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The problem of long-term and medium-term forecasting of water consumption of large cities is examined. Ex-
isting time series forecasting methods are reviewed. Advantages and disadvantages of autoregressive forecasting
models and neural network models are formulated. Vivid example of a long-term and medium-term forecasting of
water consumption of large city using ARIMA and neural network methods is presented.
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Introduction

Lately the problem of minimizing costs of electric-
ity in the production process has become extremely
important for large industrial facilities. Among compa-
nies for which energy savings seem to be one of the
most important factors in the survival and development,
are water supply companies of large cities. As the city
water supply and, consequently, the volume of water
pumping are determined by need, there is a direct link
between the task of planning electricity consumption
and the task of forecasting urban water consumption.
Therefore, in the conditions of rising urbanization the
problem of improving the functioning of water supply
systems in the areas of energy and resource conserva-
tion is urgent. One way of its solution is implementation
of water consumption forecasting.

Issues of water consumption forecasting of large cit-
ies are considered by many authors in many papers. Some
works are comprehensive guides of water demand man-
agement and consider the methods and techniques of
water consumption forecasting in general [2, 3, 6, 10].
Other publications are intended to identify methods and
models that are useful for solving water supply problems
of specific water utility [7, 8]. Most of the authors of
works on the subject agree that for the modeling and fore-
casting of water consumption of cities such techniques of
time series analysis, as artificial neural networks [1, 5, 9]
and regression models [1, 4] should be used.

1. Review of existing forecasting models

Forecasting as a research with a broad coverage of
analysis objects leans on many methods. By estimates
of taxonomist of prognostics, there are more than 100
methods of forecasting now, therefore there is a prob-
lem of a choice of methods, which would give adequate
forecasts of the studied processes or systems for experts.

1.1. Time series models

Time series models are mathematical forecasting
models that seek to find dependency of future value of
the process on the past and to calculate forecast using this

dependency. These models are universal for different
subject areas, as their general appearance does not change
depending on the nature of time series. Time series mod-
els can be easily divided [5]. They can be divided into
two groups: statistical and structural (fig. 1).
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(looking for depending
inside the process)

|
| I

Statistical models
(regression,
autoregression,
exponential smoothing,
etc.)

Structural models (neural
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Fig. 1. Classification of time series models

In statistical models, dependency of the future
value on the past is specified in the form of a given
equation. These include:

— regression models (linear regression, nonlinear
regression) [4];

— autoregressive models (ARIMA (Box-Jenkins
model), ARIMAX, GARCH, ARDLM) [1,11];

— exponential smoothing model [13];

— maximum similarity models, etc. [13]

In structural models, future value dependency on
the past is given in the form of certain pattern and its
transition rules. These include:

— neural network models [1,5,9,12];

— models based on Markov chains [13];

— models based on classification and regression
trees, etc. [13]

Experience shows that none of the methods, taken
by itself, can provide a significant degree of reliability
and precision horizon of forecast. However, in certain
combinations they can be highly effective.

1.2. Autoregression forecasting models

Many tasks require the study of the relationship be-
tween two or more variables. Regression analysis is used
to solve these problems [4]. The purpose of regression
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analysis is to determine the relationship between the
original variable and many external factors (regressors).

Autoregressive models based on the assumption
that the value of the process Z(t) linearly depends on a
certain number of previous values of the same process
Z(t-1),...,Z(t-p).

In autoregression models, the current value of the
process is expressed as a linear finite set of past values of
the process and impulse, called the "white noise" [11]:

Zt)=C+orZ(t—-D+..+opZ(t—-p)+& (1)

Formula (1) describes the process of the autore-
gressive model order p, which is often referred in litera-
ture to AR(p) (autoregressive), C — constant, ¢y, ...,
¢, — coefficients (model parameters), &, — model error.

Another type of model that is widely used in time
series analysis and is often used in conjunction with
autoregression is called the moving average model of
order g and is described by the equation [13]:

Zt)=(Z{t-1)+...+ Z(t—q))/q) *+ &. 2)

In literature, the process (2) is often indicated as
MA(q) (moving average); q — moving average order,
g — forecasting error. Moving average model is essen-
tially a low pass filter.

To achieve greater flexibility in model fitting it is
often advisable to combine in one model autoregression
and moving average [11]. The general model is indi-
cated as ARMA(p,q) and combines a filter of moving
average of order q and autoregression of filtered values
of the process of order p.

If as input values are used differences of times se-
ries values of order d (in practice d should be deter-
mined, but in most cases d < 2), than model is called
autoregressive integrated moving average. In literature,
this model is called ARIMA(p,d,q) [11].

The most part of research of autoregressive forecast-
ing methodology was carried out by two statisticians,
George E. P. Box and Gwilym Jenkins [11]. In the time
series analysis autoregressive integrated moving average
model (ARIMA) is one of the most widely used.

1.3. Neural network models

Currently, the most popular model among struc-
tural models is the structural model based on artificial
neural networks (ANN). Neural networks are composed
of neurons [12] (fig. 2).
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Fig. 2. Nonlinear neuron model

The neuron model can be described by a pair of
equations [13]:

W;

e

U(t)= “Z(t—i)+b;

€)

Z(t)=o(u(1)),
Z(t-1), ..., Z(t—m) —input signals;
@, ..., ®, — Synaptic neuron weight;
b — threshold,
¢(U(t)) —activation function.

Activation functions are three main types [12]:

— binary step function;

— piecewise linear function;

— sigmoidal function.

Method of neurons communication defines the ar-
chitecture of neural network. Depending on neuronal
communication, networks are divided into [12]:

— single-layer models;

— multilayer models;

— recurrent networks.

Thus, using neural network modeling of nonlinear
dependence of future time series values from its actual
value and the external factors is possible. Nonlinear
dependency is determined by the network structure and
function of activation.

1.4. Advantages and disadvantages of models

Important advantages of autoregressive models are
their simplicity and transparency of modeling. Another
advantage is uniformity of analysis and design. Today
this class of models is one of the most popular, therefore
it is easy to find examples of autoregressive models for
forecasting tasks for time series of different subject
areas [5,13].

Disadvantages of these models include a large
number of model parameters, the identification of which
is ambiguous and intensive [9]; low adaptability of
models, linearity and, consequently, inabilityof model-
ing nonlinear processes often encountered in practice.

The main advantage of neural network models is
nonlinearity, which is ability to set non-linear relation-
ship between future and actual values of processes.
Other important advantages are adaptability, scalability
(ANN parallel structure speeds up calculation) and
uniformity of analysis and design.

At the same time disadvantages of ANN is the lack
of modeling transparency; difficulty of architecture
choosing, demands of consistency to the training sam-
ple; difficulty of training algorithm choosing and re-
source-intensive process of training.

It should be noted that none of the considered
groups of models have forecasting accuracy as an ad-
vantage. This is because the accuracy of forecasting of a
process depends not only on the model, but also on the
experience of the researcher, the availability of data, the
available hardware capacity and many other factors.
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2. Example of water consumption
forecasting of large cities

Input data to solve the problem is the time series of
daily average values of water consumption for the
month in the Moscow city in the period from January 1,
1996 to February 1, 2006 and the time series of daily
average values of outside air temperature for the month
in the city during the same period (fig. 3, 4). In the fig. 3
natural seasonal dependency of air temperature is
clearly visible.
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Fig. 4. Chart of water consumption

As you can see from the graph (fig. 4), water con-
sumption decreased from year to year, but it also con-
tains a seasonal component, which is associated with
different water use in summer and winter (maximums
are for December, January and February in different
years). It is necessary to forecast water consumption for
2006 and test the adequacy of forecast.

2.1. Water consumption forecasting of large
cities using ARIMA method

Let us determine the model parameters by method
of selection: Seasonal lag = 12, p Autoregressive = 1,
P Seasonal = 0, q - Mouving average = 1, Q Seasonal =
=1 (fig. 5). Chosen model gives forecast of series for 12
months a head (fig. 6).
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Fig. 5. Setting up ARIMA model (1,1,1) (0,1,1)
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Fig. 6. Chart of forecasting for 12 months
using ARIMA model (1,1,1) (0,1,1)

According to the forecast, it is intuitively clear that
the model is quite adequate. To assess the built model it
is necessary to use analysis of residues - a standard
method of testing the adequacy of any statistical model.
For this purpose, we will build auto correlation function
of the residues, which is differences of the forecasted
and actual values. (fig. 7).
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Fig. 7. Autocorrelation function of residues
of ARIMA model (1,1,1) (0,1,1)

In well-selected model, correlation of residues is
low, autocorrelation function and partial autocorrelation
function charts do not exceed the limits.
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Apparently, autocorrelation and partial autocorrela-
tion (fig. 7) entirely lie in acceptable intervals. Another
indication of good model is normal distribution of resi-
dues (fig. 8). For verifying, the quality of the forecast it is
also recommended to make so-called "retro forecast"
which is made for the period for which there is already a
real data to compare it to the forecasted data (fig. 9).
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Thus, ARIMA model allows building quite ade-
quate city water consumption forecast through empirical
selection of options.

2.2. Water consumption forecasting of large
cities using neuron networks method

Let us create neural network to solve the problem
of forecasting city water consumption. In the task of
time series forecasting network must know how many
copies of one variable it should take and how far ahead
it should predict the value of a variable.

We select an option Steps equal to 12, because the
data represents monthly observation and there is sea-
sonal dependency, Lookahead parameter — 1, as the type
of network — Multilayer Perceptron (fig. 10). Thus, we
get a network of a three-layer perceptron type (fig. 11).
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Fig. 10. Setting up neural network
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Fig. 11. Built neural network (three-layer perceptron)

Now we train the built network with Levenberg-
Marquardt method (fig. 12) — one of the reliable and fast
training algorithms.

?
Train
Eeinitialize
Jog Wweights
Stop
Cloze

Fig. 12. Setting up Levenberg-Marquardt method
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First of all network runs for the first 12 input val-
ues, resulting receiving forecast of next value. Then the
predicted value together with the previous 11 input
variables fed back to the input, and the network pro-
duces a forecast of the next values.
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Fig. 13. The projection of time series
forecast results for 12 months

In the fig. 13 it is shown that the predicted curve
(blue) is very well-trained, as there is no significant
deviation between the input and the forecasted series. It
is possible to estimate the quality of neural network
forecast, estimating the quality of the network (fig. 14).
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Fig. 14. Regression statistics

The correlation coefficient is nearly 1, which
means that the neural network is built correctly.

Conclusions

ARIMA model allows building quite adequate
medium-term city water consumption forecast through
empirical selection of options. To build a long-term
forecast it is necessary to use integrated approaches,
such as neural networks, instead of standard statistical
forecasting methods.

Among the advantages of the ARIMA method are
simplicity and transparency of modeling, analysis and
design uniformity and numerous examples of use, but
along with it, this method is not suitable for nonlinearity
modeling, it is low adaptive and not enough flexible.

Neural networks instead can build nonlinear models, are
scaling, highly adaptive and have many examples of use.
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Haoitiuna oo peokonecii 19.11.2015

PenensenT: kaHz. TexH. Hayk, npod. LT'. I'ycapoBa, Xapkis-
CbKUI HalliOHAJIbHUI YHIBEPCUTET PaiOeIeKTPOHIKY, XapKiB.

JOBIrOCTPOKOBE | CEPEAHBbOCTPOKOBE NMPOIMHO3YBAHHA BOAOCMNOXUBAHHA BENTUKUX MICT
K.A. T'openosa, B.M. 3anauun

Posensnymo npobnemy 00820cmpoxo602co i cepednboCmpoK08020 NPOSHO3YEAHHS B000CHOICUBAHHS GeauKux micm. 3poo-
JIEHO 0271510 ICHYIOYUX MOoOenell NPOSHO3Y8AHHA 3 GUKOPUCMANHAM Yacosux pAaodis. Cihopmynvosani nepesazu i HeOORiKU agmopee-
pecitinux mooeneii npocHO3y8ants ma mooenell HelipoHHUX mepedic. 30IUCHeH0 HAOYHULL NPUKIAO 00820CMPOKOBO20 | CepeOHbO-
CMPOKOB020 NPOCHO3Y8ANHS 6000Ccnodcudants micma memooamu ARIMA ma neiiponnux mepedic.
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AOoNnrocPOYHOE U CPEOAHECPOYHOE NPOrHO3MPOBAHUE BOOOMNOTPEBINEHUA BONbLUUX TOPOOOB
K.A. T'openosa, B.M. 3apnauun
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