А.В. Кобзев, В.В. Романенко

Харьковский университет Воздушных Сил им. Ивана Кожедуба, Харьков

АНАЛИЗ ПОКАЗАТЕЛЕЙ ОБНАРУЖЕНИЯ ИМПУЛЬСНЫХ СИГНАЛОВ НЕИЗВЕСТНОГО ВИДА С УЧЕТОМ ИХ РАССОГЛАСОВАНИЯ С ХАРАКТЕРИСТИКАМИ ПРИЕМНОГО УСТРОЙСТВА

Проводится анализ отношения сигнал/шум на выходе энергетического приемника при рассогласовании параметров импульсного сигнала с характеристиками приемника. Осуществляется количественное сравнение потерь в отношении сигнал/шум относительно согласованного приема. Приводятся соотношения для расчета характеристик обнаружения

Ключевые слова: показатели обнаружения, импульсные сигналы неизвестного вида, энергетический приемник.

Введение

Задача обнаружения сигналов неизвестного вида характерна для средств радиотехнической разведки (РТР) и радиомониторинга [1 – 3], добывающих информацию об излучающих объектах. Основной особенностью средств РТР и радиомониторинга является априорная неопределенность видов и параметров модуляции принимаемых сигналов, что неизбежно сказывается на показателях их обнаружения. В ряде публикаций, где излагаются вопросы обработки такого класса сигналов содержаться противоречивые подходы при анализе показателей обнаружения и измерения параметров. Так, например, в работах [1,2] в качестве параметра обнаружения одиночных сигналов конечной длительности используется энергетическое отношение q²=2Э/N₀, где Э – энергия импульса на входе приемника, N₀ - спектральная плотность мощности внутреннего шума. Авторы указанных работ не учитывают то обстоятельство, что данный параметр применим при анализе возможностей только средств активной радиолокации [4], когда имеется копия излучаемого импульсного сигнала и при приеме используются известные характеристики модуляции сигнала. Это условие позволяет применить согласованную фильтрацию, например, сжатие широкополосного сигнала (ШПС) или корреляционную обработку, осуществляющие когерентное (додетекторное) накопление сигнала [4]. В приемных устройствах РТР и радиомониторинга процедура согласованной обработки неприменима из-за незнания вида сигнала. В работе [3] использован более реалистичный подход, когда для приема сигналов неизвестного вида рассматривается энергетический приемник, что соответствует общепринятым подходам. Здесь при анализе характеристик обнаружения полагается, что сумма сигнала и шума на выходе приемника описывается χ^2 -распределением. В соответствии со свойствами х2-распределения [5] это справедливо только для случая шумо-

© А.В. Кобзев, В.В. Романенко

вого гауссового полезного сигнала на входе, что крайне редко встречается при РТР. Поэтому в случае приема негауссового сигнала (в том числе импульсного с детерминированными видами модуляции) подобный подход приводит, на наш взгляд, к неточным результатам. Кроме того, в указанных работах не рассматривается практически интересные вопросы влияния степени рассогласования длительности и ширины спектра сигнала с параметрами приемника на характеристики обнаружения.

Цель работы. В данной работе устанавливается связь между энергетическим отношением q^2 и отношением сигнал/шум на выходе энергетического приемника и тем самым определяются энергетические потери за счет рассогласования параметров импульсного сигнала и характеристик приемника, как до детектора, так и после детектора.

Основное содержание

Энергетический приемник в упрощенном виде (рис. 1), представляет собой соединение полосового фильтра (ПФ), квадратичного детектора (КвД) и фильтра нижних частот (ФНЧ), выполняющего роль интегрирующего устройства. Фильтры будем характеризовать шумовыми полосами пропускания: Δf - для ПФ и ΔF - для ФНЧ.

Рис. 1. Схема энергетического приемника

Пусть на входе ПФ действует внутренний шум со спектральной плотностью мощности N_0 и полезный сигнал в виде прямоугольного импульса амплитудой А и длительностью т. Будем считать, что ПФ имеет прямоугольную АЧХ. Тогда энергетический спектр низкочастотной флюктуационной составляющей процесса v(t) на выходе КвД имеет форму треугольника с основанием Δf [6] и максимумом N_d на нулевой частоте. Определим характеристики про-

цесса z(t) на выходе ФНЧ и выразим их через параметры сигнала и шума на входе ПФ.

Среднее значение и дисперсия низкочастотной сплошной части процесса на входе ФНЧ соответственно равны [6] $m_v = \sigma^2_{III} + P_c$; $\sigma^2_v = \sigma^4_{III} + 2P_c \sigma^2_{III}$, где $P_{c}\!=A^{2}\!/2;\;\sigma^{2}_{\mbox{ }m}\!=N_{0}{\cdot}\Delta f$ – мощность сигнала и дисперсия шума на входе приемника в полосе ·Δf. Для треугольного спектра справедливо также равенство $\sigma_v^2 = N_d \cdot \Delta f/2$. При прохождении через ФНЧ необходимо учитывать, что сигнальная составляющая z_c и дисперсия флюктуационной составляющей z_{сш}(t), обусловленной взаимодействием импульсного сигнала и шума (второе слагаемое в σ_v^2), нарастают при воздействии импульса и принимают максимальное значение в конце его действия. Эту особенность учтем путем умножения соответствующих составляющих на коэффициенты g_c и g_n , т.е. $z_{c,max} = P_c \cdot g_c$; а дисперсия процесса z_{сш}(t) должна содержать коэффициент g_п. Для пассивной цепи коэффициенты $g_c \le 1; g_n \le 1$. Они зависят от типа ФНЧ. Дисперсию флюктуационного процесса на выходе ФНЧ с нормированной амплитудно-частотной характеристикой (АЧХ) К(f) можно представить в виде

$$\sigma_{z}^{2} = N_{d} \int_{0}^{\Delta f} \left(1 - \frac{f}{\Delta f} \right) K^{2} \left(f \right) df \approx N_{d} \Delta F \left(1 - \frac{\Delta F}{2\Delta f} \right).$$
(1)

Здесь учтено, что интеграл от K²(f) есть шумовая полоса ΔF . Если обозначить x = 1 – $\Delta F/(2\Delta f)$, то с учетом равенства $\sigma_v^2 = N_d \cdot \Delta f/2$ соотношение (1) для момента окончания импульса можно представить в следующем виде

$$\sigma_{z,max}^{2} = (\sigma_{uu}^{4} + 2P_{c}\sigma_{uu}^{2}g_{\pi}) \times (2\Delta Fx/\Delta f).$$
(2)

Обозначим входное отношение сигнал/шум по мощности $\rho^2 = P_c/\sigma^2_{\rm m}$. Тогда отношение сигнал/шум на выходе в момент окончания импульса равно

$$s^{2} = \frac{z_{c,max}^{2}}{y_{z,max}^{2}} = \frac{c^{4}g_{c}^{2}}{1 + 2c^{2}g_{\Pi}} \cdot \frac{\mathcal{I}f}{2\mathcal{I}Fx}.$$
 (3)

Величина η^2 определяет вероятность правильного обнаружения. Сравним (3) со случаем додетекторной согласованной обработки, когда вместо ПФ включен фильтр, согласованный с видом модуляции сигнала. При этом сигнал/шум на входе КвД определяется энергетическим отношением $q^2 = 2 \Im / N_0 = 2 \rho^2 \cdot \Delta f \cdot \tau$, а на выходе ФНЧ с учетом квадратичного детектирования имеем $\eta_c^2 = q^4/(1+2q^2)$. Представляет интерес рассматривать значения сигнал/шум q²>10, при которых происходит обнаружение с вероятностями около 0,5 и более [4]. Поэтому будем считать, что $\eta_c^2 \approx q^2/2$. Потери за счет рассогласования параметров сигнала с характеристиками энергетического приемника по отношению к согласованному приемнику выразим как отношение $\gamma = \eta_c^2/\eta^2 = \rho^2 \Delta f \tau / \eta^2$ ($\gamma > 1$). Введем параметр рассогласования $\alpha = \Delta F \tau$. Тогда с учетом (3) можно записать выражение для потерь в следующем виде:

$$\gamma(\alpha,\rho^{2}) = 2\alpha x \left(1 + 2\rho^{2}g_{\Pi}\right) / \left(\rho^{2}g_{c}^{2}\right)$$
 (4)

Рассмотрим показатели обработки для двух типов ФНЧ. Первый из них представляет собой согласованный фильтр (СФ) для прямоугольного видеоимпульса длительностью τ_0 (рис.2) [6], в состав которого входят элемент задержки (ЭЗ) на время τ_0 , устройство вычитания и идеальный интегратор, осуществляющий вычисление в соответствии с равенством

$$z(t) = \frac{1}{\tau_0} \int_{-\infty}^{t} \left[v(s) - v(s - \tau_0) \right] ds.$$
 (5)

для прямоугольного видеоимпульса

Шумовая полоса такого СФ равна $\Delta F = 0.5/\tau_0$ [6]. Если $\tau = \tau_0$ (условие согласования), то $g_c = 1$, $g_{\pi} = 1$, $\alpha = 0.5$. Этот случай целесообразно называть последетекторным согласованием. Он позволяет в некоторой степени восполнить потери за счет додетекторонго рассогласования в энергетическом приемнике при фиксированной полосе Δf . При этом имеем

$$\gamma_{\rm c}\left(\rho^2\right) = x\left(1+2\rho^2\right) / \rho^2 \,. \tag{5}$$

Если известна ширина спектра Δf_c и длительность радиоимпульса τ (наилучшая ситуация в РТР) и сигнал является широкополосным с неизвестным видом модуляции, то можно согласовать полосы фильтров как до детектора ($\Delta f = \Delta f_c$), так и после ($\alpha = 0,5$). Тогда в случае ШПС ($\Delta f_c \tau >> 1$) имеем $\Delta f >> \Delta F$, $x \approx 1$; $\gamma = (1+2\rho^2)/\rho^2$. Для немодулированного внутри импульса $\Delta f_c \tau \approx 1$, $\Delta f \approx \Delta F$, x = 0,5; $\gamma_c = (1+2\rho^2)/(2\rho^2)$. Отсюда следует, что незнание вида внутриимпульсной модуляции ШПС при указанных выше условиях согласования приводит к потерям в диапазоне от $\gamma_{c,max} = 1/\rho^2$ при $\rho^2 \ll 1$ до $\gamma_{c,min} = 2$ (или 1) для ШПС (или немодулированного) при $\rho^2 >> 1$.

При рассогласовании фильтра ($\tau \neq \tau_0$) сигнальная составляющая z_c не может превышать величину $min(\tau,\tau_0)/\tau_0$. Поэтому при $\tau < \tau_0$ имеем $g_c=g_n=\tau/\tau_0=2\alpha$, а при $\tau > \tau_0$ имеем $g_c = g_n = 1$. Другой тип ФНЧ представляет собой простейший RC-фильтр (резистор с сопротивлением R и конденсатор емкостью C). Для него справедливы соотношения [6]: $\Delta F = 1/(4RC)$, $g_c = 1 - \exp(-4\alpha)$, $g_n = 1 - \exp(-8\alpha)$.

В практических разработках, как правило, выполняются неравенства $\Delta f >> \Delta F$; $\Delta f > \Delta f_c$, т.е х ≈ 1 . Именно для этих условий на рис. З приведены зависимости потерь γ [дБ] от параметра рассогласования $\alpha = \Delta F \tau$ для значений $\rho^2 = 0,1$; 1 и 10.

Рис. 3. Графики потерь в энергетическом приемнике в зависимости от параметра рассогласования ФНЧ

Сплошные кривые соответствуют фильтру по схеме рис. 2, а пунктирные – RC-фильтру. Из этих данных видно, что в энергетическом приемнике потери в отношении сигнал/шум по сравнению с согласованным приемником могут иметь значительную величину. Наименьшие потери последетекторного СФ имеют величины 10,8 дБ; 4,8 дБ и 3,2 дБ при различных ρ². Наименьшие потери в RC-фильтре (11,6 дБ; 5,3 дБ и 3,4 дБ) соответствуют параметру рассогласования α=0,3; 0,23 и 0,13 в зависимости от ρ². При этом RC-фильтр проигрывает фильтру рис. 2 по наименьшим потерям всего на 0,8дБ; 0,4 дБ и 0,2 дБ. Кроме того RC-фильтр при α<0,5 менее чувствителен к рассогласованию. Это связано, повидимому, с более пологими скатами АЧХ. При выполнении условия $\Delta f >> \Delta F$ процесс z(t) нормализуется и для расчета характеристик обнаружения можно использовать интеграл вероятностей

$$\Phi(y/m,\sigma) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} \exp\left\{-\frac{(u-m)^2}{2\sigma^2}\right\} du. \quad (6)$$

Перейдем к нормированному случайному процессу на выходе $z_{\mu}(t) = z(t)/\sigma_z$, который имеет единичную дисперсию. Средние значения m_0 , m_1 этого процесса при отсутствии ($P_c = 0$) и наличии сигнала равны

$$\mathbf{m}_{0} = \sqrt{\frac{\Delta \mathbf{f}}{2\Delta F}}; \ \mathbf{m}_{1} = \left(\left(1 + \rho^{2} \mathbf{g}_{c}\right) / \sqrt{1 + 2\rho^{2} \mathbf{g}_{\Pi}} \right) \cdot \sqrt{\frac{\Delta \mathbf{f}}{2\Delta F}} \ . (7)$$

При заданной вероятности ложной тревоги P_{nr} можно найти порог обнаружения из равенства $y_{nop} = \Phi^{-1}(1-P_{nr}/m_0,1)$, где $\Phi^{-1} - \phi$ ункция, обратная интегралу (6). Вероятность правильного обнаружения находится как $P_{oбh} = 1 - \Phi(y_{nop}/m_1,1)$. В среде MATLAB такие расчеты можно провести с использованием команд $y_{nop} = norminv(1 - P_{nr},m_0,1)$; $P_{oбh} = 1 - normcdf(y_{nop},m_1,1)$.

Выводы

Энергетический приемник имеет существенные потери в отношении сигнал/шум на выходе по сравнению с согласованным приемником. Наименьшие потери можно обеспечить при соглассовании последетекторного тракта, если известна длительность импульса. Для согласования можно использовать простейший RC-фильтр нижних частот, который по своим возможностям мало уступает фильтру со строгим согласованием. При неизвестной длительности импульса целесообразно осуществить последетекторное согласование для импульса минимальной длительности. Это позволит сохранить информацию о длительности импульса на входе.

Список литературы

1. Радзиевский В.Г. Теоретические основы радиоэлектронной разведки. 2-е изд., испр. и доп. / В.Г. Радзиевский, А.А. Сирота. – М.: Радиотехника, 2004. – 432 с.

2. Мельников Ю.П. Воздушная радиотехническая разведка (методы оценки эффективности) / Ю.П. Мельников. – М.: Радиотехника, 2005. – 304 с.

3. Куприянов А.И. Теоретические основы радиоэлектронной борьбы: Учебное пособие / А.И. Куприянов, А.В. Сахаров. – М.: Вузовская книга, 2007. – 356 с.

4. Ширман Я.Д. Теория и техника обработки радиолокационной информации на фоне помех / Я.Д. Ширман, В.Н. Манжос. – М.: Радио и связь, 1981. – 416 с.

5. Тихонов В.И. Статистическая радиотехника. – 2-е изд., перераб. и доп. / В.И. Тихонов. – М.: Радио и связь, 1982. – 624 с.

6. Горяинов И.Т. Примеры и задачи по статистической радиотехнике / И.Т. Горяинов, А.Г. Журавлев, В.И. Тихонов. – М.: Сов. радио, 1970. – 600 с.

Поступила в редколлегию 7.08.2013

Рецензент: д-р техн. наук, проф. Е.Л. Казаков, Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков.

АНАЛІЗ ПОКАЗНИКІВ ВИЯВЛЕННЯ ІМПУЛЬСНИХ СИГНАЛІВ НЕВІДОМОГО ВИДУ З УРАХУВАННЯМ ЇХ НЕУЗГОДЖЕНОСТІ З ХАРАКТЕРИСТИКАМИ ПРИЙМАЛЬНОГО ПРИСТРОЮ

А.В. Кобзєв, В.В. Романенко

Проводиться аналіз відношення сигнал/шум на виході енергетичного приймача при неузгодженості параметрів імпульсного сигналу з характеристиками приймача. Здійснюється кількісне порівняння втрат у відношенні сигнал / шум відносно узгодженого прийому. Наводяться співвідношення для розрахунку характеристик виявлення. Ключові слова: показники виявлення, импульсні сигнали невідомого виду, енергетичний приймач.

THE ANALYSIS OF DETECTION INDEX OF UNKNOWN TYPE PULSE SIGNALS ALLOWING FOR THEIR MISMATCH WITH CHARACTERISTICS OF RECEIVER

A.V. Kobzev, V.V. Romanenko

The article presents the analysis of the signal-to-noise ratio at the energy receiver output allowing for a mismatch of the pulse signal to the characteristics of the receiver. In article performed a quantitative comparison of the signal-to-noise ratio losses to a case of harmonized detection and provided relations for the calculation of the detection index characteristics. **Keywords:** detection index, unknown type pulse signals, energy receiver.