ВЫСОКОМОДУЛЬНЫЕ МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ В МАССИВНЫХ КЛЕЕДОЩАТЫХ КОНСТРУКЦИЯХ

HIGH MODULUS MATERIALS USED IN THE CONSTRUCTIONS OF MASSIVE GLUED TIMBER

А.А. Погорельцев к.т.н, С.Б. Турковский д.т.н, В.О. Стоянов асп. (ЦНИИСК им. В.А. Кучеренко)

T.Sc.C. A.A.Pogoreltsev, T.Sc.D. S.B.Turkovsky, P.G. V.O.Stoianov (V.A. Kucherenko TSNIISK)

Аннотация

В работе раскрываются возможности использования высокомодульных полимеров в виде лент, холстов или тонких металлических сеток для повышения несущей способности массивных клеедощатых конструкций.

Annotation

The article reveals the possibility of using high-modulus polymers in the form of tapes, webs or thin metal grids to increase the carrying capacity of the massive glued timber constructions.

Рассматривая массивные клеедощатые конструкции, мы имеем в виду большепролетные здания и сооружения. Такие несущие конструкции из досок пролетом 100м и более, высотой сечения 150 см и более, успешно используются как за рубежом [1], так и в России [2].

В конце девяностых и начале двухтысячных годов стали довольно широко использовать высокомодульные материалы [3]. В частности, этот период начали применять углеволоконные характеристиками, материалы c механическими значительно превосходящими свойства стали [4,5,6]. Это ленты разных видов толщиной 1,0 – 1,4 мм (Sika Carbo Dur –марок S, M, H), у которых величина модуля упругости более 16500, 210000, 300000, и 640000 холсты углеродные высокопрочные (прочность или растяжение 3500 МПа) толщиной 0,13мм при модуле упругости 230000MПа (холст углеродный Sika Wrap Hex-230).

Применение отмеченных выше высокомодульных материалов позволяет усовершенствовать массивные клеедощатые конструкции (МКДК), значительно уменьшив высоту их сечения и собственный вес. Например, высота сечения МКДК 140см может быть уменьшена до 100см при сохранении необходимых значений моментов инерции (I) и сопротивления (W). Для этого понизу и поверху сечения в 100см наклеивают углепластиковые ленты толщиной $4-5\,$ мм с модулем упругости E_y , превышающим в 60 раз модуль упругости древесины E_z .

Холсты типа Sika Wrap Hex-230 минимизированной толщины углеродных волокон- 0,13мм могут быть проложены между пластами смежных досок по методу плоского армирования (МПА), о котором расскажем ниже. В случае использования углепластиковых лент или тонких холстов рекомендуется использовать клей Sika Dur 30, но вполне возможно использование эпоксидного клея российского производства, с которым мы давно работаем при изготовлении деревянных конструкций.

Следует отметить, что высокомодульные материалы не рассматривались нами в экспериментах с различными деталями массовых КДК. Потребуется раскрывать их физико-механические характеристики при различных нагрузках постоянного и динамического воздействия.

Однако, несмотря на многие достоинства углепластика, в первую очередь больший в 2-3 раза модуль упругости по сравнению с металлом, высокая стоимость этого материала может сдерживать его широкое применение.

Рассмотрим метод послойного армирования (МПА) металлической сеткой массивных клееных деревянных конструкций (МКДК). Здесь МПА заключается в послойной укладке металлической сетки толщиной 1,0 или 2,0мм между досками при формировании клеедощатого массива конструкции.

Металлическая сетка, находящаяся в зоне клеевой композиции между пластами досок, подвергается давлению не менее 0,6-0,7 МПа, что обеспечивает нормальное При склеивание слоев. этом металлическая сетка частично вдавливается в древесину, обеспечивает зоне клеевого шва не просто участок модифицированной древесины, а армированной модифицированной древесины на смежных пластах досок, связанных между собой металлической сеткой. Такое технологическое решение позволяет

исключить развитие поперечных трещин в отдельных досках клеевого пакета

В процессе изучения метода послойного армирования было рекомендовано использовать сетку толщиной 1-2 мм, что практически не нарушает существующего ныне технологического процесса на заводах, выпускающих клеедощатые конструкции. Ширину сетки выбирают на 1-2 мм меньше ширины сечения конструкции, что позволяет соединять крупноразмерные элементы на строительной площадке без какой-либо дополнительной обработки стыкуемых поверхностей.

Один из важных моментов применения металлических сеток в МПА – это возможность их корродирования в процессе эксплуатации клееных армированных конструкций, особенно на открытом воздухе или в складах калийных солей и др. агрессивных материалов. Для предупреждения коррозии рекомендуется использовать оцинкованные сетки из низкоуглеродистой проволоки круглого профиля, которые соответствуют европейскому стандарту Aisi 304.

Компания «AkzoNobel» рекомендует использовать для МПА меламино-мочевинный клей 1249 и отвердитель 2579.

Проведены испытания натурной конструкции [6]. Была двутавровая балка надземного двенадцатиметровая перехода с применением МПА с использованием вышеуказанных сетки и клея. Балка испытывалась в реальных условиях на открытом при воздействии длительной равномерно распределенной нагрузки в течение 18 месяцев. Для определения прочности клеевого соединения после выдержки под нагрузкой в течение 18 месяцев из балки были вырезаны образцы согласно ГОСТ 15613.1-84 [6]. Испытания образцов показали хороший результат – показатели что 7,0-7,4 M Π a, прочности составили свидетельствует целесообразности применения МПА в несущих конструкциях в производственных условиях и исключает развитие поперечных трещин в клеевом пакете.

Выволы

1. Применение в массивных клеедощатых конструкциях высокомодульных материалов позволяет значительно увеличить их эффективность за счет повышения качества и снижения стоимости.

- 2. Целесообразно провести сравнительные экспериментальные исследования лабораторных и натурных МКДК с использованием различных высокомодульных материалов.
- 3. Натурные образцы МКДК для сравнительных испытаний следует изготовлять с применением МПА металлическими сетками толщиной 1-2 мм.

Литература

- 1. К. Гетц и др. Атлас деревянных конструкций.- М.: Стройиздат, 1985, 270с.
- 2. С.Б. Турковский, А.А. Погорельцев. Клееные деревянные конструкции с узлами на вклеенных стержнях в современном строительстве (система ЦНИИСК). М.: ЦНИИСК, 2013, 300с.
- 3. Strengthening of structures with CERP streps Sika Carbo Dur Convention, 1997.
- 4. ACJ 440. 2R-08. Cuide for Design and Costruction of Extenrnally Bonded FRP System for Strengthening Concrete structures. American Concrete Institute. 2008.
- 5. Стоянов В.О. и др. Патент UA 87286 E04c 3/12 Деревянная балка. 2005, бюл. изобр. №13.
- 6. Стоянов В.В., Окунь И.В., Глебов С.В. Испытание деревянных клеевых соединений с послойным армированием // В сб. научных трудов «Современные строительные конструкции из металла и древесины». Одесса, ОГАСА, изд. ВРС, 2013, с. 3-8.