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The issue of increasing the confidentiality and stealth of users on the Internet is the most pressing issue of the
day. One way to increase the secrecy of using Internet services is to install the Tor software, which protects itself
from the "data flow analysis" is a type of network surveillance that threatens the privacy of users, the confidentiality
of business contacts and communications implemented through routing network traffic over a distributed network of
servers running volunteers from around the world that does not allow the external observer to monitor the user's
Internet connection, find out which sites were visited, and also does not allow the site to know the physical location
of the user. However, the software in question has vulnerabilities that result in the loss of personal user freedom.
The author, through the application of general scientific methods such as analysis and synthesis, identified a list of
vulnerabilities and their importance for the confidentiality of the Tor software. The author carried out the
simulation of the Tor software by devices of the experimental environment and the construction of experimental
procedures based on the used mathematical apparatus of the Markov chains. The results of the experiment indicate
the necessity to determine the validity of the model for analysis of the anonymity protocol. In the course of this
research, an algorithm for testing the anonymity of Tor software users was developed, which allows to identify
possible sources of personal information of users. The effectiveness of the proposed modeling trust algorithm was
demonstrated by calculating the value of a training set of data necessary for outputting a wireless access protocol, a
proxy through Tor.
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communication protocol used by the client can be
represented by a Hidden Markov Model (HMM), we
can derive a model that is an exact representation of the
underlying protocol using the time information collected
on the server side. The suggested trust model approach
is applied to the attack experiment to determine the size
of the data required to construct a statistically
significant representative of the protocol.

Therefore, the aim of this work is the traffic
analysis of anonymity protocol using Hidden Markov
Model (HMM) based on model confidence.

Introduction

Tor Browser helps you to protect yourself from
"data flow analysis" that threatens personal freedom and
privacy, confidentiality of business contacts and
connections.

This service provides protection by routing your
network traffic across a distributed network of servers
launched by volunteers from around the world: this does
not allow an external observer to track your Internet
connection to find out which sites you visit, and also
does not allow the site to know your physical location.

This program works with many existing

applications, including web browsers, instant messaging Exposition of the main material

systems, remote access clients, and other applications
using the TCP protocol.

Hundreds of thousands of people around the world
use Tor for a variety of reasons: journalists and
bloggers, human rights organizations, law enforcement
officers, military personnel, corporations, people in
countries with repressive regimes, and just ordinary
citizens.

This article describes a scenario in which a client
interacts with a server through Tor. Assuming that the

of the research

1.1 Z-test

Among several classic statistical tests, z-test is a
simple but widely used statistical test. The rationale for
this test: given the random sample size n, a sequence of
random variables independent and identically
distributed (IID) from an unknown distribution, we are
going to make a decision for each value, and this
decision will be either correct or not.
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Consider the distribution of the number of errors
that will be made by our classification system. Since
each solution is independent of the others and is binary,
it is reasonable to assume that the random variable X,
representing the number of errors should follow the

binomial distribution B(n,p), where p is the error

rate. In addition, it is known that the binomial

distribution B(n,p) can be approximated by a normal
distribution N( W 02):

pw=np and o> =np(1-p) (1)

when n is the big enough [1]. Finally, if

X~N(np,np(1-p)), then the error frequency
1-
distribution is the Y:§~N(p,p( p)J, then
n n
X -
MNN(OJ)_
p(1-p)
Let's take a sample Xx;,X;,...X,. The null

hypothesis is the expected value X that is a given value
tx - Then we can write test statistics like this:
X —px
z=o0x =—", ()
ox

where and oy is the dispersion X. The

Ox

Og =—=

N
conversion process (2) is called standardization or
normalization, and the result is called the standard
estimate or z-count. z determines how many standard
deviations below or above the population means that the
average value of the sample is under the null hypothesis.
However, in most cases oy is unknown and may be
replaced by sample variance Xi,X,,...,X,, if n is big
enough. Using test statistics z for a given level of
significance o, we compute one way or two way p -
value. We reject the null hypothesis if p -value is less
than o and takes it another way.

Or, since the statistics z follows the standard
normal distributions, if the null hypothesis is correct, the
decision to reject the null hypothesis can also be made
by comparing the statistics z with a critical value
without converting it to p -value.

1.2 Hidden Markov Model

The standard Hidden Markov Model (HMM) is
N -Markov chain observed at discrete points in

t=0,1,2.... that S={1,2,..,N}
represents the space of the final state if we use a random
variable S; to indicate the state of the HMM at the time

Let wus assume

t, S; =s means that the HMM is in the condition of

3axucm inghopmauyii ma Kibepuemuuna deznexa

s<S in time step t. However, S; can’t be observed
directly. Instead, we see one way out. O;=0€0,
where O={1,2,..,M} stands for the final set of

outputs, also known as observations. For each state
seS. Two probability distributions are defined to
represent the state transition and output radiation rules,
respectively:

* Transition state theory

PS =Pr{S, =5/S, =s},

A3)
Vs,s'eS,t=0,1,2,...
* probability of observations
(6]
Py =Pr{0t+1=o|St=s}, )

VseS,0€0,t=0,1,2,...
As shown in fig. 1, two HMM probability
distributions generate two parallel stochastic processes
[1]: a process of states and state of observations.

P P -
States: 3" B S‘ » S(. B :_S‘J

Observations: 0, 0, Q,
Fig. 1. The HMM process and its two stochastic
processes: a probability of {St} and the observation

process {O, }

In this paper, we consider the problems of HMM
inference and a specific inference algorithm is the
causal splitting restoration algorithm (CSRA). This
approach of the HMM [2] creates state machines
deterministic at the transition exit, i.e. when each
observation is displayed in no more than one transition,
leaving the state. In addition, the main Markov chain
HMM generated using the Shalizi method when all
transition states are removed [2].

1.3 Partially Observable Markov Decision

Process

In the language of stochastic control, Partially
Observable Markov Decision Process (POMDP) are
control problems with partial observation. They usually
simulate stochastic environments with hidden processes.
By summarizing the Markov decision process (MDP)
and providing greater uncertainty, the POMDP provides
a more powerful formalism for modeling realistic
problems, especially for managing systems with noisy
data or limited sensitivity.

Formally, POMDP

(S,A,0,T,Z,r), where
S={1,2,..,N} is the finite set of states.

is defined as a 6-tuple

A ={1,2,..,M} is the finite course of action by.
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0= {1,2,...,K} is the finite set of observations and
output lends.
T:SxAxS—[0,1] is the

T(s,a,s')= Pr(s’|s,a)

state-transition

function. represents  the

probability of transition to state s’ after taking action a
in the state s.

Z:AxSx0 —[0,1] is the probability function of

observation. Z(a,s',o):Pr(o|a,s') denotes  the

probability of seeing o in the state s’ after taking

action a at the preceding step.
r:Sx A7 — R is the direct renumeration function.

Fig. 2. An influence diagram showing the relationships
between the various elements containing POMDP,
which meanwhile prove the Markov property

Solid arrows represent the dependencies of

existence (for example, S, depend both on S;, and on
Ay).

At any time, the system in some state se€S. The
agent accepts action a € A, which immediately gives a

reward r(s,a) and starts the transition to the new state

s' €S in the next step with probability T(s,a,s’). Three

elements S, A and T form the core-MDP and determine
the dynamics of the POMDP. But, unlike conventional
MDP, the agent can’t observe the state of the MDP core
during the decision process. Instead, he gets an
0'eO with probability

observation function

Z(a,s',0').

Unlike standalone HMMs, POMDPs are controlled
by actions selected by agents or controllers. The goal of
the POMDP study is to find a sequence of actions
{At}t =1,2,... known as the policy that makes the

system work as agents want. A policy is measured by a
compensation function, which is a mathematical
function of immediate remuneration. The goal of the
agent is to optimize the compensation function.

1.4 Decentralized POMDP

When decision making becomes a collective work
in which several agents need to be coordinated without
effective communication and even unclear about their
own local situation, the decentralized Controlled
Markov Processes with partial observations (DC-
POMDP) is the main tool used in decision theory to

solve this problem [3]. As an extension of POMDP to
the case of several agents, DC-POMDP is a more
general and more powerful modeling tool. However, the
DC-POMDP solution usually leads to excessive
computational overhead.

DC-POMDP can be formally defined by a topple
{S,K,Ay,..,Ag,0y,...0¢ ,R,P,Q},
where

S is the finite set of states.

K is the number of agents.

A(k) ,1<k <K is the agent's action space k.
O(k),1<k <K is the agent's observation space k.

R:SxAW % xAK) LR s

the direct
renumeration function.
R:SxA(l)x...xA(K)xS—>[O,1] is the state

stochastic transition function. Let us assume that
a=[aj,ay,....,ag |, ay eA(K), P(s,a,s")

represents the probability of transition from the state s

where

to the state s’ .

Q:A(l) x...xA(K) xSxO(l) ><...><O(K) —>[0,1] is
the state stochastic transition function. Let us assume
that ©=[0;,05,...,0x ], Where oy eO(K), Q(a,s',0)
represents the probability of obtaining a sequence of
observations 0 in the state s’ after the agent k,
1<k <K takes action a; at the preceding step.

From the definition, we can see that each agent

needs a local policy. But joint actions affect both the
dynamics and the global reward.

1.5 Final State Controller (FSC)

Although any POMDP policy may be represented
by a policy schedule, for some policies of an infinite
horizon, infinite policy schedules may be required [4].
Therefore, most policy-based algorithms limit their
search to finite political graphs, i.e. FSC, which can be
defined as an extension of a probabilistic automaton

(N,A,y,bg.E)  [5]
distribution x:NxA —[0,1] and the output set O,

along with the probability

where
N is the finite set of internal states of the

controller;
A is the course of action by POMDP;
O is the set of observations POMDP.

y:NxOxN —> [O, l] is the state-transition

function, y(n,o’,n’)= Pr(n'|n,n,o') is the probability

of transition to n’ from the state n after observation o';
b, is the default beliefs;

E < N is the discrete set;
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x :Nx A —[0,1] is the action choice function;
X(n,a)= Pr(a|n) is the probability of taking

action a € A in the state ne N .

Since the concept of FSC is not accepted, E
usually is not indicated. Moreover, & -optimal FSC for
average POMDP does not depend on the initial opinion
by . Therefore, the definition of FSC can be reduced to

(N,A,O,x, y), where A and O are known with this

POMDP. This leaves only two unknown variables: x
and y. At each step t FSC takes a € A as entering the

state n € N and generates an observation o' in the next
step in response. The transition of the internal state is
probabilistic and is determined by recent history, as can
be seen from the definition y. The number of internal

states |N| represents the size of the FSC, as well as the

amount of agent memory [4]. Internal states are fully
checked by the agent during the decision-making
process, which selects the action to be taken on each
node n € N in relation to function x.

1.6 Sequential Quadratic Programming (SQP)

SQP is one of the most successful methods for
solving problems of nonlinear limited optimization. It
consists of a set of algorithms, not just one algorithm
and is based on a deep theoretical foundation. SQP has
demonstrated excellent performance in solving general
problems of large-scale non-linear programming. In this
section, we look at the following NLP (natural language
processing) problem:

min f (x)
st. g(x)<0;
h(x)=0;

x eR",

®)

where x is a factor from n component; F:R —R" —
objective functional; the functions h(x):R"™ —R™
and g(x):R" - R' are resp. equality and inequality
constraints.

SQP solves NLP to convert it into a series of
problems with quadratic programming (QP). At each

iteration, the original NLP is reformulated as a subtask
QP, linearizing the constraints and replacing the

objective function f (x) with its local quadratic

approximation. QP subtask is:

min %dTBkd +VE (xi )

st Vg(x) drg(x)<0 (6)
Vh(x )" d+h(x,)=0

d=x-xj eR"

3axucm inghopmauyii ma Kibepuemuuna deznexa

VI (xy ):= 6 (x) f(xi) ~ 3f(xi) stands for
K oxh | oxp | oxp

the gradient function f(xy) at the point

Xk =|:xi,x12(,...,xﬁ}, and By =Hf(x) ) is Hessian
matrix f(x) at the point x) that is, the matrix of

second partial derivatives of a function f(x).

Assuming that x; is a solution to the QP routine for k

iteration, which is actually an evaluation of the original

NLP solution. So the sequence {xk}k € N, converges

to local optimal x* NLP. The basic idea of SQP is
similar to the methods of Newton and quasi-Newton.
However, the presence of constraints makes the analysis
and implementation of SQP methods much more
difficult [6]. There are many NLP for which individual
SQP methods exist to solve them. This NLP include
unconditional optimization systems, linearly limited
optimizations and non-linearly limited optimizations.
We speak POMDP as NLP and rely on SQP tools to
find solutions.

2 Anonymity Protocol Analysis

To use the z-test, let us offer a simple algorithm
for operational testing of the sequence of observations.
The algorithm determines whether the built model will
statistically represent the data flow in the collection
process. First, we collect a sequence of observational
data y of some length D and build a model from the
collected data. With a built model, we define z-
statistics and find if experimental statistics provides

100~(1—oc)% confidence that the transition with

probability € does not occur. If y is not long enough,
we will not be able to build a model from the data; it is
necessary to collect additional data. The algorithm is
presented below.

2.1 Algorithm

Let us denote the transitional probability &, when
the system is in the state s :
s €
YS = (7)
7-CS
where g is the asymptotic probability of the state s is

defined by the formula zn—s, where ng is the

number of times the state s is introduced during the

observation time yD .

Standardized z-statistics for the state s is defined
by the formula
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Test z-statistics for the state s is defined by the
formula

Zexp = msin Z . )

The model certainty is defined as

ap =1-[](1-P(Z<z)),

seS

(10)

where P(Z<z) —the probability that a normal

distribution matters less z .

The minimum amount of training data:
n

D* =%, (11)
TES
Algorithm:
Input:
- repeated observation y, of the time t;
- alphabet O ;

- a threshold set by the user € and the significance
level a.

Output:

- the significance of the model ay ;
,D.

From time factor t=0:
1.To build the G,

Y=Y0,¥Y15-> Yt -
2. To calculate the probabilities of the asymptotic

- required length |y

model out of sequence

state g for VseS.

3.Under step 7 determine the values yf for
VseS.
4. To calculate experimental statistics z, for each

step 8.
5. To find z.,,, according to equation (9).
6.1f ze, >2z,, to conclude that G; is the

underlying process with the desired level of confidence
and D=y

7. To calculate a; according to equation (10);
stop.

8. Otherwise, collect more data |y| =D?, where

D? is calculated by equation (11);

9. Go to step 1.

Summing up, we make the following assumptions
about the observation data and our knowledge of the
underlying process. First, the process under
consideration has a finite number of states and the
transition probabilities are stationary. This assumption
ensures that the training data set fully reflects the

process. In addition, the alphabet O was completed and
contains all expected observations.

Assuming this, our approach is limited to finding
“known-unknowns” [7] at a given degree of statistical
likelihood a . If the observation is not in the alphabet,
i.e. is an “unknown-unknown” [7], the transition does
not affect the confidence or the probability of an
unknown transition.

Also, if K, =0 and Ug =0, then the state has no

possible fail-safe outgoing transitions. Transitions are
not available to exit the state, and state testing does not
change the confidence in the model.

2.2 POC

The experiments presented in this section are
simple. The goal is to test the HMM construction
algorithm [8] and provide readers with simple
illustrations of the concept of model confidence. This
section provides two examples. Below we consider the
details of the application of the suggested algorithm for
determining the model confidence in the detection of the
Tor network protocol.

Example 1

The HMM used to generate the observation
sequence of Example 1 is shown in fig. 3, a. Let's start
with a random selection of the initial state in this model.
At each step, an outgoing transition occurs with an
appropriate probability and the corresponding symbol is
observed. The initial process was set up to generate
10,000 data symbols, fig. 3,b. We can see that the
reconstructed model has the same state structure and
almost the same transition probabilities as the original
model.

A(01)

A(01) A1)

A0.9) B(0.9) A091 B(0.9) A09) B(0.9)

B(0.1) B (0.09) B(0.1)

Fig. 3. Example 1:

a — original model,;
b — Model built of 10 000 packages;
¢ — Model built of 100 000 packages

If the process is repeated for 100 000 characters,
we find that the probabilities correspond to the original
model.

Example 2

The same steps were applied to the Markov chain
in fig. 4, a, as was done in the example.
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1. A model built of the first 10 000 observations is
shown in fig. 4, b. In this case, the state structure model
is different from the original model, since state 4 has not
been visited once since the first 10 000 observations.
However, with a large amount of data collected, the
state structure of the reconstructed model using 100 000
observations matches the original model. In addition,
the transition probabilities are also closer to the actual
values.

A(0.1)

c
Fig. 4. Example 2:
a — Original model;
b — Model built of 10 000 characters;
¢ — Model built of 100 000 characters

3axucm inghopmauyii ma Kibepuemuuna deznexa

The results of both examples illustrate a point
made earlier. If an excessive number of data samples is
used, the algorithm creates only a model that represents
only the data used to create it and not the main process.
This is what makes the difference in the state structure
and transition probabilities. The probability of not
seeing the transition decreases with increasing
observation time. To create a model that represents the
underlying process, there must be enough data in the
training kit to fully describe this process.

Thus, we have shown how to determine at a given
degree of statistical likelihood, if an “unknown”
transition does not occur taking into account two user-
defined threshold values &. The parameter ¢
determines the minimum probability that transitions
with probabilities of at least € should be included in the
built model.

Thus, we have shown how to determine at a given
degree of statistical likelihood, if an “unknown”
transition does not occur taking into account two user-
defined threshold values €. The parameter ¢
determines the minimum probability that transitions
with probabilities of at least € should be included in the
built model. A parameter a is the confidence level that
shows the accuracy of the model result. In our
demonstrations of the algorithm, we specifically looked
at whether the built model corresponds to a model that
acts as the main process.

2.3 Protocol Detection

Now we use the model trust approach presented
above to determine the protocol that the sender uses
when talking to a client over the Tor network, collecting
time intervals between packets on the client. The time
between sending each packet depends on the symbol
associated with the transition. Each character is assigned
a specified time delay in milliseconds, and the server
waits for this amount of time before sending the packet
to the client. This method links inter-packet delays with
HMM transitions. In other words, the time delays
between successive packets will be our observations of
the main process. This is the behavior that we expect in
actual protocols that the packet time will be associated
with the processing required by a particular task in this
process.

Tor is a low-latency overlay network that allows
applications to communicate anonymously and securely
on the Internet. An overlay network is a logical network
connected by virtual circuits on top of a physical
network. Links that connect individual systems in the
overlay network are implemented as “tunnels” through
the core network. Sent packets are encrypted multiple
times so that they remain logically separate from normal
traffic. The stability and deployment of Tor can be
explained by its practical design [9-10].
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Tor basically consists of computers serving two
types of services: a repeater and a directory server.
There are several thousand relays, also known as onion
routers, which operate on a voluntary basis by
individuals and organizations around the world. The
path through Tor is built of a relay. Relays and clients
exchange data according to the catalog [11] for the
exchange of catalog information. By default, relays
listen on TCP port 9001 for incoming requests. Active
relays publish their router handles to the list of
predefined directory servers (organs), reporting their
current status. Directory servers store router handles on
the relay list and constantly check the availability of
these relays. In addition, each flag is assigned a
different flag in accordance with their knowledge of the
network status, that is, which ones should be displayed
as working, valid, stable, etc. Directory servers
exchange their views with each other on the network on
a regular basis, for example, every hour. After all
servers match the list of available relays, which is called
consensus over the network, the consensus is published
on the TCP port (default 9030) and available for
download.

To use Tor, the client will need an HTTP proxy to
retrieve the Tor directory and an HTTPS proxy to
receive the relay. The current version of Tor allows the
client to use any HTTPS or SOCKS proxy server to
access the Tor network. Once installed, Tor can be
initiated as an onion proxy (OP) if it processes only
local requests. SOCKS proxy listens on port 9050 by
default for streams created by TCP-based applications,
such as web browsing, SSH, instant messaging, etc.
Then the traffic will be routed via Tor.

Tor starts building charts as soon as they have
enough directory information. When the application
flow arrives, it will be connected to a pre-built circuit, if
it exists, or wait until the circuit is available. Before
building the circuit, the client selects all relays (by
default, by default) to use the launch with the output
node. The entry node of the circuit must be one of the
entry guards, which is a set of nodes used by the client
as long-term entry points to Tor.

The connection between the client and the entry
node is first established using TLS/SSLv3 for
authentication and encryption [11]. After creating the
first connection, the path extends to the second and third
nodes in a similar way. Using this incremental path-
building project, the client sets the session keys with
each subsequent node independently [12]. The final
node of the scheme, known as the output node, is
selected to ensure, at best, support for connections to the
destination.

Before joining a stream to a built scheme that can
support a client request, Tor will send a test request. If
the request is not completed, Tor will send an error to
the user.

All traffic going down the scheme is packed into
512-byte cells, which is an effective measure against
leakage of packet size information passing through the
side channels. Then these cells are iteratively encrypted
using the key of each serial relay circuit. That is, the
outermost layer of the packet is encrypted using the
public key of the input node.

And so on, the innermost level of encryption is
performed through the key of the output node. When a
cell moves down the chain and comes to each relay
node, the node “expands” the cell with its private key to
identify where it should send the decrypted cell, for
example, clear the onion skin. Thus, each node in the
chain knows only the ascending node and the node
downstream and cannot evaluate the entire panorama of
the circuit. Thus, the compromise of a single node does
not violate anonymity.

The procedure described is illustrated in fig. 5.
When the addressee, Alice, responds to Bob’s request,
the same process is performed in the reverse order.
There are many other details of the process, such as
encryption schemes, integrity checking, congestion
handling, path selection, etc. A detailed specification of
the Tor protocol can be found in [12].

Here is a practical example of detecting a protocol
tunneled through Tor to illustrate the usefulness of the
application of the suggested model trust algorithm. We
use the approach [13] introduced to derive a protocol
model that the server uses when talking to a client
through the Tor network, by collecting time intervals
between packets on the client.

Bob

Tor Network

Node 2

HH
Node 2 = Node 3 E

| Node 3 2 Alice

SREREANER Node 1 < Node 2

Stk AR EREEE

Fig. 5. The Tor Cascade, which originated from Bob,
intended for Alice, is sent through a Tor circuit
consisting of 3 relays

First, we have a valid HMM that represents the
protocol used. The time between sending each packet
depends on local processing and is represented by the
symbol associated with the transition. Each character is
assigned a time delay range in milliseconds, and the
server waits for this amount of time before sending the
packet to the client. This method links inter-packet
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delays with HMM transitions. In other words, the time
delays between successive packets will be our
observations of the main process. In actual protocols,
the packet time will be related to the processing
required by a particular task in the process. After
designating the data that we record, the model building
algorithm is used to create the model used by the server.

2.4 Model Building

The model used by the server in this experiment is
shown in fig. 6.

Y(1.0) 20

Fig. 6. Original five-state model for the pruning
experiment

The server starts the process by randomly selecting
a state in its model as the start state. To send each
packet, the transition is taken from the current state, and
the corresponding time delay waits before sending the
packet to the client. If there is more than one possible
transition from a state, the transition is selected
randomly, weighted by the probability of each
transition. All data collection was performed on
processes sent via Tor. In the article [13] program was
used to capture packets within the network. Calculate
the difference between each successive packet time At.
We then symbolize the data, grouping them into ranges
and assigning something in that range to a unique
character, such as A or B. We start with L=2 and
increase it as needed. We follow the process described
in the flowchart in fig. 7, to create the models required
by our attack.

( Datacaptured )
.
Symbolize

‘ Get more data

H Constructwith L=} H i++ >

No
P
~" Did state
structure >
\ s;ablhze?

Modei built

Fig. 7. Flowchart summarizing
the process of building a model

No /Ermugh

~._ data?
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When the confidence test is run on the model, we
find that it requires 20 624 750 data samples. This
means we need to capture more data and rebuild.
Because the amount of required data is so large, it has to
be generated in lengths of 200 000 packets at a time.
After each set of 200 000 we rebuild the model and run
the confidence test again.

Oddly enough, the required amount of data keeps
increasing with each set. In a Tor connection, there are
times when a circuit fails or changes, or a relay gets too
busy and delays a packet. There is some extra variable
latency that affects roughly one out of every 200
packets. These glitches cause the packet to arrive later
than it should have and because of that, it is incorrectly
symbolized. All of these new events are very low
probability, which results in a lower minimum
asymptotic state probability for each new set. This
lower probability causes the confidence test to increase
the amount of data required.

To prune these unsubstantiated states and
transitions from the model we use the method of
thresholding the asymptotic state probabilities.

After a model has been built with CSRA, it may
have transitions that are taken very rarely and states that
are visited very rarely. By setting a threshold on the
asymptotic state probabilities, rare events are trimmed
from the model. The pruning process is carried out
mainly in three steps:

1. Any state with an asymptotic probability below
the threshold is removed from the model.

2. Any transitions going to or leaving from that
state are also removed.

3. Finally, any state or set of states that cannot be
reached due to a removal are also deleted.

This leaves the model with only the states and
transitions for which we have enough data. When we
are unable to collect enough data to be confident in the
full model, we leave out the parts where we would need
more data to achieve confidence.

The value of the probability threshold is how often
we should expect the process to deviate from the model.
The smallest asymptotic state probability and
corresponding result from the confidence test are plotted
against the number of packets captured in fig. 8.
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Fig. 8. The plot of model conﬁdence results as more
data is captured
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The steady increase suggests we will not easily
capture enough data to rebuild the model confidently.
As for our experiment, analysis of the asymptotic state
probabilities shows a large gap between 71 of the states
and the other eight. The 71 have probabilities below
0.06%, while the other eight have probabilities above
8.2%. That is a break of over two orders of magnitude.
This division makes a good level of significance for
pruning. Following the pruning process, the model in
fig. 9 results with a threshold of 0.01 (or 1%).

It is appropriate at this point to recall that the states
of the putative HMM are characterized as having the
same probability distribution over the next output
symbol. In this case, it follows that nodes 3 and 4 in fig.
9 can be considered as one and the same state and
should be combined with each other. Similarly, nodes 5
and 7 are combined, as well as states 2 and 6.

Y(1.0)

Fig. 9. The result after pruning low-probability states
and transitions

Nodes 6 and 7, although both have the same
output, must remain two separate states. Otherwise, the

transition leading to the combined state will be
displayed on more than one symbol, that is, on A and B.
In fig. 10 shows the resulting model, which essentially
coincides with the original model in fig. 6.

Fig. 10. The resulting model after the merging of states
with the same probability distribution of the next output

Y(1.0) Z(1.0)

Conclusion

This article analyzes the traffic of the anonymity
protocol using a hidden model of the model based on
the Markov model, reveals its main features.

Thus, the work describes the temporal side of the
synchronization  channel attack to detect a
communication protocol tunneled through Tor. Model
trust algorithm is applied to the implementation of the
attack. A proof-of-concept experiment on our private
Tor network showed that a model could successfully be
reconstructed from inter-packet timings, and also
proved the practical application of the model trust
algorithm.

The direction of further research should be
considered the development of methods for increasing
the confidentiality of traffic in public networks.

Cnucok nitepatypu

1. The path less travelled: Overcoming Tor’s bottlenecks with traffic splitting / Mashael AlSabah, Kevin Bauer, Tariq
Elahi, Ian Goldberg // Privacy Enhancing Technologies Symposium (PETS). — Springer, 2013. — P. 143-163.

2. Chaabane A. Digging into anonymous traffic: A deep analysis of the Tor anonymizing network / A. Chaabane,
P. Manils, M.A. Kaafar // IEEE Network and System Security (NSS). —2010.

3. A Survey of Electric Power Synchrophasor Network Cyber Security / C. Beasley, X. Zhong, J. Deng, R. Brooks,
G. Kumar Venayagamoorthy // Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE PES. — P. 1-5.

https://doi.org/10.1109/ISGTEurope.2014.7028738.

4. Aras R. An Investigation into Mathematical Programming for Finite Horizon Decentralized POMDPs / R. Aras,
A. Dutech // Journal of Artificial Intelligence Research. —2010. — Vol. 37. — P. 329-396. https://dx.doi.org/10.1613/jair.2915.

5. Zero knowledge hidden Markov model inference / J.M. Schwier, R.R. Brooks, C. Griffin, S. Bukkapatnam // Pattern
Recognition Letters. — 2009. — Vol. 30(14). — pp. 1273-1280. https://dx.doi.org/10.1016/].patrec.2009.06.008.

6. Archer G.E.B. Parameter estimation for hidden Markov chains / G.E.B. Archer, D.M. Titterington // Journal of Statistical

Planning and Inference. — 2002. — Vol. 108 (1-2). — P. 365-390.

7. Ephraim Y. Hidden Markov processes / Y. Ephraim, N. Merhav // Special issue on Shannon theory: perspective, trends,
and applications. Institute of Electrical and Electronics Engineers. Transactions on Information Theory. — 2002. — Vol. 48(6). —

P. 518-1569.

74


http://www.hups.mil.gov.ua/periodic-app/journal/soi/2018/4

3axucm inghopmauyii ma Kibepuemuuna deznexa

8. Poupart P. Exploiting structure to efficiently solve large scale partially observable Markov decision processes: PhD
thesis / P. Poupart. — University of Toronto, 2005.

9. Spaan M.T.J. Perseus: randomized point-based value iteration for POMDPs / M.T.J. Spaan, N. Vlassis // JAIR. — 2005. —
Vol. 24. — P. 195-220.

10. Side Channel Analysis of Multiple PMU Data in Electric Power Systems / X. Zhong, P. Arunagirinathan, A. Ahmadi,
R. Brooks, G.K. Venayagamoorthy, L. Yu, Y. Fu // Power System Conference (PSC). — 2015. — Clemson University. — P. 1-6.

11. Fu Y. Using botnet technologies to counteract netowrk traffic analysis: Ph.D. thesis / Y. Fu. — Clemson University,
2017.

12. Rabiner L.R. An introduction to hidden markov models / L.R. Rabiner, B.H. Juang // IEEE ASSP Magazine. — 1986. —
P. 4-16.

13. Capp’e O. Inference in Hidden Markov Models / O.Capp’e, E. Moulines, T. Ryden. — Springer Series in Statistics,
Springer-Verlag New York, Inc., Secaucus, 2005. — NJ, USA.

14. Loesing K. Case Study on Measuring Statistical Data in the Tor Anonymity Network / K. Loesing, S.J. Murdoch,
R.A. Dingledine // Proc. of the Workshop on Ethics in Computer Security Research. —2010.

References

1. AlSabah, M., Bauer, K., Elahi, T. and Goldberg, 1. (2013), The path less travelled: Overcoming Tor’s bottlenecks with
traffic splitting, Privacy Enhancing Technologies Symposium (PETS), pp. 143-163, Springer.

2. Chaabane, A., Manils, P. and Kaafar, M.A. (2010), Digging into anonymous traffic: A deep analysis of the Tor
anonymizing network, /EEE Network and System Security (NSS).

3. Beasley, C., Zhong, X., Deng, J., Brooks, R. and Kumar Venayagamoorthy, G. (2014), A Survey of Electric Power
Synchrophasor Network Cyber Security, Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE
PES, pp. 1-5. https://doi.org/10.1109/ISGTEurope.2014.7028738.

4. Aras, R. and Dutech, A. (2010), An Investigation into Mathematical Programming for Finite Horizon Decentralized
POMDPs, Journal of Artificial Intelligence Research, Vol. 37, pp. 329-396. https://dx.doi.org/10.1613/jair.2915.

5. Schwier, J.M., Brooks, R.R., Griffin, C. and Bukkapatnam, S. (2009), Zero knowledge hidden Markov model inference,
Pattern Recognition Letters, Vol. 30(14), pp. 1273-1280. https://dx.doi.org/10.1016/j.patrec.2009.06.008.

6. Archer, G.E.B. and Titterington, D.M. (2002), Parameter estimation for hidden Markov chains, Journal of Statistical
Planning and Inference, Vol. 108 (1-2), pp. 365-390.

7. Ephraim, Y. and Merhav, N. (2002), Hidden Markov processes, Institute of Electrical and Electronics Engineers.
Transactions on Information Theory, Special issue on Shannon theory: perspective, trends, and applications, Vol. 48(6),
pp. 1518-1569.

8. Poupart, P. (2005), Exploiting structure to efficiently solve large scale partially observable Markov decision processes:
PhD thesis, University of Toronto.

9. Spaan, M.T.J. and Vlassis, N. (2005), Perseus: randomized point-based value iteration for POMDPs, JAIR, Vol. 24,
pp. 195-220.

10. Zhong, X., Arunagirinathan, P., Ahmadi, A., Brooks, R., Venayagamoorthy, G.K., Yu, L. and Fu, Y. (2015), Side
Channel Analysis of Multiple PMU Data in Electric Power Systems, Power System Conference (PSC), Clemson University,
pp. 1-6.

11. Fu, Y. (2017), Using botnet technologies to counteract netowrk traffic analysis: Ph.D. thesis, Clemson University.

12. Rabiner, L.R. and Juang, B.H. (1986), An introduction to hidden markov models, /[EEE ASSP Magazine, pp. 4-16.

13. Capp’e, O., Moulines, E., and Ryden, T. (2005), Inference in Hidden Markov Models, Springer Series in Statistics,
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

14. Loesing, K., Murdoch, S.J., and Dingledine, R.A. (2010), Case Study on Measuring Statistical Data in the Tor
Anonymity Network, Proc. of the Workshop on Ethics in Computer Security Research.

Received by Editorial Board 10.10.2018
Signed for Printing 11.12.2018

Bioomocmi npo asmopa: Information about the author:

Kacim A00yx Maxni Qasim Abbood Mahdi

KaHIUIaT TEXHIYHUX HAyK Candidate of Technical Sciences

JOLEHT KoJemKy yHiBepcutety An Tadd, Senior Lecturer of AL Taff University College,
Kepb6ena, Ipak Karbala, Iraq

75



Cucmemu 06pooku ingpopmauii, 2018, eunyck 4 (155) ISSN 1681-7710

AHANI3 TPA®IKY AHOHIMHOCTI MPOTOKOIY
HA OCHOBI BUKOPUCTAHHS1 CKPUTOI MAPKIBCbKOI MOAENI OOBIPU

Kacim AG6Oyn Maxni

Tlumannus niosuwenns KoOH@IOeHyitiHOCmI ma cKpumHocmi pobomu Kopucmyeauie 6 mepedxci Immepnem € Haubinvu
AKMYANLHUM NUMAHHAM Cb0200eH . OOHUM 3 cnocobie nideueH s, CKPUMHOCHI KOPUCIY8AHHA NOCTy2amu Mepedci [nmeprem
€ 6CMAHOBNEHHA NPOSPAMHO20 3abesneuenns Tor, wo 0036018€ 3axucmumucs 6i0 ‘“‘aumanizy NOMoky oaumux’ — pi3HOGUOY
Mepedcegoeo HazaAdy, AKUU 3a2pPOdiCyeE NePCOHANbHIll c80000i 1| NpUBAMHOCMI KOpUCMy8auis, KoH@ioenyitinocmi 0Oiznec
KOHMAKMIG i 36'513Ki6, W0 peanizycmvCsi 3a paxXyHOK Mapuipymusayii mepesiceeo2o mpaiky no po3nooiieHoi mepedici cepeepis,
3anywenux 006poBONLYAMU 3 YCbO2O CIMY, WO HEe OAE MONCIUBOCI 306HIUHLOMY CnOCmepieauesi giocmedicy8amu inmepHem-
3'eOnanns kopucmysaua, diznamucs ki catimu 6yiu 6i08i0aHI, @ MAKOIC He 0AE€ MONCIUGOCMI catimy OizHamucs Qizuune micye
3Haxo0xcenHs Kopucmysaua. Ilpome 3asnauene npozpamue 3a0e3neyeHHs MA€ 6pA3IUEOCHI, WO NPU3BO0AMb 00 empamu
nepconanvHoi c600600u Kopucmysauis. A6mMopom, WIAAXOM 3ACMOCY8AHHA 3A2ANbHOHAYKOBUX MemOoOi8, MAaKux AK auaniz ma
cunmes, BUHAUEHO NepeliK 8pazIueocmell ma ix eaxcaugicms 015 KOHGIOeHyitiHocmi pobomu npozpamuo2o 3abesnevenns Tor.
Asmopom nposederno modeniosanis pobomu npozpamnozo sabesneuenns Tor 3a 00NOMO2010 eKCNEPUMEHMATLHOZ0 CepedosUlya
ma hnoby0osu exkcnepuMenmanbHux npoyeodyp, Wo 3dCHOGAHI HA GUKOPUCMANI Mamemamuinozo anapamy Mapxiecokux
nanyiocie. Pezynbmamu excnepumenmy c8iouams npo HeoOXiOHicmb GU3HAYEHHS 8IpHOCMI MOOeni O aHANi3y NPOMOKOTY
anonimuocmi. Taxodw 6 X00i 3a3HaueH020 00CHIONHCEHHA PO3POOIEHO AN20PUMM NePesipKU AHOHIMHOCII pobomu KOpUcmyeadis
npozpamnozo s3abesneuents Tor, wjo 0036014€ GUIHAUUMU MONCIUB] MICYs BUMOKY NEPCOHANbHUX GI0OMOCMeEll KOPUCIYBAUiE.
Egpexmugnicmb 3anpononHo6ano20 MooenbHo2o aneopummy O06IpU OeMOHCIMPYEMbCS WIAAXOM OOYUCTEHHA BeludUuHU HAOOpy
OaHUX HABYAHHS, HEOOXIOHUX O/ BUBEOEHHS NPOMOKOLY 6e30pomo8ozo docnmyny, npokci uepes Tor.

Knwouosi cnosa: mepexca anonimnocmi Tor, Oesnexa Inmepnemy, cucmema 6UABIEHHA BMOpPeHEHb, OOCIIONCEHHS

mpagixy.

AHANN3 TPA®UKA AHOHMMHOCTU NPOTOKOIJIA
HA OCHOBE MUCMONb30BAHUA CKPbITOW MAPKOBCKOW MOAENW OOBEPUA

Kacum A60yn Maxau

Bonpocbwl nosviuienus KonguoenyuarbHocmu u CKpbImHocmu pabomsl noivsogameneti 6 cemu Humepnem seiawomcs
Haubonee axmyaibHbIMu 6onpocamu cogpemenrocmu. OOHUM U3 cnocob608 NOGbIUeEHUs CKPLIMHOCHU NONb306AHUS Y CIy2aMU
cemu Humepnem agnsiemcsa yCmanoselieHue npoepammuozo obecnedenus Tor, umo nO360JAem 3auWumumvcs om “‘aHanusa
NOMOKA OQHHLIX” — PA3HOBUOHOCMU Cemego20 HA030pA, KOMOPUI Yepodcaem HePCOHANbHOU €80000e U NpUGamHOCMuU
noav3oeameneli, KOHOUOEHYUATbHOCU OU3HeC KOHMAKMO8 U CéA3ell, Peanusyemcs 3a cuem Mapuipymu3ayuu cemesozo
mpaguka no pacnpedenenHol cemu Cepeepos, 3anyujeHHbIX 006POBOILYAMU CO BCE20 MUpPA, YMO He Odem BO3MONCHOCIU
GHeWHeMy HAOTI00ameNnio OMCAeHCUsams UHMEPHEM-COeOUHEeHUs. NOb308ameNs, Y3Hamy Kakue caumvl OblLiu noceujeHvl, a
maksce He Odem BO3MONCHOCMU calima Y3Hamb usuueckoe Mecmonaxoxcoenue noavsosamens. OOHAKO YKaA3aHHOE
npozpammuoe obecneuenue umeem YA3GUMOCMU, NPUBOOAUUE K Nomepe NepCoHAnbHOU c80000bl nonvzosamenei. Aemopom
nymem npumMeHenus: 0OWeHayYHbIX MeNMo008 ,MAKUX KAK AHAAU3 U CUHMe3, OnpedeneH nepedenb YA38UMOCmell U UX 8aXNCHOCHb
ona  KoHudenyuanvhocmu pabomuvl npoepammuozo obecneuenus Tor. Aemopom nposedeHo Moldenupoganue padomvl
npocpammnozo obecneuenus Tor ¢ nOMOWBIO IKCNEPUMEHMANLHO2O CPeObl U NOCMPOEHUS IKCHEPUMEHMANLHBIX NPOYedyp,
OCHOBAHHBIX HA  UCNONb306AHHbIE ~MAMEMAMUYECKO20 Annapama MAapKo8cKou yenu. Pe3zynomamvl — 9KCnepumeHma
C8UOeMeNbCMBYIOM 0 He0OXO0OUMOCIU OnpedeieHus 6epHOCIU MOOenU Ol AHAAU3A NPOMoKoaa anonumtocmu. Takoce 6 xooe
VKA3aHHO20 UCCIe008AHUA  PA3PAOOMAH  ANcOpUmMM NPOBEPKU  AHOHUMHOCMU pAbOmbl  NOAb306amenei  NpoPAMMHOZ0
obecneuenuss Tor, umo noseoisiem Onpederumsv BO3MONCHbIE MECHd YMeYKU NepCOHANbHbIX CGeOeHUll NOoNb306amernel.
Odexmugrnocmv npednorHcenHo20 MOOEIbHO20 An20pUmMa 008epus OeMOHCMPUPYemca nymem 8bl4UCIeHUs 8elUdUHbl Habopa
OaHHBIX 00YUeHUsl, HeOOXOOUMBIX 07151 8bIBOOA NPOMOKOIA HeCnPO8OOH020 docmyna, npokcu uepes Tor.

Knwouesvie cnosa: cemv awnonumnocmu Tor, 6esonacnocms Humepnema, cucmema oOHAPYICEHUS SMOPAHCEHUL,
uccnedosanus mpaguxa.
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