSound,
Java Naming and Directory Interface and Java Plat-
form Debugger Architecture.

J2SE 1.4 (February 6, 2002) became the first re-
lease of the Java platform developed under the Java
Community Process as JSR 59. Major changes in-
cluded regular expressions modeled after Perl, excep-
tion chaining, an integrated XML parser and XSLT
processor (JAXP), and Java Web Start.

J2SE 5.0 (September 30, 2004) added several sig-
nificant new language features including the for-each
loop, generics, autoboxing and var-args.

Java SE 6 (December 11, 2006) bundled with a
database manager and facilitates the use of scripting
languages with the JVM (such as JavaScript). As of
this version, Sun Microsystems replaced the name
"J2SE" with Java SE and dropped the ".0" from the
version number. Other major changes include support
for pluggable annotations, many GUI improvements,
including native UI enhancements to support the look
and feel of Windows Vista, and improvements to the
Java Platform Debugger Architecture & JVM Tool
Interface for better monitoring and troubleshooting.

Java SE 7 (July 28, 2011) added many small lan-
guage changes including strings in switch, try-with-
resources and type inference for generic instance crea-
tion.

The JVM was extended with support for dynamic
languages like Clojure, Groovy, Scala and so on, while
the class library was extended among others with a
join/fork framework, an improved new file I/O library
and support for new network protocols such as SCTP.

Java SE 8 is a major feature release of Java pro-
gramming language development. Its initial version
was released on March 18, 2014.

In the release entire new APIs, have evolved, and
many of the original JDK 1.0 classes and methods
have been deprecated.

Moreover, the changes to Java 8 are in many
ways more profound than any other changes to Java in
its history.

They enable developers to write programs more
easily - instead of writing verbose code [3].

Top Features and enhancements in Java SE 8 re-
late to [4]:

‐ Java Programming Language:
‐ Lambda Expressions;
‐ Method references;
‐ Default methods;
‐ Collections API;
‐ JavaFX technology;
‐ Date-Time API.

Lambda expressions

There is a well-known issue in software engineer-
ing connected with frequent changes of user require-
ments.

To address the issue different approaches can be
applied. A widely spread technique is making a block
of code available without executing it. This block of
code can be called later by other parts of a program.
Passing code is a way to give new behaviors as argu-
ments to a method.

Prior to Java 8 anonymous classes were a mean to
get rid of the some verbosity associated with declaring
multiple concrete classes for an interface that are
needed only once.

Java 8 introduces new feature that resolves this
problem: lambda expressions, which let you represent
a behavior or pass code in a concise way [5].

A lambda expression is an unnamed function with
parameters and a body [6]:

() -> "hi" takes no parameters and returns a string
(int x) -> x + 1 takes an int parameter and returns

the parameter value incremented by 1
(int x, int y) -> x + y takes two int parameters and

returns the sum
(String msg) -> {System.out.println(msg);} takes

a String parameter and prints it on the standard output.
In general, the lambda expressions allow devel-

opers to pass logic in a compact way.
For example, consider the following code:
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Hello!");
 }});
It uses an anonymous inner class to add event

handler for a button click action. The action handler
prints out a message when that the button is clicked.

By using a lambda expression, we can add the ac-
tion handler to a button click event in a single line of
code:

button.addActionListener(e->
System.out.println("Hello!"));

Thus, lambda expressions support treating func-
tionality as a method argument, or code as data. They
let Java developers express instances of single-method
interfaces (referred to as functional interfaces) more
compactly.

Method references

Method references are an important feature re-
lated to lambda expressions. They provide access to a
method without executing it.

Lambda expressions ensure similar but more
powerful capabilities.

Sometimes, however, a lambda expression just
calls an existing method. In those cases, it is often

Інформаційні технології в технічних системах

 47

clearer to refer to the existing method by name using
method references.

There are two main types of method references:
Reference to a static method

(ClassName::StaticMethodName)
Reference to an instance method of an object

(ObjectReferenceName::InstanceMethodName)
Instance Method References Of Classes

Therefore, method references are compact, easy-
to-read lambda expressions for methods that already
have a name.

Default methods

Default methods allow developers to add new
methods to interfaces without breaking their existing
implementation. An interface can define implementa-
tion, which will be used as default in the situation
where a concrete class fails to provide an implementa-
tion for that method.

Therefore, default methods have introduced as a
mechanism to extending interfaces in a backward com-
patible way.

Collections API

Collections are fundamental to many programming
tasks because they group some variable number of data
items that have some shared significance in a domain
and as a rule need to be operated upon together.

However processing collections was far from
perfect in Java: it was necessary to use a loop or ob-
tain an iterator for a collection and process elements
of the collections in a sequence. For example, to print
only the elements meeting some condition after they
would be altered in some way, we had to write some-
thing like that:

List<String> myList = Arrays.asList("a1", "a2",
"b1", "c2", "c1");

List<String> temp = new ArrayList<String>();
for (String element : myList)
 if (element.startsWith("c"))
 temp.add(element.toUpperCase());
Collections.sort(temp);
for (String element : temp)
 System.out.println(element);
Fortunately, in the Java SE 8 into the Collections

API the new Stream API is integrated (java.util.stream
package). It enables bulk operations on collections,
such as sequential or parallel map-reduce transforma-
tions. So, previous code can be more clear and simple:

List<String> myList = Arrays.asList("a1", "a2",
"b1", "c2", "c1");

myList.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);

JavaFX technology

JavaFX is a set of graphics and media packages
that enables developers to design, create, test, debug,
and deploy rich client applications that operate consis-
tently across diverse platforms such as embedded de-
vices, smartphones, TVs, tablet computers, and desk-
tops. Typically, the applications display information in
a high-performance modern user interface that features
audio, video, graphics, and animation [7].

JavaFX 8 release significantly increases power of
JavaFX technology. It incorporates many useful fea-
tures: improved XML-based declarative markup lan-
guage FXML for constructing user interface; all the
major UI controls, which can be skinned with standard
Web technologies such as CSS; 3D graphics, multi-
touch and hardware-accelerated graphics support.

JavaFX 8 is included in JDK 8 and is the offi-
cially recommended graphics toolkit for Java 8 appli-
cations.

Date Time API

Since Java SE was first released, the main sup-
port for dates and times in Java was the java.util.Date
class. However, actually it does not represent a “date”
in a human-friendly way. It does represent only an
instantaneous point in time based on millisecond pre-
cision, measured from the January 1, 1970 [8].

This issue is not something the average developer
would expect to deal with when writing date-handling
code. In addition, some of the date and time classes
also exhibit quite poor API design.

In order to address these problems a new date and
time API has been designed for Java SE 8 [9].

The new API is driven by three core ideas:

‐ Immutable-value classes. One of the serious
weaknesses of the existing formatters in Java is that
they are not thread-safe. The new API avoids this issue
by ensuring that all its core classes are immutable and
represent well-defined values.

‐ Domain-driven design. The new API models
its domain very precisely with classes that represent
different use cases for Date and Time closely. For ex-
ample, using date and time independently, representing
the one in “human” terms or as an instant on the time-
line etc.

‐ Separation of chronologies. The new API al-
lows people to work with different calendaring sys-
tems in order to support the needs of users in some
areas of the world, such as Japan or Thailand, that
don’t necessarily follow ISO-8601.

The new java.time API consists of five packages
[8]:

‐ java.time – the base package containing the
value objects;

Системи обробки інформації, 2015, випуск 4(129) ISSN 1681-7710

 48

‐ java.time.chrono – provides access to different
calendar systems;

‐ java.time.format – allows date and time to be
formatted and parsed;

‐ java.time.temporal – the low level framework
and extended features;

‐ java.time.zone – support classes for time-zones.
There about 70 new public types in the packages.

The most important ones are the base and format pack-
ages. The java.time package provides such classes as
LocalDate (immutable value type that represents a date
without time-of-day or time-zone), LocalTime (a value
type with no associated date or time-zone), Local-
DateTime (represents a date with time-of-day part),
Instant (a “machine” view of time as a point on the
time-line without any other contextual information).
Moreover, it includes many other useful public types.

The java.time.format package is related to for-
matting and printing dates and times.

One of its valuable elements is DateTimeFormat-
ter class. It provides three kinds of formatters to print a
date/time value: predefined standard formatters, lo-
cale-specific formatters and formatters with custom
patterns.

Thereby the new Date Time API brings adequate
support for the date and time, which largely simplifies
developing the Java applications.

References
1. Java (software_platform). [Electronic resource]. –

Access mode:
https://en.wikipedia.org/wiki/Java (software_platform).

2. Java Platform, Standard Edition. [Electronic re-
source]. – Access mode:
en.wikipedia.org/wiki/Java_Platform,_Standard_Edition.

3. Java SE 8. [Electronic resource]. – Access mode:
http://www.tutorialspoint.com/java8/java8_overview.htm.

4. What's New in JDK 8. [Electronic resource]. –
Access mode:
http://www.oracle.com/technetwork/java/javase/8-whats-
new-2157071.html.

5. Raoul-Gabriel Urma. Java 8 in Action: Lambdas,
streams, and functional-style programming / Raoul-Gabriel
Urma, Mario Fusco, Alan Mycroft. – Manning Publications,
2014. – 497 p.

6. Liguori R. Java 8 Pocket Guide / R. Liguori,
P. Liguori. – O’Reilly Media, Inc., 2014. – 223 p.

7. JavaFX: Getting Started with JavaFX. [Electronic
resource]. – Access mode:
http://docs.oracle.com/ javase/8/javafx/get-started-
tutorial/jfx-overview.htm.

8. Intuitive, Robust Date and Time Handling, Finally
Comes to Java. [Electronic resource]. – Access mode:
http://www.infoq.com/articles/java.time.

9. Java SE 8 Date and Time. [Electronic resource]. –
Access mode:
http://www.oracle.com/technetwork/ articles/java/jf14-date-
time-2125367.html.

Надійшла до редколегії 13.02.2015

Рецензент: канд. екон. наук, проф. І.О. Золотарьова, Хар-
ківський національний економічний університет ім. С. Куз-
неця, Харків.

ВИКОРИСТАННЯ НОВИХ МОЖЛИВОСТЕЙ JAVA SE 8
Ю.Е. Парфьонов, В.М. Федорченко

У роботі аналізуються нові можливості платформи Java SE 8 та їх застосування для розробки застосувань.
Розглянуто подання дати та часу, використання лямбда-виразів, посилань на методи, методів за замовчуванням.
Викладені основні особливості Stream API щодо роботи з колекціями в Java SE 8. Відзначено нові можливості тех-
нології JavaFX 8, для проектування, створення, тестування, налагодження та розгортання насичених клієнтських
застосувань, які злагоджено працюють на різних цільових платформах.

Ключові слова: платформа, JIT compiler, Java Virtual Machine, Java Development Kit, лямбда-вирази, посилання
на методи, методи за замовчуванням, колекції, JavaFX, Date-Time API, FXML, XML, CSS, 3D-графіка, multi-touch,
immutable-value класи, проблемно-орієнтоване проектування.

ИСПОЛЬЗОВАНИЕ НОВЫХ ВОЗМОЖНОСТЕЙ JAVA SE 8
Ю.Э. Парфенов, В.Н. Федорченко

В работе анализируются новые возможности платформы Java SE 8 и их применение для разработки приложе-
ний. Рассмотрены представление даты и времени, использование лямбда-выражений, ссылок на методы, методов
по умолчанию. Изложены основные особенности Stream API для работы с коллекциями в Java SE 8. Отмечены новые
возможности технологии JavaFX 8 для проектирования, создания, тестирования, отладки и развертывания насы-
щенных клиентских приложений, которые слаженно работают на различных целевых платформах.

Ключевые слова: платформа, JIT compiler, Java Virtual Machine, Java Development Kit, лямбда-выражения,
ссылки на методы, методы по умолчанию, коллекции, JavaFX 8, Date-Time API, FXML, XML, CSS, 3D-графика, multi-
touch, immutable-value классы, проблемно-ориентированное проектирование.

