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B ctatbe npeactasneHsl pesdynbTaThl UCCNeA0BaHNSA B HOBOW NepCrnekTnBHom cepe —
HeNMHENHON meTponornn. B pamkax Teopum HENMHENHON METPONOrnn CO34aHbl CneuvanbHbie
MOAENN U3MEPEHUS U MOLENN aHaNn3a pe3ybTaToB U3MEPEHMWS, OCHOBAHHbIE Ha KIIOHYEBbIX
NPUHLUMNAX N KOHLENUUAX TEOPUM ANHAMNYECKOro Xaoca 1 dpakTanbHbIX MPeacTaBaeHnin o
OVHaMuKe peanbHblx cucteM. MNpueeaeHa Moaenb n3mMepeHns 300p0OBbS HYesloBeka, koTopas
COAEPXUT YACIOBOW MOPTPET, SHTPOMUNHYIO 1 BDEMEHHYIO LUKasbl A5 OLLEHKM COCTOSAHWUS
300pOBbS Yenoseka BOOOLLE, B NPOLLECCE IeHYEHUS N CNOPTUBHON NOATOTOBKM.

Knio4yeBbie crioBa: HelMHENHbIE METPOJIOrn, HeJIMHeHas AMHaMmmu4yeckasl cuctema,

MOAEN NUSMEPEHUS.

The article contains the results of research in a new perspective sphere of nonlinear metrology.
The special measurement model and measurement results analysis model, that based on the
main principles and concepts of dynamical chaos theory and fractal representations of the real
systems behavior, are offered in the frame of nonlinear metrology theory. The model of human
health measurement is represented here. It has the numerical portrait, entropy and time lines for
evaluation of human health condition. It can be used for assess the state of human health during
a treatment or an athletic training.
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INTRODUCTION

he nonlinear metrology is a new perspective sci-

entific area. It unites the complex tasks of measu-
rement of real nonlinear dynamical systems parame-
ters. Most of the real-world systems are open, dissipa-
tive and nonlinear dynamical systems (NDS). The states
of such systems are characterized by a group of dy-
namical variables (DV) (X'(¢), X*(¢),..., X"(t)) (general-
ly for n-dimensional space). The DV values at any time
t, relate to the initial values (X'(%,), X*(t,),.... X" (¢,))
by the evolution function of dynamical system F [1]:

F(X'(2), X2 (), 0, X" (2,)) = (X' (£), X2 (2), ... X" (2)).

In general case the DV behavior during the time
can be reqular or chaotic according to the NDS proper-
ties and their initial conditions.

Analysis of the measured quantity values of DVs
by the standpoints of the classical metrology ap-
proaches is possible only in case of reqular or statio-
nary behavior of system. If NDS behavior is classified
like the «dynamical chaos», measurement, process and
analyze of the measured quantity values are able only
with using new methodological basis.

The classical models of measurement, process and
analyze of the measured quantity values are based
on two key physical positions:
= measured physical quantity can be represented

by a single value, the values of physical quantities

in transition or dynamical processes can be described
by mathematical equations, that also ensures the
uniqueness of the physical quantity value;

= physical quantities of systems are ergodicity values
and, as a consequence, measured quantity values
are ergodicity values too and their allocation

is random [2].

However, DV of NDS can't be characterized by a sing-
le value and DV behavior can't be described by deter-
ministic equation. The examples of successful descrip-
tion of real systems behavior by equations (a recov-
ery of evolution function for dynamical system F)
are very rare events. The specific metrological ap-
proaches, measurement models and methods for evalu-
ation of measurement uncertainty must be developed
for measurements in the NDS. For solving this prob-
lem the measurement model [3] and the measurement
results analysis model [4] for NDS are created. These
models base on the principles and methods of fractal
analysis and dynamical chaos theory. Entropy analysis
of the measurement results for NDS is made.

The task of the article is review of main results
of research in the sphere of nonlinear metrology.

1. The measurement model

The model for measurement of DV in NDS [3] con-
tains: the scheme of measurement experiment; the
method for assessment of necessary and sufficient
volume of information; the method for identification

62

of the system behavior and for choosing the mathe-
matical tools for measurement results processing; the
method of measured quantity values evaluation.

The measurement model is destined for obtaining
information about one of DVs set — X. If behavior
of measurement system is chaotic, that system’s phase
portrait is a strange attractor with clear boundaries.
The strange attractor projection on the axis of X va-
lues is equal to the interval [X ,,X . ] that con-
tains all possible true quantity values of DV. The pur-
pose of measurement is to evaluate this interval. The
main difference between DV of NDS and random vari-
able is that one DV is characterized by interval of all
possible true quantity values [X,, X . ]

According to the postulate that it is impossible
to get the true quantity value of X during the measure-
ment, the interval of true quantity values [X . ,X, .. ]
must be determined only with measurement uncer-
tainty too. Therefore, applying the measurement mod-
el gives an interval U(X)>[X ., X, ] that contains
all measured quantity values x, of X, (here X is a state
of X) and theirs measurement uncertainties ,. The in-
terval U(X) is equivalent to measurement uncertain-
ty of all possible DV states. For calculation of U(X)
the group of m identical measuring instruments forms

m time series of measured quantity values:
X (8 )seeer X (8, )3 X7 (8o X (8, )3 X0 (85 X0 (2,), (1)

here x;(1,), x’(t,), x"(t,) — the measured quantity va-
lues of state X, in the time moment ¢, that are got
by measuring instrument Nel, Ne2, Nem respectively;
n — number of X states.

Evaluation of measurement results y, is based
on knowledge about sources of uncertainties and the
type A measurement uncertainty values. It can be de-
scribed by next way [7]:

Uy =y, vy +u); (v, =y, yy +1y)55 (0, — 1y, ¥, 1) (2)

The measured quantity values (1) in the phase space
are displayed like areas u, (Figure 1, a), and the measure-
ment results of all possible states of X look like the pro-
jection of all , on the phase plane U(X) (Figure 1, b).

For calculation of U(X) the minimum (y,, —u,;, .
Vin T Upnin Jand the maximum (y,. =, s Vour T Ume ) Val-
ues of the measurement results (2) are chosen. In this
case all possible values of DV X are located in the interval:

U(X) = (ymin _umin5 ymax +umax )' (3)

For classification of DV behavior the measure-
ment model uses the method of fractal analy-
sis of time series (2) [6]. For this the fractal dimen-
sion D of time series (2) is defined by Hurst method.
If D=1,5 the DV behavior is random. In a case when
1<D<1,5 or 1,5<D<2 the DV behavior is chaotic. The
fractal analysis of time series lets select the correct
mathematical tools for measurement results processing.
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Figure 1. Measurement results: a — the measured quantity

values of DV X at different time moments #,, where At —

an interval between measurements; b — the measurement
results of all possible states X

A fractal dimension D is used also for determination
the necessary and sufficient number of measurement
experiments:

nmin > 102+0,4D.

Using the measurement models for NDSs [3] allows
researching any random process with one metrological
base, extending the Guide to the expression of uncer-
tainty in measurement [7] for such complex systems
like open, dissipative and chaotic NDS.

2. The measurement results analysis model

In the metrological theory a measurement equa-
tion is used like a tool for analysis of measurement re-
sults. A necessary condition for creation of measure-
ment equation is stability of system. Stability is ability
of system to save settings or dynamic under small per-
turbations and it is required condition for the analy-
sis and prediction of the DV behavior. It’s well known
that there are some definitions for stability. Creating
the measurement equation asks for the Lyapunov sta-
bility when the two random trajectories of the system
phase portrait are close to each other at any time.
The trajectories of chaotic NDS diverge exponentially,
so chaotic NDS are not stabile by Lyapunov. For these
systems the measurement equation can't be created
and it is necessary to develop new alternative ana-
lysis tools.

In dynamical systems theory, along with the
Lyapunov stability, the Lagrange stability is consi-
dered. The Lagrange stability asks for a location of all
measured DV X values within a certain phase space
area. In the case of dissipative chaotic NDS such
area is a strange or chaotic attractor. If the system
phase portrait is a strange attractor, the NDS is stabi-
le by Lagrange. In this case, all possible values X, of
X locate in the interval U(X) (3).

Thus, if the NDS is not stabile by Lyapunov that its
description by the measurement equation is an impos-
sible task, but if the NDS is stabile by Lagrange that
its dynamic can be analyzed and predicted with using
U(X) (3) — the measurement results of all possible
states X, of DV X.

CTAHOAPTU3ALIA CEPTUOIKALIA AKICTb 4°2015

The measurement results analysis model [4], in-
stead of researching the measurement equation, pro-
poses to research the key NDS parameters. The model
provides making a number of successive operations:
determination of the attractor embedding dimension,
the phase portrait restoration, the definition of lo-
cal (the Lyapunov exponents, the time of prediction)
and general (Kolmogorov-Sinay entropy) parameters
of NDS.

The most important part of the model is a restora-
tion of a phase portrait. The restoration method was
proposed by F. Takens [8] and consists in the con-
struction of the state vectors of a system using the
time series of measured quantity values (1):

f(ti) = (xl (ti)5x2 (ti —’C),...,.X'M (ti _(M _I)T))' (4)

here T — the time-step delay of state vector compo-
nents; M — the embedding dimension of phase portrait.
The Takens method is the established and widely
used tool for restoration of a phase portrait. But from
the metrological point of view it has the drawbacks.
The method uses measured quantity values (1) like ini-
tial dates and doesn't use the measurement uncertain-
ty. Since the true value of DV X, locates in the inter-
val y, —u, < X, <y, +u, (2) the analysis model proposes
instead of one state vector X(z,) (4) to use two vectors
(Figure 2):
}7071' —Ut) =
_Yl(yi _ui’ti)’YZ(yi—l —Up s - Ar), ... ]
IRERD) Yy Viovra = Uipgast; = (M = I)At)_
Y(yi +u,t,) =
_Yl(yi +ui’ti)9Y2(yi—l Tu st —At),... 1
Lo Yoy Vit Fttiygagst; — (M —1DAY) |

>

herei=M +1,...,n.
The distance between the vectors (5) characteriz-
es the uncertainty of the restored state vector Y(z,)
in point of time #;
S(u;,t,) =‘2\/uf ful tul (6)

The vector field limited by state vectors (5) forms
the phase portrait that contains the uncertainty of the
restored state vector Y(z,) (6) (Figure 2).

?(t)“ I7()},' —u;,t;)
S(u;51;)
X (1)

?(y[+ui’ti)

0 )_;(l‘—‘t)'

Figure 2. The restored vector field in point of time ¢, for M =2 4
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The restored NDS's phase portrait is the object for
analysis of the measurement results and for prediction
of future behavior of NDS. Using restored phase port-
rait the formulas for determination of NDS local and
general parameters, that contain the measurement un-
certainties of DV, are represented in the analysis model.

3. The entropy analysis

Also in metrology for evaluation of measurement re-
sults the probabilistic information theory is applied. This
theory uses its key elements — the amount of information
I and the Shannon entropy H like the quantities charac-
terizing the measurement uncertainty. In the terms of the
information theory the sense of measurement is a reduc-
tion of the interval of knowledge uncertainty about meas-
ured value (Figure 3). The amount of information obtained
from measurements is given by next formula:

I=H _Hafler ’ (7)
here: H,

before
sefore — the Shannon entropy of DV X before
measurement; H,, — the Shannon entropy of DV
X after measurement.

According to information theory, when the number
of measurement experiments increases the value
of Shannon entropy decreases H,, — H_  —0,
it's got the maximum amount of information about the
measured DV X and the uncertainty area (Figure 3, b)
tends to the point (Figure 3, c¢) matching the true va-
lue of the measured DV X.

In case of the measurement of DV in NDS the si-
tuation is different. The multiple measurements
of DV also lead to a decrease of the Shannon entropy
value H ,, <H,,, . A long-term measurements and
consideration of all the factors, that influence on the
measurement result, reduce the entropy values to cer-
tain minimum value #,, — H,,;, . However, the mini-
mum value of the Shannon entropy doesn't tend to ze-
ro H , #0. The amount of information received during
measurement in NDS is limited to some uncertainty
area (Figure 3, b). Increasing the number of measure-
ment experiments and an observation time system also
doesn'’t let to reduce this area. The reason of such situ-
ation is next. The measurement uncertainty in the case
of NDS depends on the factors that are the causes of the
type A and type B uncertainties that can be considered
or excluded, but also on a complicated behavior of DV.

The measurement model, the measurement re-
sults analysis model and the entropy analysis will
allow to create and to use the modified Concept
of expression of uncertainty in measurement in case of
real-world, open, dissipative, chaotic systems of diffe-
rent origins.

min

4. The practical application
Successful metrological provision of scientific and
industrial problems is the important key for their so-
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Figure 3. The visualization of information sense
of measurement: a — the uncertainty area before
measurement; b — the uncertainty area after
measurement (white area); ¢ — the area without
uncertainty that is equal to the amount of received
information (white area)

lutions. On the other hand, the quality of a measure-
ment model and a measurement results analysis model
are depended on a research profoundness of observed
processes and systems.

The results of research of real physical, biological,
social and even financial systems often allow us to clas-
sify them like open dissipative NDS. Physicists, che-
mists and biologists more often use the synergistic ap-
proaches, methods of dynamical chaos theory and frac-
tal analysis for study of various dynamical systems.
However, using the modern methods for study of real
NDS researchers have not had the adequate metrolog-
ical approaches and measurement models for such dif-
ficult systems.

The examples of real chaotic physical NDS are the
electrical circuits, lasers and acoustic beams in the far
field. In 1983 Professor of California University L. Chua
first ever demonstrated the regime of chaotic oscilla-
tions in an electrical circuit that consisted of two ca-
pacitors, a coil, linear and non-linear resistors of nega-
tive resistance. The experiment confirmed the assump-
tion that even the simplest electrical circuits may have
a chaotic behaviour.

In 2005 the group of scientists at the Max Planck
Institute of Quantum Optics, investigating the chaotic
behaviour of the quantum world, have been able to give
the first ever demonstration of quantum chaos during
atom ionisation. The experiment based on a display
of classical photoeffect was fulfilled. During the expe-
riment a laser beam forced rubidium to emit the elec-
trons in a strong magnetic field. As a result, the elec-
trons, whose behavior should be random, had a chaotic
behaviour. The experiment proved that there is a link
between chaos and fluctuations of photostream.

The scientists deal with dissipative and chaotic NDS
during a solving of various hydroacoustic problems
too. In 1990s in the ocean acoustics the phenomenon
of ray chaos in inhomogeneous waveguides was de-
scribed. It has been shown that at large distances (the
thousands kilometers) the acoustic beams start to be-
have chaotically. This chaotic behavior must be taken
into account in metrological assurance of hydroacous-
tic measurements.
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The research results allow us to propose a model
of human health measurement [9]. A living organism
can be represented like an open and self-organizing
dissipative NDS. In the general case, the biophysical
condition of human can be represented like an attrac-
tor. The different external random or periodic distur-
bances influence on this attractor. If we accept the
model that health characterizes an organism'’s stability
then for quantitative evaluation of health it is neces-
sary to measure the recovery time of the steady state.
Experimental medicine during a long time has used for
evaluation of health the recovery time after physical
exercises. The blood tension, heart rate, brain activity
indicators and other characteristics of body, changing
in time, can be considered like DV of such DNS.

The model of human health measurement contains:
= the range of DV values X(¢#) (a pulse, a blood

pressure) in stable [X;“‘"(t),X;““(t)] and excited

[X™ (1), X™ ()] states;

* the normalized Shannon entropy |H]| in the stable
and excited |H| states;

= the prediction time for DV behavior in the stable 7/
and excited ¢, states.

As the main indicator of a health condition
we choose a time 7 that DV spends for relaxation af-
ter stop of external normalized influence. It's pro-
posed the numerical portrait [7] and the entropy and
time lines [8] that can be used for evaluation of health
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As the datum points for the entropy and time
scales (8) it’s proposed the norm of entropy H, and
the norm of relaxation time 7 of a healthy organism.
These values are individual characteristics of an or-
ganism and change their value over time. The model
of human health measurement can be used for assess
the state of human health during a treatment of the
patients and during an athletic training.

Conclusion
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