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BAYESIAN REGULARIZATION IN THE THEORY OF STAP   

After adding some details to Melvin's overview on theory and technique of STAP, we point out the role of 
accounting for Bayesian methods in adaptation theory. In this regard, we develop the relationship 
between STAP and CFAR shown by E. Kelly but from Bayesian positions and propose the new technique 
for co-variance matrix estimate regularization optimized from the Bayesian positions. The Bayesian 
regularization synthesized in the paper is tested using computer simulation. 
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Introduction 

Detailed characteristic of STAP as a branch of 
science and review of works made in it are presented in 
the overview by W. Melwin [1]. Since there were no 
Russian-language works mentioned there, we give, just 
in case, some information on them. The Space-Time 
Adaptive Processing (STAP) is a part of Space-Time 
Processing (STP). The first Russian-language statistical 
work [2] on STP accounting for resolution peculiarities 
of several signals was published in 1961 on the basis of 
similar work [3] of 1959 about the time processing (TP) 
accounting for resolution peculiarities too. In 1963-64, 
the first (apparently) typical STAP experiments were 
made near Kharkov [4] on the basis of [2, 5, 6]. Using 
the simplest STAP device – multichannel correlation 
quadrature auto canceller [6] it was possible to clear out 
the plan-position indicator and observe targets, i.e. the 
targets became observable – resolved (discriminated) 
from the interference source. 

The problems of polarization and various com-
bined types of selection (angle-polarization, velocity, 
angle-velocity etc.) were simultaneously considered.  

The publications [7], 1965, and [8], 1967, have 
shown that first works on STAP in USA were also made 
in the direction of providing signal discrimination from 
interference using the simplest analog correlation side 
lobe cancellers operating without direct estimation of 
covariance matrix (CM) of interference. For the case of 
TP accounting not peculiarities of resolution, the advi-
sability of such estimation followed from basic statistic-
al works by D. Middleton (USA) [9], 1957, and L. 
Vainshtein (USSR) [10], 1960, from the works on STP 
and TP accounting for the peculiarities of resolution [2, 
3], as well as from the experiments on STAP of 1963-64 
mentioned above. In these experiments, three discrete 
channels of space-time processing were implemented in 
hardware. Digital estimation of CM hadn’t been imple-
mentable at that time due to limited possibilities of digi-
tal components.  

Among the theoretical works on direct estimation 
of CM with regard to STP referenced in [1], the first in 
this field work [11] of 1974, where for the first time the 

advantages of CM estimation were shown, and, especial-
ly, the works [12, 13] of 1986-1992 should be mentioned. 
Authors of [12, 13] successfully related the STAP devices 
with the CFAR technique having shown their statistical 
equivalence. Unfortunately, the works [11 – 13] were 
based on the maximum likelihood (ML) estimate of inter-
ference CM, and not on the Bayesian one. It is well 
known that Bayesian approach proved to be very effec-
tive in the theory of Kalman filtering. Nevertheless, the 
refuse of using a priory data in adaptation allowed ob-
tainment of many interesting results. However, according 
to detection curves given in [12, 13], the number of 
needed snapshot vectors ν have to be larger than the di-
mensionality of CM m. In the early experiments, emis-
sions of single interference source were significantly eas-
ier and not harder to cancel than those of two sources. In 
other words, the ML method without regularization was 
doomed to certain slowing down the convergence of 
m×m CM estimate (including scalar case m=1, CFAR).  

Some earlier than [12, 13] were published, heuris-
tic method of significant improving the convergence of 
ML estimate of interference CM [14] – method of CM 
estimate regularization (diagonal loading) – was pro-
posed for the first time. The aforesaid regularization is 
implemented by adding weighted unit matrix to the ML 
estimate of CM. The work [15] 2001 develops [14] with 
regard to specific applications to measurement, with 
regard to differentiation in eigenvalues weighting and 
using for this purpose special methods of mathematical 
programming, etc. Well before [14, 15], the iterative 
procedures for inverting varying in time CM estimate 
were developed, in which the process started from the 
diagonal CM of receiver's noise [16, 17]. Since the ne-
cessity of Bayesian approach wasn't mentioned in the 
works [14 – 17], it is interesting to investigate various 
Bayesian approaches in order to ground or optimize 
heuristic methods of CM estimate regularization.  

When regularization of CM estimate is absent, the 
problem arises [18], 2001 of switching the adaptation 
devices off if the correlation in the input realization 
drops lower some predetermined level. Let's note, just in 
case, that this can also be accounted for within Bayesian 
framework.  
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The purpose of this paper is to present and general-
ize the Bayesian theory of Pareto-optimal CFAR and 
STAP devices [19 – 22]. It is shown that regularization 
technique of CM estimate follows directly from a priory 
data. Such datum is, for instance, the easily obtainable 
level of receiver’s (system’s) thermal noise. To simplify 
the analysis, we consider the scalar case first of single 
channel reception (CFAR), and then we show how can 
we account for a priory information while estimating the 
CM. In the multi-channel case we replace the Bayesian 
estimate of detection probability with corresponding 
CM estimate, i.e. we deviate from the method presented 
for the scalar case. Therefore, we refer to this method as 
the simplified method of Bayesian regularization.  

The both scalar and multi channel reception cases 
are considered in assumption of presence of separate 
sets of data for estimating the interference parameters 
and signal detection on interference background. The 
interference from signal detection channel is not used 
for estimating the interference parameters. In other 
words, the use of General Likelihood Ratio Test 
(GLRT) [12] is not presumed, which is insufficiently 
effective according to [13].  

Using computer simulation we compare quantita-
tively the simplified variant of Bayesian regularization 
of CM estimate with other known estimates by their 
convergence to maximum signal-to-interference ratio 
depending on number of snapshot vectors ν  in case of 
STAP, and give some recommendations as to refuse 
from pure ML methods without regularization.   

A priory data with regard to single 
channel reception  

Designing CFAR detectors, we may consider two 
different kinds of initial data. The first kind of data is 
the receiver’s noise level when external interference is 
absent. The second kind of data is the distribution model 
(probability density) of external interference variance 
(uniform, diminishing, and so on). We suppose that not 
only inner but also external interference has the form of 
the stationary Gaussian noise. These data can be ac-
counted for by Pareto distribution  

 
0

Aη η
D

p( D ) D D d D= ∫ .  (1) 

Here, D0 is the receiver’s own noise variance; A is 
the upper bound of the combined interference variance; 
η is the parameter of variance distribution (if η = 0 the 
distribution is uniform, and for η = -2 only the Bayesian 
solution transforms into ML one).  

Adaptive CFAR detection  
using Bayesian statistics 

To implement any CFAR detector statistically, one 
must find equation for setting the threshold level given the 
conditional false alarm probability F. We start the analysis 
from equation relating F with threshold level for the case of 
the fixed (but unknown) interference variance D  
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Adaptive threshold level can be found after aver-
aging (2) over all possible values of D 
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which reduces to the transcendent equation for relative 
threshold level 0ς  for given F 
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Here ),( nxγ  is the incomplete gamma function  

 1)µ,a(γdeξ ξ -
a

0

µ +=ξ∫ ,  (6) 

and 2-η-νk =  is the Bayesian estimation parameter. 
Two schemes of CFAR detectors are shown in Fig. 

1 and Fig. 2.  
If one accounts for a priory statistics (1), then thre-

shold generator of Fig. 1 must operate according to non-
linear transfer curve 0

2
00 D2)s(Z)F,s( =ς  obtained 

from (5). Such curves are shown in Fig. 3 and Fig. 4 
(solid curves) for infinite and limited (illustrative) a 
priory dynamic range of interference variance 
L=A/D0 = 10 ( 0=η ). Dotted lines in Fig. 3 and Fig. 4 
show the corresponding threshold level versus s when 
no a priory data is accounted for.  
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Fig. 1. General block-diagram of CFAR detector 
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Fig. 2. Simplified block-diagram of CFAR detector 
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When the sum s of squared signals outputted from 
delay line is small, the threshold approaches, in both cases, 
the level corresponding to the interference absence situa-
tion and the adaptation losses disappear. The effect of thre-
shold change is equivalent to automatic gain control when 
the threshold is kept constant. For the signal operating in 
conditions of strong interference, the non-linear part of 
curve of Fig. 3 is insignificant, so, the scheme of Fig. 1 
transforms into well known detector of Fig. 2. The curve of 
Fig. 3 (Fig. 4) can be in advance put into the memory of 
threshold generator of Fig. 1 and kept unchanged during 
operation, or be changed in accordance with acquired data 
for different look directions and ranges.  

Adaptive detection probability can be found from  
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the probability of non-adaptive detection and 
2q1 2+=χ  is the ratio (detection parameter) of sig-

nal+total interference (thermal noise included) variance 
after optimal processing to that of total interference 
(TI). Then expression (7) reduces to 

 

0 0 0

0
0

0
k

0 0

ς ς Ds sγ , k γ , k
2D χ 2A χ A

D(Z , | s)
s sγ , k γ , k

2D 2A

ς 2D
1 .

χ s

−

⎛ ⎞ ⎛ ⎞
+ − +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠χ = ×
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞
× +⎜ ⎟
⎝ ⎠

.(8) 

Detection probability (8) depends on random value 
s. General situation can be considered when detection 
probability (8) is averaged over all possible values of s 
prior to training. This can be done using unconditional 
statistics of s  
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where ( )∫=
A

D0
DdDp)D|s(p)s(p . Probability (9) can be 

calculated numerically on a computer.  
Examples of detection curves for Pareto-optimal 

CFAR (9) are given in Fig. 5 for F=10-5, parameter of 
Pareto distribution 0=η  (uniform a priory distribution 
of the interference variance). Detection curves depend 
on two parameters: Bayesian estimation parameter 

2-η-νk =  and dynamic range of interference 

0DAL = . The L=0 dB corresponds to the case of ex-
actly known variance of interference. The ∞=L  dB 
corresponds to the case when variance of interference 
varies from 0 dB to ∞ dB.  

 
 
It can be seen from the curves that detection curves 

strongly depend on the dynamic range L of external inter-
ference and not only on the training sample length ν.  

Variants of Bayesian decisions  
with regard to multi channel reception 

In cases of multi channel detection one has to deal 
with sample matrix of TI, which is the matrix of mutual 
co-variances of TI in different antenna elements, 

∑
ν

=
=

1k

*т
kkYYS , where kY  are the m dimensional snap-

shot vectors of TI distribution over the antenna array 
(we assume that signal is absent in this set of data). This 
matrix can be represented through diagonal one of ei-
genvalues sampΛ  and unitary matrix of eigenvectors 

sampU  for m≥ν   

 T
sampsampsamp
∗⋅⋅= UΛUS . (10) 

Vectors i sampU  of unitary matrix 
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have unit moduli. For an antenna array, their compo-

 
Fig. 5. Detection curves for Bayesian CFAR detector 
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F=10-5 
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Fig. 3. Transfer curve for the threshold generator  

for unlimited a priory dynamic range of interference 
 

ν=11 
F=10-5 

L=A/D0=10 

 
Fig. 4. Transfer curve for the threshold generator for unlimited 

a priory dynamic range of interference 
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nents are steering coefficients. Matrix of sample eigen-
values is diagonal { } m,...,1i ,Λdiag isamp ==Λ . 

Relation similar to (1) can be applied for a priory 
probability distribution of TI intensity in this case (after 
the whitening transform). Distribution of each eigenva-
lue takes the form  

 ∫=
B

Λ i
η

i
η

ii
0

dΛΛΛ)Λ(p , Λ0≤Λi< B, (11) 

where 0Λ  is the double variance of noise in receiver 
channels; B is the upper bound of double variance of the 
combined interference in receiver channels; η is the 
parameter of variance distribution (if η=0, the distribu-
tion is uniform). Since any assumptions cannot be made 
on the character of dependence between different eigen-
values in advance, they have to be assumed independent  
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Spreading the scalar case solution onto the multi-
channel, we can introduce adaptive detection probability 
similar to (7)  
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and false alarm probability corresponding to signal ab-
sence in )|,Z(D 0 Λχ . The estimate Λ€  of the matrix 
Λ  based on the sample matrix sampΛ  is not given in 

this case. The more informative conditional probability 
density )|(p samp ΛΛ  replaces the CM estimate in this 

case. Another variant of utilizing Bayesian statistics 
reduces to obtainment of the matrix estimate 
( ) ( ) ( ) ( )SUSΛSUSΦ T

sampsamp
€€ ∗=  instead of matrix S  giv-

en the quadratic loss function. This variant is further 
referred to as the simplified Bayesian regularization. It 
is simpler but less effective.  

Simplified Bayesian regularization  
of CM estimate 

In this paper, we limit consideration by the simpli-
fied Bayesian statistics. Applying Bayesian statistics to 
the eigenvalue estimates, we can express them as follows 
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Independent sample eigenvalues have chi-square 
distributions 
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and  
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Then, integrals in numerator and denominator in 
(14) become products of integrals. After reducing them 
as before we obtain 
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where ),( nxγ  is the incomplete gamma function (6), 
2-η-νk =  is the Bayesian estimation parameter, ν  is 

equal to the number of snapshot vectors used for esti-
mating the CM (training), and iΛ  samp  is the sample 

value of ith eigenvalue. Then, Bayesian estimate of CM 
is expressed as 
 ( ) ( ) ( ) ( )SUSΛSUSΦ T

sampsamp
€€ ∗= . (18) 

This matrix always has the inverse matrix and no 
additional artificial regularization technique has to be 
applied to ensure that inverse CM exists (even for 

m<ν ). The latter is guaranteed by the dependence 
(17). If all the sample eigenvalues tend to very small 
values compared to own receiver's noise, their Bayesian 
estimates tend to the receiver's noise level. This depen-
dence is the same as that shown in Fig. 3, except that 
value 0i samp ΛΛ  of relative sample eigenvalues substi-

tute for relative sample variance 0D2s . Bayesian co-
variance matrix estimate proposed here has the property 
of fast convergence.  

Convergence of different adaptive 
algorithms by signal-to-noise ratio 

Using computer simulation, different CM esti-
mates were compared by the convergence rate provided 
that anticipated and actual signal directions are matched.  

ML estimate of CM corresponds to νS  ( ν  is the 
number of training snapshot vectors). Bayesian regula-
rization of the CM estimate was done using (16). Heu-
ristic regularization was done by adding the matrix 

ν⋅βI  to the ML estimate.  
Two linear antenna arrays were simulated with the 

number of elements m=10 and m=7, the signal direction 
corresponded to the aperture normal. Signal power was 
10 dB relative to receiver’s noise (noise level 0Λ  as-
sumed to be unit). Number of sources of active interfe-
rence N=7, their angular positions were -47°, -41°, -34°, -
26°, 21°, 31°, and 47° off the normal direction. Power of 
all interference sources was equal to 10 dB relative to 
receiver’s noise. The case of absent external interferences 
N=0 was considered too. Output signal-to-TI ratio was 

calculated as )€€(€Xq 11T21T2 XΦΦΦXXΦX −−∗−∗= , 

where Φ  is the known CM, which is not exactly equal to 
its estimate Φ€ .  

The transient responses of adaptive spatial filter 
averaged over 21 realizations versus number of training 
snapshot vectors for m=7 and m=10 for the cases of 
present (N=7) and absent (N=0) external interferences 
are presented in Fig. 6 – Fig. 8. Horizontal lines mark 
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the maximum achievable signal-to-TI ratio (given the 
exactly known covariance matrix) and its half (3 dB 
loss) level.  

According to simulation results, the regularization 
(both simplified Bayesian and heuristic) doesn’t accele-
rate convergence compared to ML estimate (Fig. 6 a) if 
the number of antenna array elements m is equal or less 
than number of interference sources N, but the simpli-
fied Bayesian regularization eliminates the losses on 
adaptation if external interferences are absent 
(Fig. 6, b).  

If the number m of antenna array elements is larger 
than number of interference sources N, Bayesian (Pare-
to-optimal) regularization allows adaptation algorithm 
to converge to a solution faster (Fig. 7 a) than in case of 
ML estimate and its heuristic regularization for 1=β . 
Again, in case of absent external interferences adapta-
tion losses are eliminated by the simplified Bayesian 
regularization (Fig. 7, b).  

In order to put heuristic regularization closer to the 
simplified Bayesian one, we investigated parameter  

β  and have found its optimal value: 0Λν=β . We refer 
to this case as the best heuristic regularization. To set 
this parameter in the best way, information on the re-
ceiver’s (system’s) noise level is necessary as in case of 
simplified Bayesian regularization. The best heuristic 
regularization gave the result very close to that of sim-
plified Bayesian one (Fig. 8 a). Nevertheless, in case 
when interferences are absent the adaptation losses were 
eliminated maximally only using simplified Bayesian 
regularization (Fig. 8 b).  

In case of stronger than 10 dB interference, the 
maximum signal-to-TI ratio level during our simulation 
lowered, and the transient process of signal-to-TI ratio 
stabilization shortened for both Bayesian (Pareto-
optimal) and the best heuristic regularization.  

Conclusion 

The results of paper show one of possible ways of 
improving the quality of adaptive detection by means of 
more full utilization of a priory information on interfe-
rences for both simplified Bayesian and heuristic regu-
larization [14]. This allows easing requirements to the 
necessary volumes of training snapshot vectors com-
pared to those presented in [11 – 13] (on the basis of 
ML estimate of CM). The widely used ML estimates of 
CM without regularization demonstrate pure results in a 
number of cases (of weak interferences). Introduction of 
Bayesian a priory statistics in form of generalized Pare-
to distributions is effective for both multi-dimensional 
problems (STAP) and one-dimensional problem 
(CFAR). The best heuristic regularization is based on 
the same a priory data about receiver's noise as the 
Bayesian one. The use of the best heuristic regulariza-
tion provides good results too, though it's simpler than 
Bayesian one. Using regularization, either Bayesian or 
the best heuristic, one may not switch off adaptation 
when external interferences are absent that is necessary 
[18] in case of ML statistics.  
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Fig. 7. Transient responses of adaptive matched filter 
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Fig. 8. Transient responses of adaptive matched filter 



Системи озброєння і військова техніка, 2006, випуск 4(8) 

 124 

 


