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Ó ñòàòò³ ïðåäñòàâëåíî ðåçóëüòàòè äîñë³äæåííÿ ó íîâ³é ïåðñïåêòèâí³é 
ñôåð³ — íåë³í³éí³é ìåòðîëîã³¿. Ó ðàìêàõ òåîð³¿ íåë³í³éíî¿ ìåòðîëîã³¿ ñòâîðåíî 
ñïåö³àëüí³ ìîäåë³ âèì³ðþâàííÿ, ìîäåë³ àíàë³çó ðåçóëüòàò³â âèì³ðåííÿ, 
çàñíîâàí³ íà êëþ÷îâèõ ïðèíöèïàõ òà êîíöåïö³ÿõ òåîð³¿ äèíàì³÷íîãî õàîñó òà 
ôðàêòàëüíèõ óÿâëåíü ùîäî äèíàì³êè ðåàëüíèõ ñèñòåì. Íàâåäåíî ìîäåëü 
âèì³ðåííÿ çäîðîâ’ÿ ëþäèíè, ÿêà ì³ñòèòü ÷èñëîâèé ïîðòðåò, åíòðîï³éíó 
òà ÷àñîâó øêàëè äëÿ îö³íþâàííÿ ñòàíó çäîðîâ’ÿ ëþäèíè âçàãàë³, ï³ä ÷àñ 
ë³êóâàííÿ àáî ñïîðòèâíî¿ ï³äãîòîâêè.
Êëþ÷îâ³ ñëîâà: íåë³í³éí³ ìåòðîëîã³¿, íåë³í³éíà äèíàì³÷íà ñèñòåìà, ìîäåë³ 
âèì³ðþâàííÿ.

Â ñòàòüå ïðåäñòàâëåíû ðåçóëüòàòû èññëåäîâàíèÿ â íîâîé ïåðñïåêòèâíîé ñôåðå — 
íåëèíåéíîé ìåòðîëîãèè. Â ðàìêàõ òåîðèè íåëèíåéíîé ìåòðîëîãèè ñîçäàíû ñïåöèàëüíûå 
ìîäåëè èçìåðåíèÿ è ìîäåëè  àíàëèçà ðåçóëüòàòîâ èçìåðåíèÿ, îñíîâàííûå íà êëþ÷åâûõ 
ïðèíöèïàõ è êîíöåïöèÿõ òåîðèè äèíàìè÷åñêîãî õàîñà è ôðàêòàëüíûõ ïðåäñòàâëåíèé î 
äèíàìèêå ðåàëüíûõ ñèñòåì. Ïðèâåäåíà ìîäåëü èçìåðåíèÿ çäîðîâüÿ ÷åëîâåêà, êîòîðàÿ 
ñîäåðæèò ÷èñëîâîé ïîðòðåò, ýíòðîïèéíóþ è âðåìåííóþ øêàëû äëÿ îöåíêè ñîñòîÿíèÿ 
çäîðîâüÿ ÷åëîâåêà âîîáùå, â ïðîöåññå ëå÷åíèÿ èëè ñïîðòèâíîé ïîäãîòîâêè.
Êëþ÷åâûå ñëîâà: íåëèíåéíûå ìåòðîëîãèè, íåëèíåéíàÿ äèíàìè÷åñêàÿ ñèñòåìà, 
ìîäåëè èçìåðåíèÿ.

The article contains the results of research in a new perspective sphere of nonlinear metrology. 
The special measurement model and measurement results analysis model, that based on the 
main principles and concepts of dynamical chaos theory and fractal representations of the real 
systems behavior, are offered in the frame of nonlinear metrology theory. The model of human 
health measurement is represented here. It has the numerical portrait, entropy and time lines for 
evaluation of human health condition. It can be used for assess the state of human health during 
a treatment or an athletic training.
Keywords: nonlinear metrology, nonlinear dynamical system, measurement model.
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INTRODUCTION

The nonlinear metrology is a new perspective sci-
entific area. It unites the complex tasks of measu-

rement of real nonlinear dynamical systems parame-
ters.  Most of the real-world systems are open, dissipa-
tive and nonlinear dynamical systems (NDS). The states 
of such systems are characterized by a group of dy-
namical variables (DV)  (general-
ly for n-dimensional space). The DV values at any time 
 relate to the initial values  

by the evolution function of dynamical system  [1]:
.

In general case the DV behavior during the time 
can be regular or chaotic according to the NDS proper-
ties and their initial conditions.

Analysis of the measured quantity values of DVs 
by the standpoints of the classical metrology ap-
proaches is possible only in case of regular or statio-
nary behavior of system. If NDS behavior is classified 
like the «dynamical chaos», measurement, process and 
analyze of the measured quantity values are able only 
with using new methodological basis.

The classical models of measurement, process and 
analyze of the measured quantity values are based 
on two key physical positions:
 measured physical quantity can be represented 

by a single value, the values of physical quantities 
in transition or dynamical processes can be described 
by mathematical equations, that also ensures the 
uniqueness of the physical quantity value;

 physical quantities of systems are ergodicity values 
and, as a consequence, measured quantity values 
are ergodicity values too and their allocation 
is random [2].
However, DV of NDS can’t be characterized by a sing-

le value and DV behavior can’t be described by deter-
ministic equation. The examples of successful descrip-
tion of real systems behavior by equations (a recov-
ery of evolution function for dynamical system ) 
are very rare events. The specific metrological ap-
proaches, measurement models and methods for evalu-
ation of measurement uncertainty must be developed 
for measurements in the NDS. For solving this prob-
lem the measurement model [3] and the measurement 
results analysis model [4] for NDS are created. These 
models base on the principles and methods of fractal 
analysis and dynamical chaos theory. Entropy analysis 
of the measurement results for NDS is made. 

The task of the article is review of main results 
of research in the sphere of nonlinear metrology.

1. The measurement model
The model for measurement of DV in NDS [3] con-

tains: the scheme of measurement experiment; the 
method for assessment of necessary and sufficient 
volume of information; the method for identification 

of the system behavior and for choosing the mathe-
matical tools for measurement results processing; the 
method of measured quantity values evaluation.

The measurement model is destined for obtaining 
information about one of DVs set — . If behavior 
of measurement system is chaotic, that system’s phase 
portrait is a strange attractor with clear boundaries. 
The strange attractor projection on the axis of  va-
lu es is equal to the interval  that con-
tains all possible true quantity values of DV. The pur-
pose of measurement is to evaluate this interval. The 
main difference between DV of NDS and random vari-
able is that one DV is characterized by interval of all 
possible true quantity values .

According to the postulate that it is impossible 
to get the true quantity value of  during the measure-
ment, the interval of true quantity values  
must be determined only with measurement uncer-
tainty too. Therefore, applying the measurement mod-
el gives an interval  that contains 
all measured quantity values  of  (here  is a state 
of ) and theirs measurement uncertainties . The in-
terval  is equivalent to measurement uncertain-
ty of all possible DV states. For calculation of  
the group of m identical measuring instruments forms 
m time series of measured quantity values:

   (1)

here , ,  — the measured quantity va-
lu es of state  in the time moment   , that are got 
by measuring instrument №1, №2, №m respectively; 
n — number of  states.

Evaluation of measurement results  is based 
on knowledge about sources of uncertainties and the 
type A measurement uncertainty values. It can be de-
scribed by next way [7]:

 (2)

The measured quantity values (1) in the phase space 
are displayed like areas  (Figure 1, a), and the measure-
ment results of all possible states of  look like the pro-
jection of all  on the phase plane  (Figure 1, b).

For calculation of  the minimum   , 
and the maximum  val-

ues of the measurement results (2) are chosen. In this 
case all possible values of DV  are located in the interval:

 . (3)

For classification of DV behavior the measure-
ment model uses the method of fractal analy-
sis of time series (2) [6]. For this the fractal dimen-
sion D of time series (2) is defined by Hurst method. 
If D=1,5 the DV behavior is random. In a case when 
1<D<1,5 or 1,5<D<2 the DV behavior is chaotic. The 
fractal analysis of time series lets select the correct 
mathematical tools for measurement results proces sing. 
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A fractal dimension D is used also for determination 
the necessary and sufficient number of measurement 
experiments:

.
Using the measurement models for NDSs [3] allows 

researching any random process with one metrological 
base, extending the Guide to the expression of uncer-
tainty in measurement [7] for such complex systems 
like open, dissipative and chaotic NDS.

2. The measurement results analysis model
In the metrological theory a measurement equa-

tion is used like a tool for analysis of measurement re-
sults. A necessary condition for creation of measure-
ment equation is stability of system. Stability is ability 
of system to save settings or dynamic under small per-
turbations and it is required condition for the ana ly-
sis and prediction of the DV behavior. It’s well known 
that there are some definitions for stability. Creating 
the measurement equation asks for the Lyapunov sta-
bility when the two random trajectories of the system 
phase portrait are close to each other at any time. 
The trajectories of chaotic NDS diverge exponentially, 
so chaotic NDS are not stabile by Lyapunov. For these 
systems the measurement equation can’t be created 
and it is necessary to develop new alternative ana-
lysis tools.

In dynamical systems theory, along with the 
Lyapunov stability, the Lagrange stability is consi-
dered. The Lagrange stability asks for a location of all 
measured DV  values within a certain phase space 
area. In the case of dissipative chaotic NDS such 
area is a strange or chaotic attractor. If the system 
phase portrait is a strange attractor, the NDS is stabi-
le by Lagrange. In this case, all possible values  of 

 locate in the interval  (3).
Thus, if the NDS is not stabile by Lyapunov that its 

description by the measurement equation is an impos-
sible task, but if the NDS is stabile by Lagrange that 
its dynamic can be analyzed and predicted with using 

 (3) — the measurement results of all possible 
states  of DV .

The measurement results analysis model [4], in-
stead of researching the measurement equation, pro-
poses to research the key NDS parameters. The mo del 
provides making a number of successive operations: 
determination of the attractor embedding dimension, 
the phase portrait restoration, the definition of lo-
cal (the Lyapunov exponents, the time of prediction) 
and general (Kolmogorov-Sinay entropy) parameters 
of NDS. 

The most important part of the model is a restora-
tion of a phase portrait. The restoration method was 
proposed by F. Takens [8] and consists in the con-
struction of the state vectors of a system using the 
time series of measured quantity values (1):

 , (4)

here  — the time-step delay of state vector compo-
nents;  — the embedding dimension of phase portrait.

The Takens method is the established and widely 
used tool for restoration of a phase portrait. But from 
the metrological point of view it has the drawbacks. 
The method uses measured quantity values (1) like ini-
tial dates and doesn’t use the measurement uncertain-
ty. Since the true value of DV  locates in the inter-
val  (2) the analysis model proposes 
instead of one state vector  (4) to use two vectors 
(Figure 2):

 

 (5)

here .
The distance between the vectors (5) characteriz-

es the uncertainty of the restored state vector  
in point of time :

  (6)

The vector field limited by state vectors (5) forms 
the phase portrait that contains the uncertainty of the 
restored state vector  (6) (Figure 2).
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Figure 1. Measurement results: a — the measured quantity 

values of DV  at different time moments   , where  — 

an interval between measurements; b — the measurement 

results of all possible states 
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Figure 2. The restored vector field in point of time  for 
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The restored NDS’s phase portrait is the object for 
analysis of the measurement results and for prediction 
of future behavior of NDS. Using restored phase port-
rait the formulas for determination of NDS local and 
general parameters, that contain the measurement un-
certainties of DV, are represented in the analysis model.

3. The entropy analysis
Also in metrology for evaluation of measurement re-

sults the probabilistic information theory is applied. This 
theory uses its key elements — the amount of information 
 and the Shannon entropy  like the quantities charac-

terizing the measurement uncertainty. In the terms of the 
information theory the sense of measurement is a reduc-
tion of the interval of know ledge uncertainty about meas-
ured value (Figure 3). The amount of information obtained 
from measurements is given by next formula:

   , (7)

here:  — the Shannon entropy of DV  before 
measurement;  — the Shannon entropy of DV 

 after measurement.
According to information theory, when the number 

of measurement experiments increases the va lue 
of Shannon entropy decreases  , 
it’s got the maximum amount of information about the 
measured DV  and the uncertainty area (Figure 3, b) 
tends to the point (Figure 3, c) matching the true va-
lue of the measured DV .

In case of the measurement of DV in NDS the si-
tua tion is different. The multiple measurements 
of DV also lead to a decrease of the Shannon entropy 
value   . A long-term measurements and 
consideration of all the factors, that influence on the 
measurement result, reduce the entropy values to cer-
tain minimum value   . However, the mini-
mum value of the Shannon entropy doesn’t tend to ze-
ro . The amount of information received du ring 
measurement in NDS is limited to some uncertainty 
area (Figure 3, b). Increasing the number of measure-
ment experiments and an observation time system also 
doesn’t let to reduce this area. The reason of such situ-
ation is next. The measurement uncertainty in the case 
of NDS depends on the factors that are the causes of the 
type A and type B uncertainties that can be considered 
or excluded, but also on a complicated behavior of DV.

The measurement model, the measurement re-
sults analysis model and the entropy analysis will 
allow to create and to use the modified Concept 
of expression of uncertainty in measurement in case of 
real-world, open, dissipative, chaotic systems of diffe-
rent origins.

4. The practical application
Successful metrological provision of scientific and 

industrial problems is the important key for their so-

lutions. On the other hand, the quality of a measure-
ment model and a measurement results analysis model 
are depended on a research profoundness of observed 
processes and systems.

The results of research of real physical, biological, 
social and even financial systems often allow us to clas-
sify them like open dissipative NDS. Physicists, che-
mists and biologists more often use the synergistic ap-
proaches, methods of dynamical chaos theory and frac-
tal analysis for study of various dynamical systems. 
However, using the modern methods for study of real 
NDS researchers have not had the adequate metrolog-
ical approaches and measurement models for such dif-
ficult systems.

The examples of real chaotic physical NDS are the 
electrical circuits, lasers and acoustic beams in the far 
field. In 1983 Professor of California University L. Chua 
first ever demonstrated the regime of chaotic oscilla-
tions in an electrical circuit that consisted of two ca-
pacitors, a coil, linear and non-linear resistors of nega-
tive resistance. The experiment confirmed the assump-
tion that even the simplest electrical circuits may have 
a chaotic behaviour.

In 2005 the group of scientists at the Max Planck 
Institute of Quantum Optics, investigating the chaotic 
behaviour of the quantum world, have been able to give 
the first ever demonstration of quantum chaos during 
atom ionisation. The experiment based on a display 
of classical photoeffect was fulfilled. During the expe-
riment a laser beam forced rubidium to emit the elec-
trons in a strong magnetic field. As a result, the elec-
trons, whose behavior should be random, had a chaotic 
behaviour. The experiment proved that there is a link 
between chaos and fluctuations of photostream.

The scientists deal with dissipative and chaotic NDS 
during a solving of various hydroacoustic problems 
too. In 1990s in the ocean acoustics the phenomenon 
of ray chaos in inhomogeneous waveguides was de-
scribed. It has been shown that at large distances (the 
thousands kilometers) the acoustic beams start to be-
have chaotically. This chaotic behavior must be taken 
into account in metrological assurance of hydroacous-
tic measurements.

Hbefore

HafterX X

I

a b c

Figure 3. The visualization of information sense 

of measurement: a — the uncertainty area before 

measurement; b — the uncertainty area after 

measurement (white area); c — the area without 

uncertainty that is equal to the amount of received 

information (white area)
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The research results allow us to propose a model 
of human health measurement [9]. A living organism 
can be represented like an open and self-organizing 
dissipative NDS. In the general case, the biophysical 
condition of human can be represented like an attrac-
tor. The different external random or periodic distur-
bances influence on this attractor. If we accept the 
model that health characterizes an organism’s stability 
then for quantitative evaluation of health it is neces-
sary to measure the recovery time of the steady state. 
Experimental medicine during a long time has used for 
evaluation of health the recovery time after physical 
exercises. The blood tension, heart rate, brain activity 
indicators and other characteristics of body, changing 
in time, can be considered like DV of such DNS. 

The model of human health measurement contains: 
 the range of DV values  (a pulse, a blood 

pressure) in stable  and excited 
 states; 

 the normalized Shannon entropy  in the stable 
and excited  states;

 the prediction time for DV behavior in the stable  
and excited  states.
As the main indicator of a health condition 

we choose a time  that DV spends for relaxation af-
ter stop of external normalized influence. It’s pro-
posed the numerical portrait [7] and the entropy and 
time lines [8] that can be used for evaluation of health 

condition:

 , (7)

  (8)

As the datum points for the entropy and time 
scales (8) it’s proposed the norm of entropy  and 
the norm of relaxation time  of a healthy organism. 
These values are individual characteristics of an or-
ganism and change their value over time. The model 
of human health measurement can be used for assess 
the state of human health during a treatment of the 
patients and during an athletic training.

Conclusion
Till the last time some of the described DNS and 

their DV have been considered like «immeasurable» 
variables from the point of view of classical metrology. 
The development of nonlinear metrology methods, that 
have the measurement model and measurement results 
analysis model and use of entropy analysis, will allow 
metrological science to solve these and similar difficult 
measurement tasks that exist today and will appear 
in the future. The use of these models will allow exa-
mine any random processes standing on single position.
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