УДК 629.7.015.3

С. А. Давыдов, П. В. Семененко

Днепропетровский национальный университет имени Олеся Гончара

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПАРАМЕТРОВ ТРАНСЗВУКОВОЙ ЗОНЫ ПОЛЕТА РАКЕТЫ-НОСИТЕЛЯ ОТ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕЙ СРЕДЫ СТАРТА

Розроблена інженерна методика впливу температури навколишнього середовища в районі старту на параметри трансзвукової зони польоту ракети-носія. Проведені дослідження, наданий аналіз результатів дослідів.

Ключові слова: трансзвукова зона, температура навколишнього середовища, балістичні параметри.

Разработана инженерная методика влияния температуры окружающей среды в районе старта на параметры трансзвуковой зоны полета ракеты-носителя. Проведены исследования, дан анализ результатов исследования.

Ключевые слова: трансзвуковая зона, температура окружающей среды, баллистические параметры.

Engineering methods of the influence of the environmental temperature in the start location on the parameters of carrier-rocket flight transonic zone have been elaborated. The research has been carried out, the analysis of its results has been given.

Keywords: transonic zone, environmental temperature, ballistic parameters.

Введение. Трансзвуковая зона полета ракеты-носителя (PH) определяется значениями чисел Маха, которые лежат в диапазоне $0.8 \le M \le 1.2$.

В [1, 2] разработана инженерная методика определения параметров трансзвуковой зоны. В качестве параметров использовались значения высот $h_{0,8}$, $h_{1,0}$, $h_{1,2}$, на которых в процессе полета PH достигает величин чисел Маха M = 0.8, M = 1.0, M = 1.2, соответственно. По этим параметрам определялись протяженность и время прохождения дозвукового и сверхзвукового участков полета PH в трансзвуковой зоне.

В [3] дан анализ полученных на основе инженерной методики окончательных расчетных соотношенийй. Выделены две группы факторов, влияющих на параметры трансзвуковой зоны полета РН.

К первой группе факторов были отнесены баллистические параметры PH: коэффициент энерговооруженности, сила лобового сопротивления (нагрузка на мидель) и траектория полета PH. Эти параметры были представлены как линейные функции высоты полета PH.

[©] Давыдов С. А., Семененко П. В., 2013

Для проведения расчетов и возможности практического использования их результатов были введены обобщенные и комплексные понятия локального стартового коэффициента энерговооруженности РН и его градиентов. Градиент отражает увеличение значений стартового коэффициента энерговооруженности с увеличением высоты полета РН.

Приведены графики зависимости параметров трансзвуковой зоны от значений коэффициента энерговооруженности и его градиента.

Вторая группа факторов, влияющих на параметры трансзвуковой зоны, была отнесена к влиянию внешней среды на старте и в полете РН. Она описывается функцией, которая зависела от двух параметров и определялась по формуле

$$F_2 = \frac{a^2}{2g},\tag{1}$$

где *а* – скорость звука; *В* – ускорение свободного падения.

При использовании стандартной атмосферы Земли в пределах тропосферы функция F_2 описывалась линейной зависимостью от высоты h.

В [3] расчеты проводились для стандартной атмосферы Земли. Значение температуры окружающей среды в районе старта было взято $t = 15 \text{ C}^{\circ}$ (на уровне моря). По значению этой температуры и на этой высоте определялись величины скорости звука. Учитывались изменения значений скорости звука и ускорения свободного падения с увеличением высоты.

На практике допустимый диапазон температур окружающей среды для старта PH может лежать в пределах от -30° C до $+45^{\circ}$ C.

Целью настоящего этапа работы являлось исследование влияния температуры окружающей среды в районе старта и в полете PH на параметры трансзвуковой зоны.

Задачи исследований:

– провести дальнейшую разработку инженерной методики, которая учитывала бы влияние температуры окружающей среды на параметры трансзвуковой зоны полета PH;

- получить расчетные соотношения;

 провести исследования влияния температуры окружающей среды на параметры трансзвуковой зоны;

– дать анализ результатов исследований.

Основной материал. В [3] расчетная формула для определения высоты начала трансзвуковой зоны $h_{0,8}$ и протяженности участков трансзвуковой зоны была представлена в виде (без учета начальных условий)

$$Z(M) = \frac{F_2}{F_1} M^2,$$
 (2)

31

где Z – протяженность траектории полета PH; M – число Маха; $F_1 = v - \overline{X} - \sin \alpha$; v – локальный коэффициент энерговооруженности PH; \overline{X} – приведенная нагрузка на мидель; α – угол наклона оси PH к местному горизонту (определяет траекторию полета PH).

Функция F_2 в (2) определялась по формуле (1).

Формула (2) показывает квадратичную зависимость протяженности траектории Z от числа Маха M. В качестве параметров выступают баллистические параметры PH (v, \overline{X}, α). По формуле (2) определяются значения начала трансзвуковой зоны $Z_{0,8}$, дозвукового $Z_{1,0}$ и сверхзвукового $Z_{1,2}$ участков траектории трансзвуковой зоны. В [1–3] даны формулы перерасчета от протяженности траектории $Z_{0,8}$ к расчетной высоте высотам $\overline{h}_{0,8}$, а также к реальным высотам $h_{0,8}, h_{1,0}, h_{1,2}$.

В представленном виде (2) удалось разделить параметры, которые оказывают влияние на параметры трансзвуковой зоны. Функция F_1 зависит исключительно от баллистических параметров PH и показывает, какую часть от ускорения свободного падения составляет ускорение PH [2]. Функция F_2 , как было отмечено выше, зависит только от условий внешней среды. Эти условия, согласно (1), определяются отношением квадрата скорости звука к удвоенному ускорению свободного падения.

Функции F_1 и F_2 были представлены на данном этапе исследований линейной зависимостью от высоты h в виде

$$F_2 = \overline{a}_0 - \overline{a}_1 h; \ v = v_0 + v_1 h; \ \overline{X} = \overline{X}_0 + \overline{X}_1 h; \ \sin \alpha = a_0 - a_1 h.$$
(3)

Параметры с нулевыми индексами являются исходными значениями в начале каждого участка трансзвуковой зоны. Параметры с индексом один отражают скорость изменения исходных параметров с увеличением высоты полета PH. Они являются градиентами соответствующих параметров.

При подстановке (3) в (2) был получен другой вид формулы для определения протяженности траектории в зависимости от числа Маха с учетом начальных условий – числа Мах M_0 , приведенного лобового сопротивления \overline{X}_0 , параметра траектории α_0 , характеристики внешней среды \overline{a}_0 :

$$Z(M) = \frac{1}{2b_2} \left[\sqrt{4b_2 b_0 + b_1^2} - b_1 \right], \tag{4}$$

где $b_0 = \overline{a}_0 (M^2 - M_0^2); \ b_1 = v_0 - \overline{X}_0 - \alpha_0 + a_1 (M^2 - M_0^2); \ b_2 = v_1 - \overline{X}_1 + \alpha_1.$

Коэффициент b_0 содержит параметр \overline{a}_0 . Он зависит только от условий внешней среды в районе старта.

Коэффициент b_2 определяется исключительно баллистическими параметрами PH и характеризует величины градиентов исходных параметров. Его можно назвать обобщенным градиентом, так как он содержит алгебраическую сумму градиентов. Он также может выступать в качестве комплексного градиента, так как объединяет градиенты, которые разнятся по своей физической природе. Слагаемое v_1 – градиент коэффициента энерговооруженности, \overline{X}_1 – лобового сопротивления, α_1 – траектории полета.

Коэффициент b_2 при такой характеристике является не только обобщенным, но и комплексным. Он объединяет начальные баллистические параметры PH и параметр внешней среды (градиент \bar{a}_1).

Благодаря введению обобщенных и комплексных коэффициентов, расчет параметров трансзвуковой зоны полета был сведен к двум параметрам b_1 и b_2 . В [3] приведены расчетные значения высот начала трансзвуковой зоны и протяженности дозвуковой и сверхзвуковой зоны от величин коэффициентов b_1 и b_2 . Результаты исследований представлены в виде графиков. На основе представленных данных можно определять параметры трансзвуковой зоны в широком диапазоне баллистических параметров PH (b_1 и b_2).

В проведенных исследованиях были использованы данные внешней среды для стандартной атмосферы Земли. Это отражалось в значениях коэффициентов \overline{a}_0 и \overline{a}_1 . Было принято: $\overline{a}_0 = 5,9$ км, $\overline{a}_1 = 0,133$. Эти параметры окружающей среды в процессе исследований оставались неизменными.

Для учета влияния изменения величин параметров, составляющих функцию F_2 , на параметры трансзвуковой зоны вначале были определены области, в которых необходимо рассматривать эти изменения. По поверхности Земли эта область может простираться от экватора до северных широт (космодром Плесецк). По высоте – от уровня моря до стратосферы. Последний выбор основывается на результатах исследований, проведенных в [3]. Анализ результатов этих исследований, проведенных в широком диапазоне баллистических параметров b_1 и b_2 , показал, что трансзвуковая зона полета PH находится в пределах тропосферы Земли.

Зависимость значений ускорения свободного падения от широты, определяемой углом ϕ , и от высоты *h* определялась по формуле [4].

$$g(\phi, h) = g_0 (1 + 5, 3 \cdot 10^{-3} \sin^2 \phi - 7 \cdot 10^{-6} \sin^2 2\phi) \left(\frac{R_3}{R_3 + h}\right)^2,$$
(5)

где $g_0 = 9,78$ м/c² – значение ускорения свободного падения на экваторе ($\phi = 0$); $R_3 = 6378$ км – радиус Земли.

Анализ результатов предыдущих исследований показал незначительное (не более 2%) влияние изменения значений ускорения свободного падения на параметры трансзвуковой зоны. Поэтому, для упрощения проведения

многосторонних исследований в разрабатываемой инженерной методике было принято среднеарифметическое значение ускорения свободного падения.

По формуле (5) были подсчитаны значения ускорения свободного падения для высот h = 0 км и h = 10 км, а для значений угла широты выбирались углы широты, на которых располагались космодромы: Плесецк, Байконур, космический центр им. Д. Ф. Кеннеди и экваториальные космодромы. Среднеарифметическое соотношение между указанными величинами составило g = 9,793 м/с² и оставалось неизменным в процессе дальнейших исследований.

Вторым составляющим параметром функции *F*₂ являлась скорость звука. Она была определена по формуле:

$$a^2 = kRT, (6)$$

где k = 1,4; R – удельная газовая постоянная; T – температура окружающей среды.

Зависимость температуры от высоты определялась выражением [4]:

$$T(h) = T_0 - T_1 h, (7)$$

где $T_1 = 6,5$ град/км – градиент температуры по высоте h.

Подстановкой (6), (7) в (1) выражение для F_2 как функции температуры имело вид

$$F_2 = \frac{kR}{2g} [T_0 - T_1 h]$$
(8)

или

$$F_2 = d_0 - d_1 h \,, \tag{9}$$

где
$$d_0 = \frac{kR}{2g}T_0, \ d_1 = \frac{kR}{2g}T_1.$$

Значение d_0 – начальное значение функции F_2 , d_1 – градиент изменения начального значения.

Для перехода от значений температуры по Цельсию *t* к значениям температуры по Кельвину *T* использовалась формула [4]:

$$T = t + 273,15. \tag{10}$$

Для стандартной атмосферы $t = 15^{\circ}$ значения $d_0 = \overline{a}_0 = 5,9$ км, $d_1 = \overline{a}_1 = 0,133$.

В результате анализа распределения температур в тропосфере над указанными выше космодромами значение градиента функции F_2 по высоте было оставлено без изменения – $d_1 = \overline{a}_1 = 0,133$. Начальная температура окружающей среды T_0 определялась температурой на высоте старта на конкретном космодроме.

При таком подходе можно использовать ранее полученные расчетные соотношения в виде (4). Влияние температуры на параметры трансзвуковой зоны учитывается только коэффициентом \bar{a}_0 . Его необходимо заменить на коэффициент d_0 .

Следуя методологии разработанной ранее инженерной методики, изложенной в [2] и [3], окончательные расчетные формулы для определения значений высот трансзвуковой зоны были преобразованы к виду:

$$Z_T = \frac{1}{2b_2} \sqrt{\overline{B}b_2 + b_1^2} - b_1, \qquad (11)$$

где $\overline{B} = B(t + 273,15), B = 0,05225 - для h_{0,8}, B = 0,02925 - для h_{1,0}, B = 0,03061 - для h_{1,2}.$

Результаты расчетов, проведенных по формуле (11), представлены на рис. 1. Здесь даны результаты для крайних (минимальных и максимальных) значений баллистических параметров РН. Диапазон изменения этих параметров определен в [2].

В настоящем исследовании была предпринята попытка придать некоторым комплексным баллистическим параметрам РН и параметрам трансзвуковой зоны физический смысл, конкретизировать их для более ясного представления результатов исследований и расширения возможности их применения на практике.

На двух верхних графиках приведена зависимость значений расчетной высоты $\overline{h}_{0,8}$ от температуры окружающей среды в районе старта. Понятие расчетной высоты было введено в [2] для возможности анализа влияния на параметры трансзвуковой зоны основных баллистических параметров PH. Расчетная высота $\overline{h}_{0,8}$ – условная, на которой PH достигает начала трансзвуковой зоны. При этом предполагается, что PH стартует с космодрома, расположенного на уровне моря при вертикальном старте. При таких предположениях выражение для коэффициента b_1 значительно упрощается (см. формулу 4). Начальные значения $M_0 = \overline{X}_0 = 0$, $\alpha = 90^\circ$, $\sin \alpha = 1$, $\alpha_0 = 1$. При M = 0.8 и $d_1 = 0.133$ коэффициент b_1 имел вид $b_1 = v_0 - 0.92$. Он зависел от одного параметра v_0 – стартового коэффициента энерговооруженности. Это значение определяется отношением величины тяги двигателя, вышедшего на номинальный режим, к весу PH на данный момент времени. Эта величина характеризует ускорение PH в начале ее полета.

Рис. 1. Зависимость расчетной высоты начала трансзвуковой зоны $(\overline{h}_{0,8})$, протяженности дозвукового ($\Delta Z_{1,0}$) и сверхзвукового($\Delta Z_{1,2}$) участков

трансзвуковой зоны от температуры окружающей среды t° C

На данном этапе исследований рассматривались два значения стартового коэффициента энерговооруженности $(v_0)_{MIN} = 1,2$ и $(v_0)_{MAX} = 2,5$. Минимальное значение $(v_0)_{MIN}$ означает, что в начале полета РН тяга двигателя в 1,2 раза превосходит ее вес. Такой старт был условно характеризован как «медленный» старт. Вторым крайним случаем старта РН может быть «быстрый» старт. В этом случае тяга двигателя превосходит вес РН в 2,5 раза.

Другим баллистическим параметром, рассматриваемым в настоящем исследовании, являлся комплексный градиент b_2 . Он показывает увеличение значения стартового ускорение РН в процессе полета. Согласно (4), это увеличение зависит от трех составляющих.

Первое слагаемое v_1 – градиент непосредственно стартового коэффициента энерговооруженности. Он учитывает две особенности, которые характеризуют ракету как своеобразное техническое устройство и изменение величины тяги двигателя с набором высоты. Величина тяги двигателя изменяется незначительно за счет высотной добавки по сравнению со значительным уменьшением веса РН как тела переменной массы. Благодаря этим двум особенностям, значение стартового коэффициента в процессе полета может существенно увеличиваться и, как следствие, увеличивается значение ускорения РН.

На величину ускорения оказывает влияние сила лобового сопротивления. Это обстоятельство учитывается вторым слагаемым в выражении для b_2 . Оно отражает степень увеличения силы лобового сопротивления в процессе прохождения PH от старта до начала трансзвуковой зоны.

Третье слагаемое в выражении b_2 характеризует крутизну траектории полета РН. Для «медленного» старта градиент α имеет меньшее значение, чем для «быстрого» старта. Для «медленного» старта величина вертикального участка, как правило, больше, чем для «быстрого» старта. Траектория полета для «медленного» старта более крутая, по сравнению с «быстрым» стартом, траекторию которого при данном сравнении можно назвать пологой. Эти особенности траектории полета РН также влияют на изменение величины ускорения РН в процессе ее полета от старта до начала трансзвуковой зоны полета.

Диапазон изменения $0,05 \le b_2 \le 0,15$, определенный в [2], теоретически может быть рассмотрен как при «быстром», так и при «медленном» старте.

Верхний левый график соответствует результатам расчета для «медленного» старта, верхний правый – для «быстрого» старта (рис. 1). При проведении исследований диапазон изменения величин градиента для двух видов старта был одинаков.

Зависимости высоты $\overline{h}_{0,8}$ от температуры представлены сплошными наклонными линиями с различными значками. Вертикальной штрихпунктирной линией отмечено значение температуры $t = 15^{\circ}$ как стандартной атмосферы. Горизонтальной штриховой линией показаны значения $\overline{h}_{0,8}$, полученные при $t = 15^{\circ}$. Величина поправки на температуру, отличную от стандартной в районе старта, определяется разницей значений $\overline{h}_{0,8}$ между наклонной сплошной и горизонтальной штриховой линиями. Значения $\overline{h}_{0,8}$ для каждой пары сравниваемых величин необходимо брать при одной и той же температуре.

Верхняя наклонная линия на левом графике соответствует сочетанию минимальных значений баллистических параметров $(v_0)_{MIN} = 1,2,$

 $(b_2)_{MIN} = 0,05$. Нижняя наклонная на правом графике отражает сочетания максимальных значений баллистических параметров $(v_0)_{MAX} = 2,5$, $(b_2)_{MAX} = 0,15$. Нижняя наклонная на левом графике получена при $(v_0)_{MIN} = 1,2$, $(b_2)_{MAX} = 0,15$. Верхняя наклонная на правом графике дана для $(v_0)_{MAX} = 2,5$, $(b_2)_{MAX} = 0,05$.

Анализ представленных данных дал основания полагать, что значение $\bar{h}_{0,8}$ от величины температуры описывается линейной зависимостью.

Для сравнения представленных результатов в количественном отношении было использовано значение тангенса угла наклона θ сплошных линий по отношению к горизонтальной штриховой линии. При определении значения тангенса величина $\overline{h}_{0,8}$ измерялась в метрах, а значение температуры – в градусах Цельсия.

Для «медленного» старта (левый верхний график) значение тангенса для верхней линии $\mathbf{tg}\theta = 13,78$, для нижней – $\mathbf{tg}\theta = 8,22$. Это означает, что при увеличении значений градиента b_2 от величины 0,05 до 0,15 (в три раза) величина поправок на температуру для $\overline{h}_{0,8}$ уменьшилась с 13,78 до 8,22 (в 1,68 раза).

Для «быстрого» старта (правый верхний график) значение тангенса составило: для верхней линии $\mathbf{tg}\theta = 7,11$, для нижней – $\mathbf{tg}\theta = 6,0$; уменьшение значения поправок – в 1,19 раза.

Изменение величины $\mathbf{tg}\theta$ при переходе от «медленного» старта ($v_0 = 1,2$) к «быстрому» старту ($v_0 = 2,5$) можно проследить, сравнивая углы наклона сплошных линий на левом и правом графиках. Увеличение значения v_0 в данном случае равно 2,08 раза. При оценке уменьшения значений $\mathbf{tg}\theta$ необходимо учитывать величину градиента b_1 . При небольших его значениях (0,05) уменьшение значений $\mathbf{tg}\theta$ происходит в 1,94 раза, а при значительных величинах (0,15) – 1,16 раза.

Анализ результатов проведенных исследований показал, что величина поправок на температуру зависит от баллистических параметров РН. Максимальное значение поправок следует ожидать при сочетании минимальных значений баллистических параметров. Минимальное значение поправок – при сочетании максимальных значений параметров. Уменьшение величины поправок с максимальных значений до минимальных величин в данном исследовании составило отношение, равное 2,3 раза.

Аналогичные выводы можно сделать для зависимостей $Z_{1,0}$ и $Z_{1,2}$ на основании значений $\mathbf{tg}\theta_{1,0}$ и $\mathbf{tg}\theta_{1,2}$. Значение $\mathbf{tg}\theta$ при «медленном» старте $\mathbf{tg}\theta_{1,0} = 11,0$ (верхняя линия), $\mathbf{tg}\theta_{1,0} = 5,83$ (нижняя линия), старте $\mathbf{tg}\theta_{1,2} = 10,0$ (верхняя линия), $\mathbf{tg}\theta_{1,2} = 7,8$ (нижняя линия). Величина $\mathbf{tg}\theta$ при «быстром»

старте $\mathbf{tg}\theta_{1,0} = 4,0$ (верхняя линия), $\mathbf{tg}\theta_{1,0} = 3,5$ (нижняя линия), старте $\mathbf{tg}\theta_{1,2} = 3,8$ (верхняя линия), $\mathbf{tg}\theta_{1,2} = 3,6$ (нижняя линия).

Приведенные значения **tg**θ могут быть использованы для оперативной оценки величин поправок на температуру.

На представленных графиках имеются «особые» точки, соответствующие температурам +15°, -13° и -24°. Значение температуры t = +15° – это значение температуры стандартной атмосферы. Его можно рассматривать как среднестатистическое значение температуры окружающей среды на уровне моря. Температура t = -13° – эта температура окружающей среды стандартной атмосферы на высоте $(h_{0,8})_{CP} = 4,34$ км. Это значение получено как среднеарифметическая величина между расчетными значениями $(h_{0,8})_{MIN}$ и $(h_{0,8})_{MAX}$. Оно было определено на основе результатов исследований, проведенных в широком диапазоне баллистических параметров PH [2, 3] и служит условным обобщающим началом трансзвуковой зоны, необходимым для вычисления протяженности следующего дозвукового участка $Z_{1,0}$. Аналогичным образом выбрано значение температуры t = -24°, которое соответствует температуре окружающей среды стандартной атмосферы на среднеарифметической высоте $(h_{1,0})_{CP} = 6$ км.

Для большей наглядности результаты расчетов поправок на температуру для «медленного» и «быстрого» старта были представлены на одном графике.

Для этого были использованы формулы:

$$\Delta h = h_C \pm h_T, \quad \Delta Z = Z_C \pm Z_T, \tag{12}$$

где h_c – значение высоты при использовании величины температуры стандартной атмосферы [3]; h_T – значение высоты при использовании величины реальной температуры в районе старта PH (формула 11).

Результаты расчетов представлены на рис. 2, 3. На рис. 2 даны абсолютные значения Δh , ΔZ . На рис. 3 – в процентном отношении Δh^* , ΔZ^* .

Анализ представленных результатов показал следующее.

На рис. 2,*a*, 3,*a* представлены зависимости величин отклонения $\Delta \bar{h}_{0,8}$ от высоты $\bar{h}_{0,8}$ – начала трансзвуковой зоны полета РН – в зависимости от температуры окружающей среды на старте РН. В диапазоне температур – $30^{\circ} \le t^{\circ} \le 45^{\circ}$ максимальное значение $\Delta \bar{h}_{0,8}$ не превосходит 0,8 км и наблюдается при минимальных значениях стартового коэффициента энерговооруженности $v_0 = 1,2$ и значении его комплексного градиента $b_2 = 0,05$. При рассматриваемых их максимальных значениях ($v_0 = 2,5$, $b_2 = 0,15$) – $\Delta \bar{h}_{0,8} < 0,4$ км.

высоты от температуры окружающей среды t :

a – начало трансзвуковой зоны ($\overline{h}_{0,8}$); \overline{b} – начало дозвукового участка трансзвуковой зоны ($\Delta Z_{1,0}$); \overline{b} – начало сверхзвукового участка трансзвуковой зоны ($\Delta Z_{1,2}$)

Рис. 3. Зависимости относительных значений поправок на значения высоты от температуры окружающей среды *t* :

a – начало трансзвуковой зоны ($\overline{h}_{0,8}$); \overline{b} – начало дозвукового участка

трансзвуковой зоны ($\Delta Z_{1,0}$); *в* – начало сверхзвукового участка

трансзвуковой зоны ($\Delta Z_{1,2}$)

Для промежуточных величин v_0 , b_2 максимальное значение $\Delta \bar{h}_{0,8}$ определено диапазоном $0,4 \le \Delta h \le 0,8$ км. В качестве наиболее распространенного диапазона температур можно принять диапазон $0^{\circ} \le t^{\circ} \le 30^{\circ}$, который определяется как $\pm 15^{\circ}$ С к стандартной температуре $t = 15^{\circ}$ С, принятой при использовании стандартной атмосферы. Для этого диапазона температур максимальное значение $\Delta \bar{h}_{0,8} \le 0,2$ км.

При дальнейшем анализе представленных результатов расчетов было учтено, что абсолютные значения $\bar{h}_{0,8}$ для минимальных значений v_0 , b_2 больше, чем при максимальных значениях v_0 , b_2 .

Как показали исследования, проведенные в [3], а также данные, приведенные на рис. 1, начало трансзвуковой зоны для PH, обладающих максимальными значениями v_0 , b_2 наступает на высотах порядка $\bar{h}_{0,8}=2\div2,5$ км, а при минимальных значениях v_0 , b_2 $\bar{h}_{0,8}=4-6,4$ км. Отклонения $\Delta h_{0,8}$ в процентном отношении определялись по формуле:

$$\Delta \bar{h}_{0.8}^* = \frac{\Delta \bar{h}_{0.8}}{\bar{h}_{0.8}} \cdot 100\%.$$
(13)

Сравнение результатов расчетов, представленных на рис. 2,*a* (абсолютные значения $\Delta \bar{h}_{0,8}$), с результатами расчетов, представленных на рис. 3,*a* (значения $\Delta \bar{h}_{0,8}^*$ в процентном отношении), показало, что места расположения максимальных и минимальных значений поменялись местами. Максимальные значения $\Delta \bar{h}_{0,8}^*$ наблюдаются при максимальных величинах v_0 , b_2 . Минимальные значения $\Delta \bar{h}_{0,8}^*$ – при минимальных величинах v_0 , b_2 .

Максимальные значения $\Delta \overline{h}_{0,8}^* < 15$ % при $t = -30^\circ$ C. Для $t = +45^\circ$ величина $\Delta \overline{h}_{0,8}^* < 10\%$. Для наиболее широко распространенного диапазона температур ($0^\circ \le t \le 30^\circ$) максимальное значение $\Delta \overline{h}_{0,8}^* < 5\%$.

На рис. 2,б, 3,б даны результаты расчетов для $Z_{1,0}$. Для абсолютных значений $\Delta Z_{1,0}$ можно сделать такие же выводы, как и для $\Delta \overline{h}_{0,8}$.

Максимальные значения $\Delta Z_{1,0}$ наблюдаются при минимальных значениях b_1 , b_2 . Отличием является то, что нулевое отклонение происходит не при температуре $t = +15^{\circ}$, а при $t = -13^{\circ}$. Благодаря такому «смещению» нулевой точки максимальные значения $\Delta Z_{1,0}$ лежат в области отрицательных температур. Для $\Delta \overline{h}_{0,8}$ ее максимальные значения находились в районе положительных температур.

Абсолютные максимальные значения $\Delta Z_{1,0}$ наблюдались при $t = +45^{\circ}$ и не превосходили 0,7 км. Для $t = +30^{\circ} (\Delta Z_{1,0})_{MAX} \le 0,5$ км.

Максимальные значения $\Delta Z_{1,0}$ в процентном отношении не превосходят 21 % и наблюдаются при $t = +45^{\circ}$. Для $t = +30^{\circ}$ С ($\Delta Z_{1,0}$)_{MAX} $\leq 15\%$.

Для $\Delta Z_{1,2}$ нулевая точка отклонения сместилась еще далее в сторону отрицательных температур и $\Delta Z_{1,2} = 0$ при $t = -24^{\circ}$. Поэтому максимальные значения $\Delta Z_{1,2}$ наблюдаются при положительных значениях температур и могут достигать 25%. Для диапазона температур на старте $0^{\circ} \le t \le +30^{\circ}$ максимальные значения отклонения от величин высоты $Z_{1,2}$ – окончания трансзвуковой зоны – лежат в диапазоне $8\% \le Z_{1,2}^* \le 19\%$.

Практическое применение полученных результатов показано на примере расчета поправок $\Delta \bar{h}$, $\Delta \bar{h}^*$, $\Delta Z_{1,0}$ и $\Delta Z_{1,0}^*$ для космодрома Байконур. На рис. 4 представлены зависимости от высоты температуры окружающей среды в районе старта на космодроме Байконур. Здесь даны четыре зависимости: минимальная, средняя, максимальная и на основе стандартной атмосферы.

Характерной особенностью зависимостей является уменьшение значений температуры с увеличением высоты при одинаковых значениях градиента для всех четырех зависимостей.

Методика определения поправок состояла в следующем.

Начало трансзвуковой зоны полета РН определяется значением высоты $h_{0,8}$. Поправки к этой высоте, найденной по данным стандартной атмосферы, проводились на основе данных, представленных на рис. 3–4.

Космодром Байконур находится на высоте 109 м над уровнем моря. В исследованиях, проведенных по формулам (3), были использованы данные стандартной атмосферы. Высота h = 0 (уровень моря), температура $t = 15^{\circ}$. При высоте h = 109 м, по данным стандартной атмосферы, $t = 14,4^{\circ}$ (рис. 4). Величина поправок для всех совокупных значений коэффициентов v_0 , b_2 не превосходит 1 % (рис. 2,*a*). Это служит обоснованием выдвинутого в [2] предположения о незначительной погрешности, если не учитывать высоту старта (в пределах 0,3 км), а брать параметры окружающей среды (параметр \overline{a}_{∂}) над уровнем моря.

Среднее значение температуры при старте для космодрома Байконур отличается от данных на основе стандартной атмосферы. Согласно данным, представленным на рис. 4, $t_{CP} = -1,46^{\circ}$ С. Максимальное абсолютное значение поправки для этой температуры $(\Delta \bar{h}_{0,8})_{MAX} \sim 0,2$ км, а в процентном отношении $(\Delta \bar{h}_{0,8}^*)_{MAX} < 5\%$ (рис. 2,*a*, 3,*a*). В инженерных расчетах такими поправками мож-

Рис. 4. Зависимости распределения температуры окружающей среды для космодрома Байконур

но пренебречь, несмотря на достаточную разницу в температуре $\Delta t = 15^{\circ} + 1,46^{\circ} = 16,46^{\circ}$.

Если пуск РН происходит при минимальном значении температуры на старте $t = -41,46^{\circ}$, то максимальные отклонения от стандартных значений не превышали для $(\Delta \bar{h}_{0,8})_{MAX} < 0.82$ км, для $(\Delta \bar{h}_{0,8})_{MAX} < 17$ %. Причем эти поправки уменьшают стандартное значение высоты $\bar{h}_{0.8}$.

Максимальная температура окружающей среды на старте космодрома Байконур была принята $t = +40^{\circ}$ С. Поправки $(\Delta \bar{h}_{0,8})_{MAX} < 0.42$ км, $(\Delta \bar{h}_{0,8}^*)_{MAX} < 11\%$. Эти поправки увеличивают стандартное значение высоты $\bar{h}_{0,8}$.

Для определения поправок для протяженности траектории $Z_{1,0}$ (PH достигает скорости звука) необходимо знать температуру на начало трансзвуковой зоны $h_{0,8}$. Она определяется с учетом всех поправок и уточнений, изложенных в [2, 3].

По значению суммарной высоты $\sum h_{0,8}$ определяется температура на начало трансзвуковой зоны полета РН. Допустим, $\sum h_{0,8} = 4$ км. Тогда, по графику распределения температуры по высоте над Байконуром (рис. 4) определяем $t_{\min} = -67,16^{\circ}, t_{cp} = -27,16^{\circ}, t_{craнg} = -11,16^{\circ}, t_{max} = +12,84$.

Далее используем данные графиков, представленных на рис. 2,6, 3,6.

Для старта при минимальном значении температуры окружающей среды минимальное и максимальное значения (в зависимости от сочетания параметров b_1 , b_2) поправок составили $(\Delta Z_{1,0})_{MIN} \sim 0,2$ км, $(\Delta Z_{1,0})_{MAX} \sim 0,6$ км, $(\Delta Z_{1,0}^*)_{MIN} \sim 14$ %, $(\Delta Z_{1,0}^*) \sim 18$ %.

При старте с максимальными значениями температуры окружающей среды – $(\Delta Z_{1,0})_{MAX} \sim 0.3$ км, $(\Delta Z^*)_{MAX} \sim 8$ %.

Для средних значений температур поправки составили порядка $(\Delta Z_{1,0})_{MAX} = 0,45$ км. $(\Delta Z_{1,0}^*)_{MAX} \sim 5$ %.

Так же, как и для поправок $\Delta \overline{h}_{0,8}$, при использовании минимальных значений температур поправки уменьшают стандартные значения $Z_{1,0}$, при максимальных – увеличивают, а при средних значениях температур величиной этих поправок в инженерных исследованиях можно пренебречь.

Методика определения поправок для $Z_{1,2}$ – окончания трансзвуковой зоны полета РН – аналогична методике определения поправок для $Z_{1,0}$.

Выводы

1.Разработана инженерная методика для исследования влияния температуры окружающей среды в районе старта РН на параметры трансзвуковой зоны РН.

2. Проведены исследования зависимости параметров трансзвуковой зоны от температуры окружающей среды в районе старта РН.

3. Сделаны частные и общие, качественные и количественные выводы.

4. Частные выводы получены на примере применения методики вычисления поправок для космодрома Байконур. Показано, что при использовании минимальных и максимальных значений температур окружающей среды на Байконуре величина поправок может достигать от 14 до 18%. При использовании среднего значения температуры величиной поправок можно пренебречь по сравнению со значениями, полученными на основе стандартной атмосферы.

5. Общие выводы были сделаны на основании исследований, при использовании совокупности минимально и максимально возможных баллистических параметров PH.

Максимальное значение поправок на температуру наблюдалось при сочетании минимальных значений баллистических параметров РН. Минимальные – при сочетании максимальных баллистических параметров РН. Отмечено уменьшение значений поправок с максимального до минимального в 2,3 раза.

При $t = -30^{\circ}$ величина поправки $\Delta \overline{h}_{0,8}^* \sim 15$ %, а при $t = +45^{\circ} \Delta \overline{h}_{0,8} \sim 10$ %.

При отрицательных температурах величина поправки вычитается из стандартного значения $\overline{h}_{0.8}$, а при положительных – добавляется.

При отрицательных температурах высота начала трансзвуковой зоны ниже, чем при положительных значениях температуры окружающей среды на старте.

Максимальная величина поправки для $\overline{h}_{0,8}$ лежит в области отрицательных температур. Максимальные величины поправок для $Z_{1,0}$, $Z_{1,2}$ находятся в области положительных температур. Их максимальные значения не превосходят ($\Delta Z_{1,0}^*$)_{max} <21 % и ($\Delta Z_{1,2}^*$)_{max} <25 %.

Практические рекомендации

Применение инженерной методики вычисления поправок $\Delta \overline{h}$, ΔZ , учитывающих влияние температуры окружающей среды в районе старта космодрома Байконур на параметры трансзвуковой зоны, показало возможность ее применения на других космодромах.

Направление дальнейших исследований

Будет проведен анализ баллистических параметров РН, с целью выделения наиболее влияющих на параметры трансзвуковой зоны полета РН.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1.Семененко В. П. Инженерный метод оценки некоторых параметров трансзвуковой зоны полета ракеты-носителя / В. П. Семененко, П. В. Семененко // Системне проектування та аналіз характеристик аерокосмічної техніки: *зб. науков. праць.* Д.: Пороги, 2012. Т. XIII. С. 96–110. ISBN 978-617-518-209-3.
- 2. Семененко В. П. Инженерная методика расчета параметров трансзвуковой зоны полета ракеты-носителя / В. П. Семененко, П. В. Семененко // Системне проектування та аналіз характеристик аерокосмічної техніки: *зб.науков. праць.* Д.: Пороги, 2012. Т. XIV. С. 83–97. ISBN 978-617-518-209-3.
- 3. Семененко В. П. Протяженность трансзвуковой зоны полета ракеты-носителя и время ее прохождения / В. П. Семененко, П. В. Семененко // Системне проектування та аналіз характеристик аерокосмічної техніки: *зб.науков. праць.* Д.: Пороги, 2013. Т. XV. С. 92–100. ISBN 978-617-518-209-3.
- 4. Компаниец Э. П. Баллистическое обеспечение пусков ракет-носителей: *монография* / Э. П. Компаниец, Н. М. Дронь, В. Е. Белозеров. Д.: Изд-во ДНУ, 2010. 468 с. ISBN 978-966-551-319-3.

Надійшла до редколегії 21.10.2013.