Ingpopmauyiini mexunonocii 6 exkonomiyi, exkonozii, meOuyuHi i oceimi

VIIK 004.94

K.A. Horielova, V.M. Zadachyn

Simon Kuznets Kharkiv National University of Economics, Kharkiv

PLANNING OF CITY WATER SUPPLY SYSTEM MODERNIZATION
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The problem of planning of large cities water supply system modernization based on long-term water con-
sumption forecast is reviewed. A review of existing models of long-term forecasting on the basis of time series is
made. Advantages and disadvantages of forecasting models based on autoregressive models ARIMA, neural net-
works and exponential smoothing are formulated. Vivid example of a long-term forecasting of water consumption of

large city using these methods is presented to identify the most efficient and adequate model.
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Introduction

Problems of water supply needs of the growing
economy and world population are aggravated every
day involving more and more attention. Currently one
of the most important factors for the survival and devel-
opment of large industrial enterprises, which include
water supply companies in large cities, there are energy
savings. Thus extremely important task is to minimize
its costs in the production process.

The current stage of society economic develop-
ment requires the implementation of water supply sys-
tem that must provide the necessary technological pa-
rameters of water consumption, reliability and energy
efficiency. The water system in many cities of Ukraine
in the industrial and technically extremely worn, and
their financial position becomes unprofitable. Low sol-
vency of the population and the critical condition of
industrial enterprises does not allow to pay for water in
time. At the same time, the water system is a major
consumer of electricity, gas, petrochemical and other
resources. Considering this, the water supply companies
of Ukraine suffer from significant costs caused by the
need to spend a lot of electricity in order to pump the
water by pumping stations.

With growing urbanization actual problem is upgrad-
ing the water supply system in the areas of energy and
resource saving. City water supply with corresponding
amounts of water pumping are determined by direct re-
quest, so there is a direct link between the objective of
water system improving planning and power consumption
planning, which in turn depend on the volume of future
city consumption. One solution to this problem is the im-
plementation of long-term water consumption forecasting.

The literature on forecasting of consumption large
cities water consumption is not well lighted and consists
mainly of small foreign publications.

For example, scientific article of L.A House Peters
and R. Chang [6] is an overview of concepts, methods

and organizational principles of city water consumption
modeling. The methodological research in urban water
consumption modeling over the past three decades was
made. In Huien Niu’s scientific work [5] the municipal
water system of China was systematically analyzed and
he dynamic model for long-term forecasting of urban
water consumption was built on the results detected by
the analysis. Article of Robert Palmer from University
of Washington [7] reviews the newly developed by
Seattle public water utility model of long-term city
water consumption forecasting. The work of Dutch
scientists M. Bakker, J.H.G. Vreeburg, L.C. Rietveld, T.
Blom, M. Van der Roer [11] is reviewing building adap-
tive models of water consumption forecasting in the
Netherlands. Actual calculations and charts, detailed
composition of forecasting model are given and its
accuracy and results of implementation are analyzed.
Nazario D. Ramirez-Beltran's work devoted to forecast-
ing water consumption in Puerto Rico [9], considers
regression model and time series analysis in general.

Some papers are comprehensive guides to manag-
ing water consumption and consider the methods and
techniques of consumption forecasting in general. For
example, the book of R. Bruce Billings and Clive W.
Jones [10] provides all the necessary tools for accurate
forecasting needs of drinking water for the city in the
short, medium and long term. It considers the full range
of spheres of influence on urban water consumption,
including weather, climate, water prices, wage rates,
and so on, and describes in details all the methods of
water consumption forecasting used by water utilities
USA. David Butler’s and Faiz Ali Memon’s book [2] is
a comprehensive guide to water consumption managing.
The concept of this work was to gather a complete pic-
ture of water demand management specifics, from tech-
nical to social and legal aspects.

Thus, the problem of water consumption forecast-
ing is not widely covered in the Ukrainian literature, and
is mainly represented by the works of foreign authors
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who have focused on the purpose of detection methods
and models useful for solving water supply problems of
specific water utility.

The purpose of this article is to identify the most
effective and adequate long-term forecasting models for
planning the modernization of the water supply of large
cities in Ukraine.

1. Review of forecasting methods

Forecasting is a process of predicting the future
state of an object or phenomenon by analyzing its past
and present or systematic information on the qualitative
and quantitative characteristics of the subject or phe-
nomenon in the future [13].

Forecasts vary according to forecasting horizon.
Depending on the period of time for which the forecast
is made, there are operational, short, medium and long-
term forecasts. Each time series has its own classifica-
tion ranges. Long-term forecast on which modernization
of the water utility should be based is used to develop
strategic plans. It is characterized by the combination of
qualitative and quantitative forecasting methods. It is
made for the future perspective, for which significant
qualitative changes are expected .

Overall, the forecasting method is a sequence of
actions that need to be done to obtain a forecasting
model, which, in turn, is a functional notion that ade-
quately describes the studied process and is the basis for
receiving its future values.

Forecasting as research with a wide coverage of
analysis objects is based on a variety of methods. Ac-
cording to foreign and native systematics of prognostics
forecasting already has more than 100 methods and
because of this there is a problem of selection methods
that would provide adequate forecasts for the studied
processes or systems [15].

Term "forecasting method" is much broader than
term "forecasting model". In this regard, on the first
stage of classification methods are usually divided into
two groups: intuitive and formalized [15].

Intuitive forecasting methods deal with judgments
and experts’ estimates. They are used in cases where it
is impossible to take into account many factors influ-
ence due to the considerable complexity of the object of
forecasting

Formal methods are described in the literature
forecasting methods resulting in the building forecasting
models, i.e. determining the mathematical relationship,
which allows to calculate the future value of the proc-
ess, that is to make a forecast.

Next step is the classification of forecasting models.
In the first phase models should be divided into two
groups: subject area models and time series models (fig. 1).

Subject area models are such mathematical fore-
casting models, which are used for building subject area
laws. For example, the model, which make weather

forecasts, contains fluid dynamics equations and ther-
modynamics equations.

Formal methods
(deal with
mathematical
models)

|
| )

Subject area models
(thermodynamics,
mechanics, fundamental
analysis etc.)

Time series models
(seek for dependences
within the process itself )

Fig. 1. Classification of formal
forecasting methods

Time series models are mathematical forecasting
models that seek addiction of future value of the process
in the past inside the process and on these dependences
calculate the forecast. These models are universal for
different subject areas, i.e. their general appearance does
not change depending on the nature of time series.

Time series models can be divided into two
groups: statistical and structural (fig. 2).

Time series models
(looking for
depending inside the
process)

|
| I

Statistical models Structural models
(regression, (neural networks,
autoregression, Markov chains,
exponential smoothing, classification trees,
etc.) etc.)

Fig. 2. Classification of time series models

As we can see from the classification, significant
group of forecasting methods are statistical methods.

In statistical models, dependency of the future
value on the past is specified in the form of a given
equation. They include:

— regression models (linear regression, nonlinear
regression) [3];

— autoregressive models (ARIMA (Box-Jenkins
model), ARIMAX, GARCH, ARDLM) [1,12];

— exponential smoothing model [15];

— maximum similarity models [15], etc.

In structural models, future value dependency on
the past is given in the form of certain pattern and its
transition rules.

They include:

— neural network models [1,4,8,14];

— models based on Markov chains [15];

— models based on classification and regression
trees [15], etc.
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1.1. Autoregressive ARIMA models

Autoregressive models based on the assumption
that the value of the process Z(t) linearly depends on a
certain number of previous values of the same process
Z(t-1),...,Z(t-p).

In autoregression models, the current value of the
process is expressed as a linear finite set of past values
of the process and impulse, called the "white noise"
[12]:

z(t)=C+oz(t-1)+

+q)lz(t—2)+...+q)pz(t—p)+8t. M

Formula (1) describes the process of the autore-
gressive model order p, which is often referred in litera-
AR(p)

PO Pp — coefficients (model parameters), € -

ture to (autoregressive), C — constant,

model error.

Another type of model that is widely used in time
series analysis and is often used in conjunction with
autoregression is called the moving average model of
order g and is described by the equation [15]:

Z(t)=l(z(t—l)+z(t—2)+...+z(t—q)+8t. )
q

In literature, the process (2) is often indicated as
MA(q) (moving average); q — moving average order,

g, — forecasting error. Moving average model is essen-

tially a low pass filter.

To achieve greater flexibility in model fitting it is
often advisable to combine in one model autoregression
and moving average [11]. The general model is indi-
cated as ARMA(p,q) and combines a filter of moving
average of order g and autoregression of filtered values
of the process of order p.

If as input values are used differences of times se-
ries values of order d (in practice d should be deter-
mined, but in most cases d<2), than model is called
autoregressive integrated moving average. In literature,
this model is called ARIMA(p,d,q) [12].

Important advantages of autoregressive models are
their simplicity, transparency of modeling, analysis and
design consistency.

The disadvantages of this class of models are: a
large number of model parameters, the identification of
which is ambiguous and intensive [8]; low adaptability
of models, linearity and, consequently, the lack of abil-
ity modeling nonlinear processes that often found in
practice.

1.2. Neural network models

Currently, the model based on artificial neural
networks (ANN) is the most popular among structural
models. Neural networks are composed of neurons [14].

The neuron model can be described by a pair of
equations [15]:

Ut =3 orz(t—i) +b, (3)

i=l1
z(t) = p(U(1))
where z(t-1),...,z(t—m) — input signals; ®,...,0, —
synaptic neuron weight; b — threshold, @(U(t)) — acti-

vation function.

Activation functions are three main types [12]:

— binary step function;

— piecewise linear function;

— sigmoidal function.

Method of neurons communication defines the ar-
chitecture of neural network. Depending on neuronal
communication, networks are divided into [12]:

— single-layer models;

— multilayer models;

— recurrent networks.

Thus, using neural network modeling of nonlinear
dependence of future time series values from its actual
value and the external factors is possible. Non-linear
dependency is determined by the network structure and
function of activation.

The main advantage of neural network models is
nonlinearity, which is ability to set non-linear relation-
ship between future and actual values of processes,
adaptability, scalability (ANN parallel structure speeds
up calculation) and uniformity of analysis and design.

At the same time disadvantages of ANN is the lack
of modeling transparency; difficulty of architecture
choosing, demands of consistency to the training sam-
ple; difficulty of training algorithm choosing and re-
source-intensive process of training.

1.3. Exponential smoothing models

Exponential smoothing models were developed in
the middle of XX century and today are widespread due
to their simplicity and clarity [15].

Exponential smoothing (ES) is based on the idea
of constant review of the predictive values as of actual
receipt. ES model assigns exponentially declining
weights of observations as they age. Thus, the last
available observation has a greater impact on the fore-
casted value than the older observations.

Function of ES model looks like:

z(t) =S(t) + &, 4)
St)=az(t—-1)+(1-a)S(t-1),
where o — smoothing factor, 0<a<1; initial conditions
are determined, such as S(1)=z(0). In this model, each
following smoothed value S(t) is a weighted average
between the previous value of the time series z(t) and
the previous smoothed value S(t-1).

Holt model or double exponential smoothing is
applied to modelling processes with trend [13]. In this
case, the model should consider two components: level
and trend. The level and trend are smoothed separately:
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S(t)=az(t—1)+(1-a)S(t-1)-B(t-1)); (5)
B(t) =y (S(t=1)=S(t=2))+(1+v)B(t-1);
z(t) =S(t) + & .
Here o — level smoothing factor, as like in model
(4), y — trend smoothing factor.
Holt-Winters or triple exponential smoothing is
applied to modelling processes with trend and seasonal
component:

z(t) = (R(1) + G(1) S(1) . (6)
Here R(t) — smoothed level without seasonal
component:
R(t)zw

S )+(1+oc)(R(t—1)+G(t—1))a )

G(t) —smoothed trend:
G(t) =BE(t-D)-S(t-2))+A-p)G(t-1, (8)

and S(t) — seasonal component:

vz(t-D
S(t) = S +(1-vy)S(t-L). )

Size of lag L is determined by the length of the
season of the studied process.

The advantages of exponential smoothing models
are simplicity and uniformity of analysis and design.
Exponential smoothing models are most popular for
long-term forecasting [15].

Disadvantage of this class of models is the lack of
flexibility.

2. Long-term water consumption
forecasting for planning of city water
supply system modernization

As an example of long-term water consumption
forecasting of large city, we consider a time series of
average year values of water consumption in Moscow
city in the period from 1 January 1972 to 1 January
2009 and the time series of population in the city during
the same period (fig. 3, 4). As the software we use well-
known package STATISTICA.

As you can see from the graph (fig. 3), water con-
sumption increased until 1995 and decreased rapidly
from year to year after, and the population has increased
steadily (fig. 4).

It is necessary to forecast the consumption of water
for 10 years ahead and test the adequacy of the forecast.

Let us forecast water consumption using three
models: model ARIMA, neural networks and exponen-
tial smoothing, and then compare the results.

Determine the ARIMA (p, d, q) (P, D, Q) model
parameters by selection as: p Autoregressive = 1, q —
Moving average = 1, d =1. As there is no seasonality in
annual water consumption time series, P Seasonal = 0,
Q Seasonal = 0. The results of the forecast are presented
in fig. 5.
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Fig. 3. Line graph of water consumption by years
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Fig. 4. Line graph of the population by year
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To evaluate the constructed model, it is suitable to
use analysis of residues. For this purpose, we build
autocorrelation function balances, i.e. differences of
forecasted and actual values (fig. 6).

Autocorrelation Function
VALUE : ARIMA (1,1,1)(0,1,0) residuals;
(Standard errors are white-noise estimates)
lag Corr. S.E. o p
1 -,064 ,1600 B ,16 , 6890
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5 -,244 ,1505 B= 5,28 ,3824
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11 +,211 ,1352 11,90 ,3713
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0 0
-1,0 -0,5 0,0 0,5 1,0 — Conf. Limit

Fig. 6. Autocorrelation function of residues
of ARIMA model (1,1,1) (0,1,0)

To create a city water consumption forecast based
on artificial neural network we select volume of water
consumption and population as the input values of the
time series. Then create Multilayer Perceptron as type
of neural network and teach it with conjugate gradient
method (fig. 7, 8).
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Fig. 8. Forecast results projection of time series
for 10 years

It is possible to rate the quality of forecast based
on neural network, considering the quality of the net-
work (fig. 9).
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Fig. 11. Autocorrelation function of residues
of exponential smoothing model

It is intuitively clear that all the forecasting models
give quite believable water consumption forecasts.

On neural network forecast chart (fig. 8) it is
shown that the predicted curve (blue) is very well-
trained, as there is no significant deviation between the
input and the forecasted series. The correlation coeffi-
cient is close to 1 (fig. 9), that means the neural network
is built correctly. On exponential smoothing model
forecast chart (fig. 10) original series and its smoothed
version match, that’s why the forecast is adequate

In well-selected model, correlation of residues is
low, autocorrelation function and partial autocorrelation
function charts do not exceed the limits. Apparently,
autocorrelation function of ARIMA (1,1,1) (0,1,0)
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model (fig. 6) entirely lies in acceptable intervals, in-
stead exponential smoothing model autocorrelation
slightly higher than permissible limits (fig. 11).

Conclusion

Thus, the results of a forecasting models compari-
son revealed that ARIMA models and models based on
neural networks are most effective and adequate models
of long-term forecasting of large cities water consump-
tion.

Considering the fact that according to the results of
forecasting the next 10 years consumption will be re-
duced, we can conclude that the water supply company
is advisable to upgrade the water supply system so as to
reduce the amount of cleaning and pumping facilities to
thereby minimize economic costs.

The represented analysis of large cities water con-
sumption forecasting methods allows to determine
which methods and models are the best solution of the
urban problems of public water supply company man-
agement decisions, which depend on future levels of
demand.

Modern water utilities functioning system differs by
a wide range of integration of all kinds of resources, a
large number of infrastructure, internal and external
communications. Providing significant economic auton-
omy of water utilities and the need for formation of so-
cial-market elements of communal policy allow to build
an adequate regulatory system of water consumption and
its resource intensity based on a long-term forecast.
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NNAHYBAHHA MOAEPHI3ALIT CACTEMU BOOOMOCTAYAHHSA MICTA
HA BA3I MNPOrHO3Y BOAOCMOXUBAHHA

K.A. T'openosa, B.M. 3anauun

Poszensnymo npobremy nnamnysannsi mooepuizayii cucmemu 6000NOCMAYAHHS GENUKUX MICM HA 6a3i 00620CMPOK0BO20
nPOCHO3Y B000CHOANCUBAHHA. 3POONEHO 0210 ICHYIOUUX MOOeneli 00820CMPOKOBO20 NPOSHO3YBAHHS 3 GUKOPUCTNAHHAM 4ACOBUX
paois. Chopmynvosani nepesacu i nedoniku mooenei npocHo3y8anis Ha ocHosi asmopeepecitinux mooenei ARIMA, neiiponnux
Mepedc ma eKCHOHEHYIanbHo20 321a04Cy6ants. 30iUCHeHO HAOUHULL NPUKIAO 0820CMPOKOBO20 NPOSHO3YEAHHS 3A3HAYEHUMU
Memooamu 6000CNOACUBAHHS 8EIUKO20 Micma O/isl 8UABNEHHS HAUOLTbW e(heKmUBHOI Ma adeKeamuoi Mooeri..

Kniouosi cnosa: sooonocmauanns, 6000Cnodicusanis, npocHoO3, NPOSHO3YEANHA, HACOBULL PAO, MOOeNb, CHAMUCIUYHUL
ananis, ekCnoHeHyianbhe 32na0ICY8aAHHs, HEUPOHHA Mepedica.

NNAHWPOBAHUE MOAOEPHU3ALIUM CUCTEMbI BOOOCHABXEHUA TOPOOA
HA BA3E NPOrHO3A BOOOMNOTPEBJIEHUA

K.A. T'openosa, B.M. 3apauun

Paccmompena npobnema nnanuposanust MOOEPHUAYUU CUCHIEMbL 8000CHADICEHUSI KPYRHBIX 20p0008 HA Oaze 00120CPOYHOLO
npoeno3a éodonompebnenus. Coenan 0b630p Cywyecmgylowux Mooeeii 00120CPOHHO0 NPOCHOZUPOBAHUS C UCNONL30BAHUEM BPEMEHHBIX
psi0os. Cihopmynuposansvl npeumyuecmsa i HeOOCMamKL Mooesell NPOSHO3UPOBAHUsL HA OCHO8e agmopezpeccuotbix mooenei ARIMA,
HEUpOHHBIX cemell U IKCHOHEHYUANbHO20 cenadicusanus. Ocyujecmenen HanAoHbLL npumep 00N20CPOYHO0 NPOSHO3UPOBAHUS YKA3AH-
HbIMU MEmOoOamu 86000nompedieHusi 601bU020 20po0a Oisi Gbisi6IeHUs. Hauboee dPGeKkmusHoll U A0eK8amHOU MOOETU.

Kntouegvie cnosa: sodocnaboicenue, 6000nompeodienue, NPoeHO3, NPOCHO3UPOBAHLE, BDEMEHHOI PO, MOOETb, CIAMMUCIUYECKUL
AHANU3, IKCNOHEHYUATLHOE C2NIAXCUBAHUE, HEUPOHHAS CEMb.
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