УДК 355.233.1.005

К.С. Смеляков, И.В. Рубан, О.В. Водолажко, С.В. Осиевский

Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков

ПОСТРОЕНИЕ УНИФИЦИРОВАННОГО МЕТОДА ИСКЛЮЧЕНИЯ ИМПУЛЬСНОГО ШУМА ДЛЯ ОБЕСПЕЧЕНИЯ АДЕКВАТНОГО ПРИМЕНЕНИЯ ПРОСТРАНСТВЕННЫХ ФИЛЬТРОВ ШУМА ИЗОБРАЖЕНИЙ

В статье предлагается унифицированный детерминированный метод исключения одиночных и групповых экстремальных наблюдений, отождествляемых с импульсным шумом, применение которого позволяет обеспечивать возможность адекватного сглаживания импульсного шума, как для внутренности, так и для границ изображений объектов.

Ключевые слова: изображение, импульсный шум, фильтр, маска, окрестность.

Введение

Одной из важнейших задач, решаемых в ходе предобработки входного изображения, является задача фильтрации (сглаживания) шума [1, 2], поскольку от эффективности ее решения во многом зависит эффективность решения задач сегментации и распознавания изображений [3 – 6]. Важное место среди методов фильтрации шума занимают методы пространственной фильтрации шума, основанные на использовании масок [2]. Однако результаты применения таких методов фильтрации для некоторых областей (окрестностей) входного изображения могут быть неадекватными [2, 5, 6].

Так, если множество яркостей пикселей рассматриваемой при фильтрации окрестности является однородным, то есть целиком принадлежит или объекту, или фону и, если в этой окрестности нет импульсного шума, тогда результаты применения сглаживающего фильтра к такой однородной окрестности являются адекватными [8, 9]. Однако если условие однородности нарушается (из-за того, что одна часть пикселей окрестности принадлежит объекту, а другая часть фону или, если в окрестности наблюдается импульсный шум), тогда результаты применения сглаживающего фильтра к неоднородной окрестности могут быть неадекватными.

В этом отношении в статье решается актуальная задача разработки унифицированного метода исключения экстремальных наблюдений, применение которого позволит эффективно идентифицировать и исключать из окрестности действия фильтра одиночные и групповые импульсные шумы. Решение этой задачи даст возможность адекватно применять сглаживающие фильтры шума на однородном множестве яркостей пикселей окрестности, что, в свою очередь, позволит обеспечить эффективность сегментации изображений объектов на снимке.

Допустим, что результаты п наблюдений (значений яркости в заданной окрестности действия фильтра) представляются множеством точек

$$\mathbf{X} = \{\mathbf{x}_{\xi}\}_{\xi=1,\dots,n} = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}), \qquad (1)$$

и выдвинем гипотезу H о том, что среди них присутствуют экстремальные наблюдения, отвечающие импульсному шуму, которые необходимо исключить из ряда (1) как нетипичные.

Для выработки единого подхода к применению статистических и детерминированных критериев исключения экстремальных наблюдений будем полагать, что исходные данные (1) представляются упорядоченным по возрастанию рядом яркостей

$$X_1 \le X_2 \le \dots \le X_n \ . \tag{2}$$

Основной раздел

1 Применение критерия идентификации точечного импульсного шума

Итак, предположим, что для некоторого пикселя $d(\xi,\eta)$ определена его $\sqrt{2}$ -окрестность

$$O_{\sqrt{2}}(d(\xi,\eta))$$
,

размерностью 3×3 , яркости пикселей которой представлены рядом вида (2).

Для обнаружения максимального точечного импульсного шума в пикселе $d(\xi,\eta)$ проверяется выполнение условия

$$[f(\xi, \eta) = x_n] \wedge [(x_n - x_{n-1}) > T].$$
 (3)

Если условие (3) выполняется, тогда считается, что гипотеза H подтвердилась

$$H = \begin{cases} 1, & \text{if } [f(\xi, \eta) = x_n] \land [(x_n - x_{n-1}) > T], \\ 0, & \text{else,} \end{cases}$$
 (4)

и наблюдение $f(\xi, \eta) = x_n$ необходимо исключить из (2) как нетипичное.

Для обнаружения минимального точечного импульсного шума в пикселе $d(\xi,\eta)$ проверяется выполнение условия

$$[f(\xi, \eta) = x_1] \wedge [(x_2 - x_1) > T].$$
 (5)

Если условие (5) выполняется, тогда считается, что гипотеза H подтвердилась

$$H = \begin{cases} 1, & \text{if } [f(\xi, \eta) = x_1] \land [(x_2 - x_1) > T], \\ 0, & \text{else,} \end{cases}$$
 (6)

и наблюдение $f(\xi, \eta) = x_1$ необходимо исключить из (2) как нетипичное. Назовем описанный пороговый критерий Th -критерием.

2 Применение критерия идентификации группового импульсного шума

Под групповым импульсным шумом будем понимать связное множество пикселей площадью s, $s \le s^*$, экстремальное по заданному критерию.

Исходя из анализа яркости и размеров наблюдаемых групповых шумов на изображениях, если специально не оговорено иное, будем полагать, что:

- 1) пиксели группового импульсного шума, рассматриваемые по отдельности, являются импульсными шумами по отношению к не импульсным шумам в своей окрестности, что может быть установлено с использованием критериев (3) и (5);
- 2) площадь s группового импульсного шума не превышает 3, $1 < s \le 3$;
- 3) групповой импульсный шум может быть локализован в окрестности $O_{\epsilon}(d(\xi,\eta))$, при $\epsilon=\sqrt{2}$.

Предположим, что в рамках окрестности $O_\epsilon(d(\xi,\eta))$ задано связное множество G из s пикселей. Построим $\sqrt{2}$ -окрестность H границы множества G, и удалим из H пиксели множества G.

Найдем минимальную яркость x_G пикселя множества G и максимальную яркость x_H пикселя множества H. B таких условиях для обнаружения максимального группового импульсного шума G, локализованного в окрестности $O_\epsilon(d(\xi,\eta))$, проверяется выполнение условия

$$\left[\mathbf{x}_{G} > \mathbf{x}_{H} \right] \wedge \left[\left(\mathbf{x}_{G} - \mathbf{x}_{H} \right) > T \right]. \tag{7}$$

Если условие (7) выполняется, тогда считается, что гипотеза H подтвердилась

$$H = \begin{cases} 1, & \text{if } \left[x_G > x_H \right] \land \left[\left(x_G - x_H \right) > T \right], \\ 0, & \text{else,} \end{cases}$$
 (8)

и множество G необходимо исключить из окрестности как нетипичное.

Для обнаружения минимального группового импульсного шума найдем максимальную яркость \mathbf{x}_{G} пикселя множества G, минимальную яркость \mathbf{x}_{H} множества H и проверим выполнение условия

$$\left[x_{G} < x_{H}\right] \wedge \left[\left(x_{H} - x_{G}\right) > T\right]. \tag{9}$$

Если условие (9) выполняется, тогда считается, что гипотеза H подтвердилась

$$H = \begin{cases} 1, & \text{if } \left[x_G < x_H \right] \land \left[\left(x_H - x_G \right) > T \right], \\ 0, & \text{else,} \end{cases}$$
 (10)

и множество G необходимо исключить из окрестности как нетипичное. Назовем описанный пороговый критерий Ths-критерием.

3 Унифицированный метод исключения импульсного шума

Для возможности применения предложенных выше критериев предлагается следующий унифицированный метод исключения импульсного шума.

Унифицированный метод исключения одиночных и групповых импульсных шумов площадью s, локализованных в окрестности $O_\epsilon(d(\xi,\eta))\,,\;\epsilon=\sqrt{2}$, с площадью s_ϵ , $s_{\sqrt{2}}=9\,,\;s\le s^*\le s_\epsilon$ (Ths -метод).

Если пиксель $d(\xi, \eta)$ входного изображения отмечен как исключенный, переход к шагу 7. В противном случае строится упорядоченный по возрастанию ряд яркостей пикселей окрестности $O_c(d(\xi, \eta))$ вида (2).

Этап 1. Исключение максимального импульсного шума.

Шаг 1. Множество G формируется из таких пикселей окрестности $O_\epsilon(d(\xi,\eta))$, яркость которых не ниже яркости $f(\xi,\eta)$, определяется площадь s множества G.

Шаг 2. Если выполняется условие $s \le s^*$, тогда переход к шагу 3, а иначе – к шагу 4.

Шаг 3. Определяется минимальная яркость $x_G = x_{n-s+1}$ пикселя G; строится множество H и определяется максимальная яркость x_H пикселя H.

Если выполняется условие (7), тогда пиксели множества G отмечаются как исключаемые, переход к шагу 7. Иначе переход к шагу 4.

Этап 2. Исключение минимального импульсного шума.

Шаг 4. Множество G формируется из таких пикселей окрестности $O_\epsilon(d(\xi,\eta))$, яркость которых не выше яркости $f(\xi,\eta)$, определяется площадь s множества G.

Шаг 5. Если выполняется ограничение $s \le s^*$, тогда переход к шагу 6, а иначе – к шагу 7.

Шаг 6. Определяется максимальная яркость $x_G = x_{1+s-1}$ пикселя G; строится множество H и определяется минимальная яркость x_H пикселя H.

Если выполняется условие (9), тогда пиксели множества G отмечаются как исключаемые.

Шаг 7. Конец.

После применения Ths -метода координаты исключенных сохраняются, а сами исключенные пиксели отмечаются для того, чтобы не проводить повторных исключений.

4 Анализ эффективности применения Ths-метода

Использование предложенного Ths -метода позволяет решить проблему неадекватного сглаживания одиночного и группового импульсного шума, особенно актуальную для обеспечения устойчивой сегментации изображений объектов на снимке. Однако применять этот метод, в том числе, для минимизации общей трудоемкости фильтрации шума, имеет смысл избирательно, лишь для неоднородных фрагментов входного изображения, отвечающих значимо зашумленной окрестности изображения.

В связи с необходимостью сортировки ряда (1) для построения упорядоченного ряда (2) трудоемкость применения описанных выше критериев и методов по порядку величины оценивается величиной $T(n) = n^2$ операций сравнения, поскольку для сортировки выборок малого размера чаще всего используется пузырьковая сортировка [10]. Таким образом, для возможности эффективного исключения импульсного шума актуальной является разработка эффективного критерия идентификации неоднородной окрестности входного изображения.

5 Критерий идентификации неоднородной области изображения

Для обнаружения неоднородной окрестности входного изображения предлагается использовать следующий критерий идентификации. Получим распределение вида (1) для дисперсий $\mathbf{x}_i = \sigma_i$ во всех положениях маски фильтра на изображении. Найдем оценки математического ожидания \mathbf{m}_{σ} и дисперсии \mathbf{s}_{σ}^2 ряда (1). Будем полагать, что значения дисперсии в ряду (1) значимо уклоняются от среднего \mathbf{m}_{σ} , если выполняется $\mathbf{k} \cdot \mathbf{\sigma}$ -критерий вида

$$(x_i - m_{\sigma}) > k_{\sigma} \cdot s_{\sigma}. \tag{11}$$

Соответственно, при фильтрации шума неоднородными будем считать только такие окрестности, для которых выполняется критерий (11); иначе будем полагать, что распределение яркости в окрестности действия фильтра является однородным.

Применение критерия (24) приведет к идентификации окрестностей с импульсным шумом, а также окрестностей со средним высоким уровнем зашумления и окрестностей со значимым перепадом яркости, расположенных на границе объекта с фоном. Уже в дальнейшем необходимо будет классифицировать тип окрестности, идентифицированной по критерию (24), с целью принятия адекватного решения о применении того, или иного метода фильтрации в этой окрестности.

При решении большинства практических задач число положений маски фильтра с неоднородным распределением яркости, идентифицированных по критерию (11), минимум на два порядка меньше числа положений маски с однородным распределением яркости. Применение критерия (11) для одного положения маски фильтра требует по порядку величины $T(n) = 2 \cdot n$ операций сравнения. В таких условиях трудоемкость применения Ths-метода по

порядку величины будет уменьшена с уровня $T(n)=n^2$ до уровня $T(n)=2\cdot n+n^2/100$ операций сравнения для одного пикселя изображения, где n=9. Таким образом, средняя трудоемкость применения Ths-метода после применения критерия (11) для одного положения маски фильтра потребует по порядку величины $2\cdot n$ операций сравнения.

Выводы

На основе использования наиболее известных и хорошо изученных детерминированных критериев исключения экстремальных наблюдений, в работе предложены соответствующие критерии и унифицированный метод исключения одиночных и групповых импульсных шумов изображения.

Применение предложенного метода позволят эффективно идентифицировать и исключать из окрестности действия фильтра одиночные и групповые импульсные шумы, что обеспечивает возможность адекватного применения сглаживающих фильтров импульсного шума.

В свою очередь, адекватное сглаживание импульсного шума, позволяет обеспечить эффективность применения методов сегментации изображений объектов на снимке.

Список литературы

- 1. Шапиро Л. Компьютерное зрение / Л. Шапиро, Дж. Стокман. – М.: БИНОМ, 2006. – 752 с.
- 2. Гонсалес Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М.: Техносфера, 2005. – 1072 с.
- 3. Лбов Г.С. Устойчивость решающих функций в задачах распознавания образов и анализа разнотипной информации / Г.С. Лбов, В.Б. Бериков. – Новосибирск: Издво Ин-та математики, 2005. – 219 с.
- 4. Sonka M. Image processing, analysis and machine vision / M. Sonka, V. Hlavak, R. Boyle. California (USA): Cole Publishing Company, 1999. 770 p.
- 5. Журавлев Ю.И. Распознавание. Математические методы. Программная система. Практические применения / Ю.И. Журавлев, В.В. Рязанов, О.В. Сенько. М.: Фазис, 2005. 159 с.
- 6. Форсайт Д. Компьютерное зрение. Современный подход / Д. Форсайт, Ж. Понс. М.: Вильямс, 2004. 928 с.
- 7. Смеляков К.С. Модели и методы сегментации границ изображений нерегулярного вида на основе адаптивных масок: дис. ... канд. техн. наук: 01.05.02 / Смеляков Кирилл Сергеевич. Х., 2005. 162 с.
- 8. Смоляк С.А. Устойчивые методы оценивания / С.А. Смоляк, Б.П. Титаренко. М.: Статистика, 1980. 208 с.
- 9. Кашкин В.Б. Дистанционное зондирование Земли из космоса. Цифровая обработка изображений / ВБ. Кашкин, А.И. Сухинин. М.: Логос, 2001. 264 с.
- 10. Кнут Д. Искусство программирования. Т.3 / Д. Кнут. М.: Мир, 1978. 844 с.

Поступила в редколлегию 25.01.2013

Рецензент: д-р техн. наук, проф. Ю.В. Стасев, Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков.

ПОБУДОВА УНІФІКОВАНОГО МЕТОДУ ВИКЛЮЧЕННЯ ІМПУЛЬСНОГО ШУМУ ДЛЯ ЗАБЕЗПЕЧЕННЯ АДЕКВАТНОСТІ ЗАСТОСУВАННЯ ПРОСТОРОВИХ ФІЛЬТРІВ ШУМУ ЗОБРАЖЕНЬ

К.С. Смеляков, І.В. Рубан, О.В. Водолажко, С.В. Осієвський

У статті пропонується уніфікований детермінований метод виключення одиночних і групових екстремальних спостережень, які ототожнюються з імпульсним шумом, застосування якого дозволяє забезпечувати можливість адекватного згладжування імпульсного шуму, як для внутрішності, так і для границь зображень об'єктів.

Ключові слова: зображення, імпульсний шум, фільтр, маска, окіл.

A MULTI-PURPOSE METHOD FOR EXCLUDING PULSE NOISE WHICH PROVIDES ADEQUATE APPLICATION OF IMAGE NOISE SPATIAL FILTERS

K.S. Smelyakov, I.V. Ruban, O.V. Vodolazhko, S.V. Osievskey

A multi-purpose deterministic method is proposed for excluding singular and multiple outliers describing a pulse noise. It provides adequate smoothing of pulse noise for both the bounds and the interior of object images.

Keywords: image, pulse noise, filter, mask, vicinity.