УДК 681.3.06

Г.З. Халимов

Харьковский национальный университет радиоэлектроники, Украина

ОЦЕНКИ КОЛЛИЗИОННОЙ СТОЙКОСТИ УНИВЕРСАЛЬНОГО ХЕШИРОВАНИЯ ПО АЛГЕБРАИЧЕСКИМ КРИВЫМ

Представлены оценки коллизионной стойкости универсального хеширования по наилучшим алгебраическим кривым с большим числом точек и максимальным кривым.

Ключевые слова: алгебраические кривые, универсальное хеширование.

Введение

Универсальное хеширование в конструкции алгеброгеометрических кодов предложено Биэрбрауэром в [1] и развито в концепции проективных многообразий по алгебраическим кривым на основе скалярного произведения по рациональным функциям функционального поля алгебраических кривых в работах [2 – 4]. Хеширование по алгебраическим кривым широко представлено в [5 – 10] и лежит в плоскости выбора хороших алгебраических кривых с большим отношением числа точек к роду кривой. Практическим аспектом универсального хеширования по рациональным функциям линейного векторного пространства алгебраических кривых является построение алгоритма хеширования, оценка параметров хеширования: вероят-

ности коллизии, оценки вычислительных затрат на хеширование при фиксированном поле вычислений и размере хеш кода, сложности вычисления точек кривой по ключевым данным.

Целью статьи является оценка коллизионной стойкости универсального хеширования по наилучшим алгебраическим кривым.

В разделе 1 представлено определение универсального хеширования по алгебраическим кривым.

В разделе 2 рассмотрены оценки коллизионной стойкости универсального хеширования по максимальным кривым и кривым с большим числом точек над конечным полем.

Основной раздел

1. Определение универсального хеширования по алгебраическим кривым

Универсальное хеширование определяется проективным многообразием алгебраических кривых имеющим определение над полем F_q.

Определение 1 [4]. Пусть задана абсолютно неразложимая, несингулярная проективная кривая χ над полем F_q с точками $P = \{P_1, P_2, ..., P_n\} \in \chi(F_q)$. Для каждой алгебраической кривой можно определить поле рациональных функций $F_q(\chi)$. В каждой точке P_j кривой χ можно вычислить оценку ϑ_p для рациональных функций $f_i \in F_q(\chi)$, которая определяет порядок нуля или полюса функции f_i в этой точке. Хеш значение $h_{P_j}(m) \in F_q$ для сообщения $m = (m_1, ..., m_k)$, $m_i \in F_q$ в точке $P_j \in F_q$ определяется выражением

$$h_{P_j}(m) = \sum_{i=1}^k f_i(P_j)m_i$$
, (1)

где $f_i \in F_q(\chi)$ с упорядоченными порядками полюсов $0 < \rho_1 < ... < \rho_k$. Хеш функция $h_{P_j}(m)$ определяет универсальный хеш класс $\epsilon - U(N,q^k,q)$, где вероятность коллизии $\epsilon \leq \rho_k / N$, N – число точек алгебраической кривой.

Замечание 1.

1. Параметры универсального хеш класса $\varepsilon - U(N, q^k, q)$ на основе хеширования по рациональным функциям определяются свойствами алгебраической кривой. Подгруппа Вейерштрасса $H(P_{\infty}) = \{\rho_0 = 0 < \rho_1 < ...\}$ определяется полюсами рациональных функций в особой точке кривой и рациональные функции упорядоченные по значениям полюсов образуют векторное линейное пространство размерности

 $dim(L(G) = v_{\ell} := \left\{ (i, j) \in N^2 : \rho_i + \rho_j = \rho_{\ell+1} \right\}.$

2. Ключевой параметр хеш функции h_{Pi}(m)

определяется вычислением в точке алгебраической кривой.

3. Наилучший результат универсального хеширования, как следует из оценки вероятности коллизии $\varepsilon \le \rho_k / N$, достигается на максимальных кривых. Для максимальных кривых С над конечным полем достигается максимальное отношение числа точек кривой к роду g. Теорема Хассе-Вейля определяет число F_q рациональных точек кривой $N_q(g) \le 1 + q + 2\sqrt{qg}(C)$.

Известные результаты по алгебраическим кривым над полем F_q , $q = l^2$.

1. Кривая Эрмита $y^l+y=x^{l+1}$ является наилучшей максимальной плоской кривой наибольшего первого рода g=l(l-1)/2и функциональное поле определяется функциями вида $\left\{x^i\cdot y^j\right\}$.

$$\begin{split} &2. \ \text{Алгебраические кривые:} \\ &- y^l + y = x^{(l+1)/2} \ ; \\ &- \sum_{i=l}^t y^{l/2^i} = x^{l+1} \ , \ l = 2^t \ ; \\ &- y^l + y = x^{(l+1)/3} \ , \ l \equiv 2 \big(\text{mod} \ 3 \big) \ ; \\ &- \sum_{i=0}^{t-1} y^{3^i} = \omega x^{l+1} \ , \ l = 3^t \ , \ \omega \in F_{l^2} \ \ \omega^{l-1} = -1 \end{split}$$

являются максимальными кривыми второго и третьего рода, имеют подгруппу Вейерштрасса $H(P_{\infty}) = \langle \rho_1, \rho_2 \rangle$ размерности dim = 2 и функциональное поле $\{x^i \cdot y^j\}$.

3. Максимальные кривые вида:

$$\begin{array}{l} &-x^{(l+1)/3}+x^{2(l+1)/3}+y^{l+1}=0\ ,\ l\equiv 2\left(mod\ 3\right);\\ &-\omega x^{(l-1)/3}-yx^{2(l-1)/3}+y^{l}=0\ ,\ l\equiv 1\left(mod\ 3\right),\\ &\omega\in F_{l^2}\ ,\qquad \omega^{l-1}=-1\ ;\\ &-y^l+y=\left(\sum_{i}^tx^{1/3^i}\right)^2\ ,\ l=3^t\end{array}$$

имеют подгруппу Вейерштрасса $H(P_{\infty})$ размерности dim = 3 и функциональное поле определяется рациональными функциями вида $\left\{x^{i}\cdot y^{j}\cdot v^{t}\right\}$.

4. Кривая Судзуки $y^q - y = x^{q_0}(x^q - x)$ определена над полем F_q , $q = 2q_0^2$, $q_0 = 2^s$ рода $g = q_0(q-1)$ и имеет число точек $N = q^2 + 1$. Базис пространства $L(\rho_\ell P_0)$, задается функциями вида

$$\{ w^{j} \cdot v^{i} \cdot y^{t} \cdot x^{r} : i(q+2q_{0}) + + j(q+2q_{0}+1) + t(q+q_{0}) + r \cdot q \le \rho_{\ell} \} .$$

5. Кривая Ферма

$$x^{(q-1)/3} + y^{(q-1)/3} + z^{(q-1)/3} = 0$$

над F_q , $q \equiv 1 \pmod{3}$ является кривой с большим числом точек $N = 2(q-1)^2 / 9$.

Замечание 2.

1. Кривая Эрмита имеет наилучшее отношение числа точек к роду кривой $\,N_{\,q}(g)/\,g$.

2. Максимальные кривые второго и третьего рода покрываются кривой Эрмита.

3. Абсолютно наилучший результат $N_q(g)/g$ достигается на кривой Судзуки.

Определения универсальных хеш классов по максимальным кривым Эрмита, Судзуки и кривым с большим числом точек Ферма и оценки вероятности коллизии представлены в табл. 1.

Таблица 1

Уравнение кривой		Определение универсального класса $\epsilon - U(N, q^{2k}, q^2)$	Оценки вероятности коллизии ε, k < g	
Проективная прямая	$X + Y + Z = 0, F_q,$	$U(q,q^k,q)$	k / q	
Кривая Эрмита	$y^{q} + y = x^{q+1}$, $F_{q^{2}}$	$U(q^3,q^{2k},q^2)$	$k/q^3 + s/q^2 - s(s-1)/(2q^3)$	
Максимальные кривые	$y^{q} + y = x^{d}$, $F_{q^{2}}$, $d q+1$	$U(q^{2}+(d-1)(q-1)q,q^{2k},q^{2})$	$(iq + jd)/(q^2 + (d-1)(q-1)q)$	
Кривая Судзуки	$\begin{split} y^q - y &= x^{q_0} \left(x^q - x \right) , \\ F_q , \; q &= 2 q_0^2 , \; q_0 = 2^s \end{split}$	$U(q^2,q^k,q)$	$(i(q+2q_0)+j(q+2q_0+1)+$ $t(q+q_0)+rq)/q^2$	
Кривая Ферма	$\begin{split} x^{(q-1)/3} + y^{(q-1)/3} + z^{(q-1)/3} &= 0 \ F_q \ , \\ q &\equiv l \pmod{3} \end{split}$	$U(2(q-1)^2/9,q^k,q)$	$3\left[(2k+1/4)^{1/2}-1/2\right]/(2(q-1))$	

Определения универсальных хеш классов

 $s = \left[(2k+1/4)^{1/2} - 1/2 \right] - округление к большему целому числу.$

Замечание 3.

1. Табл. 1 представлена по результатам [5-10].

2. Универсальное хеширование по рациональным функциям максимальных плоских алгебраических кривых имеет наилучшие асимптотические результаты. Верхняя граница вероятности коллизии для универсального хеширования $h_{P_j}(m)$ определена в области малых значений $k \le 2g$, g -род кривой, является прямо пропорциональной корню квадратному из k.

2. Оценки коллизионной стойкости универсального хеширования

Асимптотические оценки вероятности коллизии универсального хеширования по рациональным функциям алгебраических кривых для фиксированного поле вычислений представлены в табл. 2.

Замечание 4.

1. Результаты табл. 2 определяются подстановкой значений k в оценки вероятности коллизии универсального хеширования табл. 1.

2. Хеширование по максимальным кривым имеет наилучшие результаты среди плоских кривых, чуть ухудшаются с уменьшением рода. Такие же оценки достигаются на кривой с большим числом точек Ферма $X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$.

 Абсолютный результат реализуется для хеширования на кривой Сузуки. Вычисления по кривым Ферма и Сузуки является результативным для значений длины данных k, больших размерность поля.

Результаты вычисления параметров универсального хеширования для случая простого поля представлены в табл. 3.

Таблица 2

Тицирирой	Оценки вероятности коллизий $\epsilon_{q \to \infty}(k)$ для k слов данных						
тип кривои	k = 1	$k = \sqrt{q}$	$\mathbf{k} = \mathbf{q}$	$k = q^{3/2}$			
Проективная прямая	1/q	$1/q^{1/2}$	1	1			
Кривая Эрмита	1/q	$\sqrt{2}/q^{3/4}$	$\sqrt{2} / q^{1/2}$	1			
Максимальные кривые второго рода	1/q	$2/q^{3/4}$	$2/q^{1/2}$	1			
Максимальные кривые третьего рода	1/q	$\sqrt{6}/q^{3/4}$	$\sqrt{6}/q^{1/2}$	1			
Кривые Ферма с большим числом точек	1/q	$3/(\sqrt{2}q^{3/4})$	$3/(\sqrt{2}q^{1/2})$	$3/(\sqrt{2}q^{1/4})$			
Кривая Сузуки	1/q	$\sqrt[3]{3}/q^{5/6}$	$\sqrt[3]{3}/q^{2/3}$	$\sqrt[3]{3}/q^{1/2}$			

Оценки вероятности коллизии универсального хеширования по алгебраическим кривым над полем F_a

Таблина 3

Параметры ко- нечного поля F _q	Уравнение кривой	Размер пространства ключей (бит)	Вероят для данни 1Кбт	тность кол ых размеро 1Мбт	лизии эм L бит 1Гбт	Размер хеш кода (бит)
$q = 2^{32} - 99$	X + Y + Z = 0	32	2 ⁻²⁴	2-14	2-4	32
$q = 2^{32} - 99$	$X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$	62	2 ^{-26,89}	2 ^{-21,91}	2-17,5	32
$q = 2^{64} - 189$	X + Y + Z = 0	64	2 ⁻⁵⁷	2 ⁻⁴⁷	2-37	64
$q = 2^{64} - 189$	$X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$	126	2 ^{-59,41}	2 ^{-54,41}	2-49,41	64
$q = 2^{96} - 87$	X + Y + Z = 0	96	2 ^{-89,57}	2 ^{-79,57}	2-69,57	96
$q = 2^{96} - 87$	$X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$	190	2 ^{-91,7}	286,7	281,7	96
$q = 2^{128} - 159$	X + Y + Z = 0	128	2-122	2-112	2-102	128
$q = 2^{128} - 159$	$X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$	254	2 ^{-123,96}	2 ^{118,96}	2113,96	128

Оценки параметров универсального хеширования для простого поля

Замечание 5.

1. Универсальное хеширование в простом поле определяется на проективной прямой и кривой Ферма. Для эффективных вычислений в конечном поле значения размерности поля q определяются как простые числа ближайшие к 2^{32} , 2^{64} , 2^{96} , 2^{128} и q = 1 mod 3.

Наилучший результат хеширования достигается на кривой Ферма. Практические вычисления для вероятности коллизии є ≈ 2⁻⁵⁰ ÷ 2⁻¹⁰⁰ реализуются на модулях 64÷128 бит для размеров данных до нескольких Гбт.
 Ключевые затраты на хеширование по кри-

хешировании по проективной прямой. Оценки параметров хеширования в квадратичном поле представлены в табл. 4.

вым Ферма в два раза превышают по числу бит при

Замечание 6.

1. Универсальное хеширование в квадратичном поле определяется на проективной прямой, максимальных кривых и кривой с большим числом точек Ферма. Значения размерности квадратичного поля F_{q^2} определяются как простые числа q ближайшие

к значениям 2^{32} , 2^{48} , 2^{64} и $q \equiv 1 \mod 6$. Соответственно мощность поля вычислений будет равна 64, 96 и 128 бит.

Таблица 4

Оценки параметров универсального хеширования для квадратичного поля

Параметры ко- нечного поля F ₂	Уравнение кривой	Размер пространства	Вероя для данн	тность колных размеро	лизии ом L бит	Размер хеш кола (бит)
q		ключей (бит)	ТКот	ТМот	11 ОТ	
$q = 2^{32} - 5$	X + Y + Z = 0	64	2-57	2-47	2-37	64
$q = 2^{32} - 5$	$y^q + y = x^{q+1}$	96	2 ⁻⁶⁰	2-55	2-50	64
$q = 2^{32} - 5$	$y^{q} + y = x^{(q+1)/2}$	95	2 ^{-59,5}	2-54,5	2-49,5	64
$q = 2^{32} - 5$	$y^{q} + y = x^{(q+1)/3}$	95	2 ^{-59,2}	2 ^{-54,2}	2 ^{-49,2}	64
$q = 2^{32} - 5$	$x^{(q^2-1)/3} + x^{(q^2-1)/3} + 1 = 0$	126	2 ^{-59,41}	2-54,41	2 ^{-49,41}	64
$q = 2^{48} - 59$	X + Y + Z = 0	96	2 ^{-89,57}	2 ^{-79,57}	2 ^{-69,57}	96
$q = 2^{48} - 59$	$y^q + y = x^{q+1}$	144	2 ^{-92,28}	2 ^{-87,28}	2 ^{-82,28}	96
$q = 2^{48} - 59$	$y^{q} + y = x^{(q+1)/2}$	143	2 ^{-91,78}	2 ^{-86,78}	2 ^{-81,78}	96
$q = 2^{48} - 59$	$y^{q} + y = x^{(q+1)/3}$	143	2 ^{-91,49}	2 ^{-86,49}	2 ^{-81,49}	96
$q = 2^{48} - 59$	$x^{(q^2-1)/3} + x^{(q^2-1)/3} + 1 = 0$	190	2 ^{-91,7}	2 ^{-86,7}	2 ^{-81,7}	96
$q = 2^{64} - 59$	X + Y + Z = 0	128	2-122	2-112	2-102	128
$q = 2^{64} - 59$	$y^q + y = x^{q+1}$	192	2 ^{-124,5}	2 ^{-119,5}	2-114,5	128
$q = 2^{64} - 59$	$y^{q} + y = x^{(q+1)/2}$	191	2 ⁻¹²⁴	2-119	2-114	128
$q = 2^{64} - 59$	$y^{q} + y = x^{(q+1)/3}$	191	2 ^{-123,7}	2-118,7	2-113,7	128
$q = 2^{64} - 59$	$x^{(q^2-1)/3} + x^{(q^2-1)/3} + 1 = 0$	254	2 ^{-123,96}	2118,96	2113,96	128

2. Наилучшие результаты хеширования достигаются на максимальных кривых и кривой Ферма. Практические вычисления для вероятности коллизии $\varepsilon \approx 2^{-50} \div 2^{-100}$ реализуются на модулях 64÷128 бит для размеров данных до нескольких Гбт.

 Ключевые затраты на хеширование по максимальным кривым в полтора раза и по кривым Ферма в два раза превышают по числу бит на хеширование по проективной прямой.

Параметры универсального хеширования для кубического поля представлены в табл. 5.

Замечание 7.

 Универсальное хеширование в кубическом поле определяется на проективной прямой и кривой с большим числом точек Ферма. Значения размерности кубического F_q³ определяются как простые числа q ближайшие к 2¹⁶, 2³², 2⁴⁸. Мощность поля вычислений определяется в 48, 96 и 144 бит.

2. Наилучшие результаты хеширования достигаются на кривой Ферма.

Практические вычисления для вероятности к

оллизии $\varepsilon \approx 2^{-70} \div 2^{-130}$ реализуются на модулях 96÷144 бит для размеров данных до нескольких Гбт.

3. Ключевые затраты на хеширование по кривым Ферма в 5/3 раз превышают по числу бит на хеширование по проективной прямой. Параметры универсального хеширования для расширенного поля характеристики 2 представлены в табл. 6.

Замечание 8.

1. Универсальное хеширование в расширенном поле характеристики 2 определяется на проективной прямой, кривой Судзуки и кривой Ферма с большим числом точек.

2. Наилучшие результаты хеширования достигаются на кривой Сузуки. Несколько уступает по вероятности коллизии хеширование по кривой Ферма. Практические вычисления для вероятности коллизии $\varepsilon \sim 2^{-50}$ и меньше реализуются на модулях в 64 бит и больше для данных до нескольких Гбт.

3. Ключевые затраты на хеширование по кривым Сузуки и Ферма в 2 раза превышают по числу бит на хеширование по проективной прямой.

Таблица 5

Уравнение кривой	Размер пространства	Вероятность коллизии для данных размером L бит			Размер хеш
1 1	ключей (бит)	1Кбт	1Мбт	1Гбт	кода (оит)
X + Y + Z = 0	48	2-40,58	2-30,58	2 ^{-20,58}	48
$x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$	80	2-43,79	2-38,79	2-33,79	48
X + Y + Z = 0	96	2 ^{-88,58}	2 ^{-78,58}	2 ^{-68,58}	96
$x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$	160	2 ^{-91,79}	2 ^{-86,79}	2 ^{-81,79}	96
X + Y + Z = 0	144	2 ^{-136,58}	2 ^{-126,58}	2-116,58	144
$x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$	250	2-139,79	2-134,79	2-129,79	144
	Уравнение кривой $X + Y + Z = 0$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ $X + Y + Z = 0$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ $X + Y + Z = 0$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$	Уравнение кривойРазмер пространства ключей (бит) $X + Y + Z = 0$ 48 $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 80 $X + Y + Z = 0$ 96 $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 160 $X + Y + Z = 0$ 144 $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 250	Уравнение кривойРазмер пространства ключей (бит)Вероя для данн 	Уравнение кривойРазмер пространства ключей (бит)Вероятность кол для данных размер 1Кбт $X + Y + Z = 0$ 48 $2^{-40,58}$ $2^{-30,58}$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 80 $2^{-43,79}$ $2^{-38,79}$ $X + Y + Z = 0$ 96 $2^{-88,58}$ $2^{-78,58}$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 160 $2^{-91,79}$ $2^{-86,79}$ $X + Y + Z = 0$ 144 $2^{-136,58}$ $2^{-126,58}$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 250 $2^{-139,79}$ $2^{-134,79}$	Уравнение кривойРазмер пространства ключей (бит)Вероятность коллизии для данных размером L бит $X + Y + Z = 0$ 48 $2^{-40.58}$ $2^{-30.58}$ $2^{-20.58}$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 80 $2^{-43.79}$ $2^{-38.79}$ $2^{-33.79}$ $X + Y + Z = 0$ 96 $2^{-88.58}$ $2^{-78.58}$ $2^{-68.58}$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 160 $2^{-91.79}$ $2^{-86.79}$ $2^{-81.79}$ $X + Y + Z = 0$ 144 $2^{-136.58}$ $2^{-126.58}$ $2^{-116.58}$ $x^{q^2+q+1} + y^{q^2+q+1} + 1 = 0$ 250 $2^{-139.79}$ $2^{-134.79}$ $2^{-129.79}$

Оценки параметров универсального хеширования для кубического поля

Таблица 6

Оценки параметров универсального хеширования для расширенного поля

			1Кбт	1Мбт	1Гбт	
$q = 2^{32}$	X + Y + Z = 0	32	2 ⁻²⁴	2 ⁻¹⁴	2-4	32
$q = 2^{31}$	$y^{q} - y = x^{q_0} \left(x^{q} - x \right)$	62	2-27,79	2 ^{-24,46}	2-21,13	31
$q = 2^{32}$	$x^{(q-1)/3} + x^{(q-1)/3} + 1 = 0$	64	2 ^{-26,89}	2 ^{-21,91}	2-17,5	32
$q = 2^{64}$	X + Y + Z = 0	63	2-57	2-47	2-37	64
$q = 2^{63}$	$y^{q} - y = x^{q_0} \left(x^{q} - x \right)$	126	2 ^{-60,13}	2 ^{-56,8}	2 ^{-53,47}	63
$q = 2^{64}$	$x^{(q-1)/3} + x^{(q-1)/3} + 1 = 0$	128	2 ^{-59,41}	2 ^{-54,41}	2-49,41	64

Выводы

1. Оценки вероятности коллизии универсального хеширования по алгебраическим кривым представленные в таблицах 3÷6 являются верхними и определяют коллизионную границу для хеширования k слов данных.

2. Наилучшее применение универсального хеширования по алгебраическим кривым определяется выбором конечного поля и аспектами реализации вычислений в полях. Вычисления в простом поле являются быстрыми. Универсальное хеширование по кривой Ферма с большим числом точек имеет преимущество. Вероятность коллизии обратно пропорционально зависит от размерности поля вычислений.

Для обеспечения вероятности коллизии $\varepsilon < 2^{-50}$ над практическими данными до нескольких Гбт поле вычислений должно быть не меньше 64 бит.

Список литературы

14. Bierbrauer J. On families of hash functions via geometric codes and concatenation. / J. Bierbrauer, T. Johansson, G. Kabatianskii, B. Smeets // Advances in Cryptology-CRYPTO '93 Proceedings, Springer-Verlag.-1994. – P. 331-342.

15. Халимов Г.З. Аутентификация с применением алгеброгеометрических кодов / Г.З. Халимов, А.А. Кузнецов // Радиотехника: всеукр. межвед. науч.-техн. сб. – 2001. – Вып. 119. – С. 103-109.

16. Халимов Г.З. Аутентификация с применением эрмитовых кодов / Г.З. Халимов, А.Ю. Иохов // Вестник XПИ. – Х.: НТУ "ХПИ". – 2005. –Вып. 9. – С. 26-32.

17. Халимов Г.3. Максимальные кривые Гурвица для целей универсального хеширования / Г.3. Халимов // Матлы XI Международн. научн.-пр. конф. «Информационная безопасность» (Таганрог, Россия, 23-25 июня 2010), ТТИ ЮФУ. – 2010. – Ч. 3. – С. 144-146.

18. Халимов Г.3. Универсальное хеширование по рациональным функциям кривой Эрмита / Г.3. Халимов, А.Ю. Иохов // Междунар. научн.-пр. конф. «Застосування інформаційніх технологій у підготовці та діяльності сил охорони правопорядку» Академія внутрішніх війск МВС України 17-18.03.2011. Зб. тези доповідей. — 2011. — С. 48-51.

19. Халимов Г.З. Универсальное хеширование по максимальной кривой второго рода / Г.З. Халимов // Журнал «Радиоэлектронные и компьютерные системы». – Х.: НАУ ХАИ, 2011. – № 1(49). – С. 70-76.

20. Халимов Г.З. Универсальное хеширование по максимальной кривой третьего рода / Г.З. Халимов // Научные ведомости Белгородского государственного университета. – 2011. – №1 (96), – Вып. 17/1. – С. 137-145.

21. Халимов Г.З. Универсальное хеширование по алгебраическим кривым в простом поле / Г.З. Халимов // Журнал «Системи управління, навігації та зв'язку» Міністерство промислової політики України, ДП «Центральний науково-дослідний інститут навігації і управління». – К. – 2011. – Вип. 1(17). – С. 156-161.

22. Халимов Г.З. Универсальное хеширование по рациональным функциям алгебраических кривых в кубическом поле / Г.З. Халимов // Правове, нормативне та метрологічне забезпечення системи захисту інформації в Україні: наук.-техн. зб. – К. – 2010. – Вип. 2(21) – С. 59-65.

23. Халимов Г.З. Алгоритм универсального хеширования по кривой Сузуки / Г.З. Халимов, Е.В. Котух // Восточно-Европейский журнал передовых технологий. – 2011. – № 3/9 (51). – С. 10-16.

Поступила в редколлегию 4.02.2013

Рецензент: д-р. техн. наук, проф. В.И. Долгов, Харьковский национальный университет радиоэлектроники, Харьков.

ОЦІНКИ КОЛІЗІЙНОЇ СТІЙКОСТІ УНІВЕРСАЛЬНОГО ГЕШУВАННЯ ЗА АЛГЕБРИЧНИМИ КРИВИМИ

Г.З. Халімов

Представлені оцінки колізійної стійкості універсального гешування за найкращими алгебричними кривими з великим числом точок і максимальними кривими.

Ключові слова: алгебричні криві, універсальне гешування.

COLLISION RESISTANCE EVALUATION OF UNIVERSAL HASHING ON THE ALGEBRAIC CURVES

G.Z. Khalimov

Estimates of collision resistance of the universal hashing on the best algebraic curves with a large number of points and the maximal curves.

Keywords: algebraic curves, universal hashing.