УДК 614.842

М.І. Іванов, Т.М Курська, І.В. Міщенко

ДЖОЗЕФСОНІВСЬКИЙ СИНХРОННИЙ ДЕТЕКТОР НА ОСНОВІ ВИСОКОТЕМПЕРАТУРНОЇ НАДПРОВІДНИКОВОЇ КЕРАМІКИ

Представлені результати експериментальних досліджень синхронного джозефсонівського детектора на основі високотемпературної надпровідникової кераміки (ВНК).

Постановка проблеми

Одним зі шляхів удосконалювання параметрів радіоелектронних приладів є охолодження до низьких температур основних елементів радіо- і мікроелектроніки. Зі зменшенням температури, при якій працюють прилади, знижуються шуми, збільшується чутливість і коефіцієнт передачі багатьох нелінійних елементів на основі напівпровідникових надпровідників [1, 2]. У теперішній час ведуться дослідження радіофізичних параметрів нелінійних елементів на основі ВНК.

Аналіз останніх досягнень і публікацій

Параметри нелінійних джозефсонівських елементів на основі ВНК, що працюють при температурі рідкого азоту (T = 77 °K), дотепер детально не досліджені [1]. Відсутня інформація про вольтватну і порогову чутливість джозефсонівських детекторів слабких теплових сигналів в інфрачервоному та НВЧ-діапазонах довжин хвиль.

Мета статті – обгрунтування можливості створення високочутливих джозефсонівських детекторів на основі ВНК, що працюють у режимі синхронного детектування сигналів НВЧ-діапазону довжин хвиль.

Постановка завдання та його вирішення

Джозефсонівський перехід створювався в талієвій ВНК і мав такі геометричні параметри: довжина переходу – 1 мкм, ширина – 0,5 мкм, висота – 0,4 мкм. Розглянемо основні параметри джозефсонівського переходу, що працює в режимі синхронного детектування. Нехай сигнал потужністю P_c змішується на переході Джозефсона із сигналом гетеродина потужністю Р. Частоти цих сигналів рівні. Тоді середнє значення потужності сигналу P_c на нульовій різницевій (проміжній) частоті для $P >> P_c$

буде мати вигляд

$$P_{o} = \frac{\beta^{2} (P_{c}P)^{2n}}{R} \cos^{2} \varphi, \qquad (1)$$

де β – вольтватна чутливість джозефсонівського переходу;

R – вхідний опір підсилювача різницевої частоти сигналу і гетеродина;

n – коефіцієнт, що характеризує нелінійні властивості змішувача (для напівпровідникових діодів n = 0,5);

ф – різниця фаз між сигналом і гетеродином.

При синхронному детектуванні важливо знати також коефіцієнт передачі джозефсонівського переходу, обумовлений як відношення потужності Р_о до потужності вхідного сигналу Р_с:

$$K = \frac{P_o}{P_c} = \frac{\beta^2}{R} P^{2n} P_c^{2n-1} \cos^2 \phi .$$
 (2)

Вираз (2) показує, що при досить великих значеннях Р і β можуть бути отримані високі значення коефіцієнтів К. З виразів (1) і (2) випливає, що при φ , кратному $\pi/2$, ефект детектування відсутній. Функціональна схема вимірів наведена на рис. 1.

Високочастотний сигнал від клістронного генератора 8 (ГЗ-26), ослаблений атенюатором 12 (ДЗ-33А), з однієї сторони через спрямований відгалужувач 11 надходив на циркулятор 10 (ЗЦВ-100 Б), а з іншої сторони проходив прямо через аттенюатор 7 (ДЗ-33А) на трійник 6. Перший сигнал був вимірюваним сигналом, що за допомогою циркулятора 10 і перемикача 13 (перемикач на р–і–п діоді) перетворювався в імпульсно-модульований сигнал майже з 100 %-ю модуляцією за амплітудою. Потім цей сигнал послаблявся за амплітудою атенюатором 9 (ДЗ-33А) і також подавався на трійник 6. Другий сигнал визначений тут як сигнал гетеродина. Для запобігання влученню сигналу гетеродина в систему модуляції застосовувався вентиль 5 (Е8-24). Дже-

релом модулюючого сигналу був генератор 14 (ГЗ-18). Від трійника 6 обидва сигнали надходили на джозефсонівський перехід 1, де відбувалося їх перетворення. Перетворений у нульову різницеву частоту детектований сигнал з частотою модуляції 1 кГц через узгоджувальний трансформатор 2 (у цьому блоці знаходиться також джерело зсуву за струмом переходу Джозефсона) з коефіцієнтом передачі 1:15 надходив на вхід селективного підсилювача 3 (У6-4) зі смугою пропускання ≈100 Гц на частоті вимірів. Осцилограф 4 (31-19В) використовувався для візуалізації приймального сигналу. Експериментальні залежності (рис. 2, 3) отримані для джозефсонівського переходу, у якого опір у нормальному стані складав 30 Ом, а надпровідний критичний струм ≤30 мкА. Струм зсуву дорівнював 30 мкА і відповідав максимальному відклилу переходу на вимірюваний сигнал. Джозефсонівський контакт знаходився в 3-см хвилевідній секції перерізом 23×10 мм². Для узгодження джозефсонівського переходу з хвилеводом був плавний перехід на переріз 23×1 мм². Температура в кріостаті 77 °К. Частота НВЧ-генератора, на якій досягалося синхронне детектування за схемою вимірів (рис. 1), дорівнювала 9,4 ГГц.

На рис. 2 наведена залежність відклику джозеф-

сонівського переходу на різницевій частоті у вигляді напруги на ньому від рівня підвідної потужності сигналу Р_с.

Крива 1 відповідає звичайному амплітудному модулюванню без перетворення частоти. Як видно з кривої, закон детектування в області малих сигналів є близьким до квадратичного з помітним відхиленням від нього при сигналах, що перевищують 10^{-10} Вт. Вольтватна чутливість в області квадрати-

Рис. 3. Залежність напруги нульової різницевої частоти на джозефсонівському переході від потужності гетеродина при потужності НВЧ-сигналу: $1 - 4,5 \cdot 10^{-13}$ Вт; $2 - 1,4 \cdot 10^{-12}$ Вт; $3 - 1,4 \cdot 10^{-11}$ Вт; $4 - 1,4 \cdot 10^{-10}$ Вт

чного детектування дорівнює 10^5 В/Вт. Динамічний діапазон за потужністю для виміряних сигналів – порядку 20 дБ. При потужностях гетеродина Р < Р_с (крива 2 на рис. 2) вже спостерігається помітний внесок гетеродина, що виявляється у відхиленні закону детектування від квадратичного і розширенні діапазону вимірюваних сигналів. Крива 2 на рис. 2 відповідає Р = $1,9 \cdot 10^{-13}$ Вт. 3 підвищенням потужності гетеродина до $6 \cdot 10^{-12}$ Вт (крива 3 на рис. 2) відклик джозефсонівського переходу зростає тільки в області слабких сигналів, залежність V від Р_с має в цьому випадку складний вигляд, що пов'язано зі зменшенням вольтватної чутливості для великих сигналів. Більш наочно це видно з рис. 3, де наведена залежність V від Р при різних рівнях Р_с.

При потужностях гетеродина, що перевищують 10⁻¹¹ Вт, чутливість джозефсонівського переходу різко падає. Динамічний діапазон за потужністю для гетеродина, визначений як діапазон, де спостерігається сталість коефіцієнта n, приблизно дорівнює 20 дБ. Таким чином, при n = 0,5 можна одержати виграш за чутливістю джозефсонівського переходу в результаті гетеродинування рівно на один порядок, що і спостерігається експериментально. Для слабких сигналів, коли P > Pc, коефіцієнт п близький до 0,5, а зі зростанням Рс він убуває. Так, для випадку 1 (рис. 3) n = 0,43. При цьому коефіцієнт передачі К змінюється від -24 до -13дБ. Подальше зростання сигналу послабляє залежність відклику переходу від Р. Для випадку 3 n = 0,28, а коефіцієнт К набуває значень від -16,7 до -9,3 дБ. Криві 1, 2 і 3 на рис. З наведені для потужності сигналу відповідно рівними 4,5·10⁻¹³ Вт, 1,4·10⁻¹² Вт, 1,4·10⁻¹¹ Вт. У кінці динамічного діапазону за потужністю сигналу, коли $P_c = 1.4 \cdot 10^{-10}$ Вт (крива 4 на рис. 3), наближусться до нуля, коефіцієнт К ≅ -11,9 дБ. Для визначення коефіцієнта передачі К потужність P_0 визначалася як 2/R, де R — опір джозефсонівського переходу.

Таким чином, показана можливість збільшення чутливості джозефсонівського переходу до електромагнітного випромінювання і його коефіцієнта передачі при синхронному детектуванні НВЧсигналів. Наведені експериментальні дані про чутливість джозефсонівського переходу не є пороговими. Для визначення порогової чутливості синхронного детектора на основі джозефсонівського переходу необхідно застосовувати гетеродини з низьким рівнем амплітудних і частотних шумів.

Висновок

Отримані результати показують високу чутливість джозефсонівських переходів на основі ВНК у НВЧ-діапазоні довжин хвиль. Джозефсонівські переходи на основі ВНК витримують багато циклів охолодження і нагрівання та можуть використовуватися в техніці виміру слабких НВЧ-сигналів.

СПИСОК ЛІТЕРАТУРИ

1. Иванов Н.И., Водопьянов Е.А. Панорамный анализатор спектра слабых широкополосных и узкополосных сигналов на основе высокотемпературных слабосвязанных сверхпроводников // Проблемы пожарной безопасности. – Х.: Фолио. – 2000. – Вып. 10. – С. 58 – 62.

Иванов Н.И., Балаклейский А.В. Разработка комплекса технических средств для проведения экологического мониторинга нефтяных разливов на подстилающих поверхностях // Системи обробки інформації: Зб. наук. пр. – Х.: ХУ ПС. – 2005. – Вип. 5(45). – С. 220 – 224.

Надійшла 16.11.2005

Рецензент: д-р фіз.-мат. наук старший науковий співробітник В.К. Іванов, Інститут радіофізики та електроніки НАН України, Харків.