Cucmemu 030poenns i siticokosa mexuixa, 2011, Ne 3(27) ISSN 1997-9568

VK 004.414.23.042

L.D. Perepelytsya, G.M. Zholtkevych
V.N. Karazin Kharkiv National University, Kharkiv

ON SOME CLASS OF MATHEMATICAL MODELS
FOR STATIC ANALYSIS OF CRITICAL-MISSION ASYNCHRONOUS SYSTEMS

A mathematical model of asynchronous software system is considered in the paper. This model bases on the
notion abstract finite pre-machine which generalizes the notion abstract finite automaton. In contrast to generally
accepted models the model proposed in the paper makes possible to specify more complex system behaviour than it
is provided by finite automata models. Specifically, live-lock anomaly can be specified using the notion pre-

machine. Authors adduce the criterion of live-lock existence and illustrate it by example.

Keywords: critical-mission software, asynchronous software system, static analysis, live-lock, queue explosion.

1. Infroduction

Nowadays nature of a developing cycle for infor-
mation processing systems (IPS) has changed essen-
tially. Now practically there exist no software projects
that start from scratch. As a rule modern development
processes for IPS are processes of systems reengineer-
ing. Therefore, architectural solutions for modern IPS
should provide flexibility of such systems without loss
of their integrity.

As known, integrity for software system is sup-
ported by interaction of flows. Each of the flows be-
longs to only one of two classes: the class of control
flows and the class of data flows [1].

Control flows are realised by transfer of control
from one software component to another. This mecha-
nism results in high coupling of software components
[2]. High coupling opposes extracting a software com-
ponent for its modification and testing outside of the
system. So to increase flexibility of the system one can
try to decrease system coupling.

To realise this idea developers use architectural
styles that consider a system as a complex of independ-
ent components with an asynchronous interaction (see,
for example event-driven architecture [3], message-
driven architecture [4], data-driven architecture [5],
service-oriented architecture [6] and so on). Usage this
approach provides coupling decreasing but increasing
complexity of data flows between components is pay-
ment for this.

Let's stress that systems of all enumerated above
kinds include architectural layers which realise the
event-driven strategy.

Therefore development models and methods for
static analysis of event-driven systems is actual problem
in the field of software engineering.

Developers of critical-mission software systems
are especially in need of software tools for studying the
behaviour of such systems and ensure the trustworthi-
ness of software development processes, so this paper
deals with some theoretical and applied questions of

developing software tools for static analysis of compo-
nents of asynchronous systems.

2. Modelling components of asynchro-
nous software systems

In this section we specify the generalized static
model of a software component in the UML notation [7,
8] (cf. fig. 1). This model specification bases on the
suggestion that the component has asynchronous type of
interaction with other parts of the software system.

Component l

Dispatcher —> +append (e:Event)

Queue

+clear ()
<>—
n
A4
> Handler

-active

+perform (q:Queue) : Handler

Fig. 1. Static model of a software component

So, each component of the such kind has the next
principal units: the dispatcher, the queue, and handlers.
Their responsibilities and intaraction is shown in fig. 2,
namely,

- theDispatcher provides collaboration be-
tween old units;

- theQueue is used for accumulating received
events;

- objects named aHandler provide handling of
events queue.

Methods which are referenced on in fig. 1 should
be realized to support the next functionality:

- Queue::append(e:Event) appends an
event into the events queue;

- Handler::perform(g:Queue) provides
specific handling of the events queue;

- Queue::clear () clears the events queue
after successful handling.

60

© 1.D. Perepelytsya, G.M. Zholtkevych

Teopemuuni ocHo8u po3pobKu cucmem 030pOEHHS

Interactionl

theDispatcher: theQueue: aHandler:
Dispatcher Queue Handler
[[T
event_[] !

append(event[L
U

perform(theQueue)

opt J [not hnd.isNull()]

1
active:=hnqg
1

i

clear ()

A
1
1
I
13
1
1
1
1
1
L
1
1
1
1
1
1
1
1
A
H
[
[)

Fig. 2. Dynamic model of a software component

3. Pre-machine as mathematical model
of software component

Mathematical model of the software component
with described behaviour was introduced in [10]. De-
tailed mathematical background one can find in [11]. In
[11] authors refined this model.

We shall use the next notion.

For sets X and Y by [X — Y] the set of total
maps from X into Y is denoted, and by (X — Y) the

set of partial maps from X into Y is denoted.

In the last case we shall use the notation f(x) =2
to denote that x is not lie in the domain of f and the
notation f(x)# @ to denote that x lies in the domain

of f.
Definition 1. Let Q be a finite set of states, £ be
a finite alphabet of events, T be a transition function

which is an element of (QXZ* —>Q), then the triple

=(Q,Z,T) is called an abstract finite pre-machine if

the next conditions hold:
1) @#T(q.e)=q forall e Q;

2) for any qeQ, u,veX’ from T(qu)=Q

and T(T(q.u),v) =@ it follows that T(q,w)= 2 and
T(q,w):T(T(q,u),V) where w =uv;

3) for any qeQ, u,veX’ and w=uv from
T(qu)#@ and T(qw)=@ it follows that
T(T(q.u),v)#@ and T(T(q,u),v)=T(q,w).

With a finite pre-machine P =(Q,%,T) one can
associate the next languages over the alphabet X :
- for qeQ the language Out(q) is the set of

words weX" such that T(qw)=@ and

T(qu)=9 if ueX" and w =uv for some veX";

- Jump(q,q')= {w €Out(q)|T(q,w)= q'} .

As shown in [11], these languages play a signifi-
cant part to study pre-machines.

Each among these languages is a prefix code.

This property is the basic for such languages.

Example 1. Consider a system of two processes
(P, and P,) that concurrent try to use some critical
resource with exclusive access. To balance processes'
access to the resource assigning dynamic priorities is
used. Let 1 (ry) be an event “Process P; (P,) has
requested access to the resource”. To decide either

process P1 or process P2 has priority we use the next
solver which is presented in fig. 3.

/n:=0
[n=0] No process ¢ [n=0]
has priority
r2/n++ e rl/n++
1% \
rl/n—— has P, has r2/n—})
prlorltv priority
r2/n++ 4 M ri/n++
n>O v [n>0]

Fig. 3. Component for assignment of priorities

Let’s describe this state/chart machine [7, 8] by
such finite pre-machine:

Q={d0.q;.9,} , where

qo is the state “no process has priority”;

q; is thee state “ P, has priority”;

q, is thee state “P, has priority”.

2 ={n,n,}, where

5 is the event “Process P; has requested access to

the resource”;
1, is the event “Process P, has requested access

to the resource”.
Jump(do.d;) =1,
Jump(dg.d2) =1
Jump(q;,do) =
{wez" sl (w)=s% (w),

sg (w)<s? (w).k =1,...,|w|—1};

Jump(d,,99) =
{w eX s (w)=s32(w),

2 (w) <52 (w)k =1 |w] 1],
where si (w) is equal to a number of detecting the

event r among the first k events.

61

Cucmemu 036poenns i siticbkosa mexuixa, 2011, Ne 3(27)

ISSN 1997-9568

As one can check all languages:
-~ Out(qp) = Jump(qo,q;)UJump(qg,9q,)»
- Out(q;)=Jump(q;,qq),

- Out(q;) =Jump(q;.9o)
are prefix codes.

4. Pre-machine’s live-lock recognizing

Generalisation finite machines, based on formalis-
ing model of a data accumulation process, permits to
model anomalies which are classified as live-locks.

In our case live-lock is a condition when a process
cannot leave the current state because it receives addi-
tional external requests for service during handling the
current queue of requests. Live-lock leads to the effect
of queue's explosion.

It means that the queue of unserved requests is in-
creasing unbounded.

Let’s give the formal definitions.

We consider some finite

P =(Q,%,T) where as usual by Q denote its state set,
by X denote its alphabet, and by Te(QxZ — Q)

denote its transition function.
For each qeQ denote by Out(q) the set of all

pre-machine

words w € X such that
1) T(q,w) is defined;

2) T(q,u) is undefined if ueX™ and w=uv

for some ve X',

By = denote the set of all right-side infinite se-
quences.

For the word w e % by C(w) denote the subset
of £ such that o e £® is a member of C(w) if and

only if for some B eX® the equality oo = wp holds.

It’s evident that C(w;)NC(w,)=¢ if and only
if w; is not non-empty prefix of w, and vice-versa.

In the case when w; is some non-empty prefix of
w, we have the inclusion: C(w,)< C(wy).

Definition 2. Let q € Q then we shall say that live-

lock is possible in state q if there exists o € Z® such

that for any w e £* which is a prefix of o condition
(4.1) holds:
T(q,w) is undefined. (1)
Really, under conditions of Definition 2 there ex-
ists a sequence of events, namely the sequence o, such
that any its initial part cannot ensure any possibility for
the system to go out from the stateq .

Theorem 1. Let P=(Q,%,T) be a finite pre-

machine with Q as the state set, ¥ as the alphabet, and
Te (QXZ —>Q) as the transition function. P has no
live-lock in a state q € Q if and only if the next condi-
tions hold:
1) the set Out(q) is finite;
2) equality (2) holds
1

oM

)

weOut(q)

We don't know any elementary proof of Theo-
rem 1. Its proof, which we have found, is simple and
smart, but it bases on knowledge of some facts from
general topology (cf. for example [9]).

Example 2. This example deals with live-lock
analysis of the finite pre-machine which described in
Example 1.

Easy to see that the state q satisfies the hypothe-
sis of Theorem 1, so live-lock is impossible in this state.
But in the states q; and q, live-lock is possible. For

example the sequences 1’ and 1° satisfy to Defini-

tion 2 for states q; and q, respectively.

In this case to evaluate probability of live-lock in
states q; and q, is very interest. Consider the case of

the state q .

To do it note that for each word w e {1, 1, }" we
can associate uniquely the finite sequence xi,...,X,
where n is length of the word w, x; =1 if the i-th
event in w equals r, and x; =—1 x; =1 if the i-th
event in w equals 1. So s =x;+...+X, equals
counter value in the state q;, when k= 1,...,|w|. It is
evidently, that for k= 1,...,|w| inequalities s, >0
provides that the pre-machine is in the state q;. Using
technique from [13, ch. 3, § 1] one can obtain the next
asymptotic estimate

P1r(Wn (ql))~ﬁ, n—o o, 3)

where W, (q;) is the condition “the pre-machine is in
the state q; for the last n steps”.
The case of the state q, gives the same estimate:
1

Pr(Wn (Q2)) ~ ﬁ’

n—ow,

(4)

where W, (q,) is the condition “the pre-machine is in

the state q, for the last n steps”.

So probability of live-lock equals zero.

From formulae (3) and (4), unfortunately, it is fol-
lows that mean pre-machine residence time in each of
the states q; and q, is not bounded.

62

Teopemuuni ocHo8u po3pobKu cucmem 030pOEHHS

5. Conclusion

Problems of mathematical modelling of the impor-
tant class of software systems, namely, asynchronous
software systems were considered in the paper.

Authors generalized the commonly accepted that
based on the notion abstract finite machine and used the
notion abstract finite pre-machine.

The example of using pre-machines for modelling
some program component, the solver for assignment
priority, is described in the paper.

This generalization permits to model such anomaly
as live-lock.

Theorem 1 establishes the criterion for the absence
of live-lock in the pre-machine state.

For the pre-machine from the example live-lock
possibility was analysed. For states in which live-lock is
possible probability of it was estimated. Authors ob-
tained the exact estimate. It has ensured to establish that
mean residence time in the state does not exist.

Bibliography

1. Wirth N. Algorithms + Data Structures = Programs /
N. Wirth. — Prentice-Hall, 1975. — 366 p.

2. Faison T. Event-Based Programming: Taking Events
to the Limits / T. Faison. — Apress, 2006. — 670 p.

3. Chandy M.K. Event-Driven Applications: Costs,
Benefits and Design Approaches / M.K. Chandy // Gartner
Application Integration and Web Services Summit, San Diego,
CA, June 2006. — San Diego, CA: California Institute of Tech-
nology, 2006.

4. Curry E. Message-Oriented Middleware / E. Curry //
Middleware for Communications, ed. Q.H. Mahmoud. —
Chichester, England: Wiley & Sons, 2004. — P. 1 —28.

5. Treleaven P.C. Data-Driven and Demand-Driven
Computer Architecture / P.C. Treleaven, D.R. Brownbridge,
R.P. Hopkins. — J. ACM Comp. Surv. — V. 14, N 1, 1982. —
P. 93-143.

6. Bell M. Service-Oriented Modeling: Service Analysis,
Design, and Architecture / M. Bell. — Hoboken, NJ: Wiley &
Sons, 2008. — 366 p.

7. OMG Unified Modeling Language™ (OMG UML),
Infrastructure. — Version 2.3. — http://www.omg.org/spec/
UML/2.3/Infrastructure/PDF.

8. OMG Unified Modeling Language™ (OMG UML),
Superstructure Version 2.3. — http://www.omg.org/spec/
UML/2.3/Superstructure/PDF.

9. Kelley J.L. General topology / J.L. Kelley. — Prince-
ton, NJ: D. Van Nostrand Company, Inc., 1957. — 423 p.

10. Novikov B. Pre-automata as Mathematical Models
of Event Flows Recognisers / B. Novikov, I Perepelytsya,
G. Zholtkevych // V. Ermolayev et al. (eds.) Proc. 7-th Int.
Conf. ICTERI 2011, Kherson, Ukraine, May 4-7, 2011. —
CEUR-WS.org/Vol-716, ISSN 1613-0073, 2011. — P. 41 — 50.

11. Dokuchaev M. Partial actions and automata / M.
Dokuchaev, B. Novikov, G. Zholtkevych. — Algebra and Dis-
crete Mathematics. — 2011. — V. 11, No 2. — P. 51 — 63.

12. Novikov B. Derivatives Series of Finite State Pre-
Machines / B. Novikov, I Perepelytsya, G. Zholtkevych //
Specification and Verification of Hybrid Systems. — Proc 1"
Int. Seminar, Kyiv, Ukraine, October 10 — 12, 2011. —
T. Shevchenko Nat. Univ. in Kyiv, Paul Sabatier Univ. Tou-
louse, State Found for Fund. Res. Ukraine, 2011. - P. 40 - 50.

13. Feller W. An introduction to probability theory and
its applications, 3 ed., Vol. 1/ W. Feller. — New York Chich-
ester Brisbane Toronto: John Wiley & Sons, 1970. — 493 p.

Haoitiuna oo peoxkoneciii 14.10.2011

Penensent: 1-p texs. Hayk, npod. b.M. Konopes, Ceprudi-
kauiitauii nentp ACY, JlepkaBHa iHCIEKIsl SIEPHOIO pery-
JIOBaHHs YKpainu, XapKis.

MPO OAMH KITAC MATEMATUYHUX MOJLENEXM CTATUHHOIO AHAJI3Y ACMHXPOHHMUX CUCTEM
KPUTUYHOTO NMPU3HAYEHHS

LA Tlepenenuns, I'.M. XKonrkeBuy

Y cmammi poszensinymo mamemamuuny mMoOenb ACUHXPOHHUX NPOSPAMHUX cucmeM. Lfa Modenb cnupacmucs Ha NOHAMMSL
CKiHYeHoi abcmpakmuoi nepeo-mauwiuny, sKe y3a2anbHIOE NOHAMM aOCmpakmuozo ckinuenozo agmomamy. Ha 6iominy 6i0
3A2aNbHONPUIHAMUX MoOelell MOOenb, 3anpPOnoHO8ana 8 pobomi, 003605€ ORUCY8amMU OLIbU CKIAOHY NOBEOIHKY CUCMeMU 8
NOPIGHAHHI 3 MOOENAMU CKIHYEHUX a8MOMAamis. 30Kkpema, aHomanis «aKmusHull MynuKy» Modice 6ymu npomMooeno8ana 8 mepmi-
Hax CKiH4eHOi nepeo-mawuny. Aemopu Hasooamv Kpumepiti 6UHUKHEHHA AKMUSHO20 MYRUKY Ma iNOCMpyionb 1020 3dCmocy-
6aHHSL HA NPUKTAOL.

Knrowuosi cnosa: npoecpamne sabesneuenns KpumuuHo2o npUsHA4eHHs, ACUHXPOHHI NPOSPAMHI CUCEMU, CIAMUYHUT aHa-
23, AKMUGHUL MYNUK, 6UOYX Yyepeu

OB OJHOM KJIACCE MATEMATUYECKMX MOJEJNIEA CTATUHMECKOTO AHAJIM3A
ACHUHXPOHHBIX CUCTEM KPUTUYECKOIO HA3HAYEHMSA

W.J1. Mepenenuua/ I'.H. ontkeBrmya

B cmamve paccmompena mMamemamuieckas MoOeib ACUHXPOHHBIX NPOSPAMMHBIX cucmeM. Dma Mooelb Onupaemcsi Ha
nonamue ab6CMpaKmHol KOHEYHOU Npeo-Mawunbl, Komopoe obobwaem nonsamue adCMpaKmmozo KOHeYHO2o asemomamd. B
omaudue om oOwWenpuHamslx Mooeneti Mooenb, NnpeodnodICeHHAss 8 pabome, NO3605€M ONUCHIBAMb OOJlee CLONUCHOe NoBedeHUe
cucmembl N0 CPABHEHUIO ¢ MOOEAMU KOHEUHbIX AGMOMAMO8. B uacmuocmu, anoManusi «aKmugHwlil MYnuKy modicem Ovimy
NPOMOOETUPOBAHA 6 MEPMUHAX KOHEUHOU NPeO-MAawuHbl. AGMOpbl NPUBOOAM KpUumeputl 603HUKHOBEHUS AKIMUBHO20 MYNUKA U
UWITIOCIPUPYIOM €20 NpUMeHeHue Ha npumMepe.

Kniouegvie cnosa: npozpammnoe obecneyenue Kpumuiecko2o HA3HAYEHUs, ACUHXPOHHbIE NPOSPAMMHbIE CUCTEMbL, CId-
MUYecKuil anau3, akmusHbvIll Mynux, 63pble 04epeou.

63

