6 (89) 2013 «CucremMHbIe TEXHOJIOTIN »

UDC 004.062
0O.I. Marchenko, D.V. Pazii

TECHNIQUE FOR ACCELERATION OF XML DOCUMENTS
VALIDATING AGAINST XSD SCHEMA
Abstract. This work deals with researching of techniques of validation XML-
files against XSD-schemes and proposes a new technique based on performing
ordinary and partial validations. Suggested technique of XML validation lies in the
fact that file is valid. The next step is to perform partial validation on every change

of XML-file instead of full.
Keywords: XML, XSD, validation

Introductory

As for the last decade, the complexity of software has grown in
many times in comparison with the beginning of 2000. If twenty years
ago web sites were kind of static pages with the text decorated with
bunch of tags, nowadays every web site is a web application with com-
plicated structure, lots of multimedia content and non-trivial design.
Most of businesses solutions are based on using of modern web technolo-
gies, as web solutions are platform independent. This means much less
money and time consuming process of development for wide variety of
target platforms. After appearance of smartphones and tablets amount
of target platforms and even screen resolutions became even greater and
thus making many pros of web applications.

As known, XML is an extensible markup language, which is basical-
ly a plain text document which syntax has to correspond some rules [1].
Since the invention of XML, developers found a huge amount of differ-
ent use cases, like:

e data storage;

e usage within web translations and services;

e platform independent application settings;

e large amount of XML extensions such as electronic books
(fb2, epub, XHTML), RSS news, etc;

e UI declarations.

Web services are almost mandatory part of every web application
for server-client solutions. Functioning of web service is based on ex-
changing of XML messages, mostly by SOAP protocol. Confidence that
received XML message conforms some specific rules makes developer

© Marchenko O.I, Pazii D.V., 2013

ISSN 1562-9945 75

6 (89) 2013 «CucrteMHBIE TEXHOJOTUH »
able to perform some processing and transformations with assurance as

shown on fig. 1. Thus, one of the main tasks appears.
The point is finding out whether XML document conforms specified
rules or not, and if it is not then why.

XSLT- XHTML
transformation presentation

Possible only of
XML is valid

XSLT- PDF
transformation presentation

Fig 1 — XML transformations
Aims

Most of documents is not just plain text, but has some semantics.
XML solves syntax presentation problem, whereas schema partially
solves the problem of semantic meaning.

Software systems that perform some operations upon XML require
performing lots of documents validation, which means that this process
must be optimized and fast.

Talking about existing techniques, the vast majority of them are
aimed to solve the problem of full validation, such as incremental vali-
dating or even splitting the document into chunks and checking simul-
taneously several chunks in different threads. Validating small files is a
simple task for any of numerous algorithms. However, when the file is
big (more than 5 Mb), it may be a problem. Moreover, there are situa-
tions when it is required to make several sequential actions on XML and

76 ISSN 1562-9945

6 (89) 2013 «CucrteMHBIE TEXHOJOTUH »
not to break document correctness [2, 3, 4]. It can be some automatic

changes (adding information into document by web agents) or making
manual changes in some visual editors. This may dramatically increase
duration of XML validation.

Thus, the main purpose of this work is considered to be a research
of techniques and algorithms of XML validation against XSD schemas
[56]. In addition, a new validation technique is proposed. It is based on
this research and has lesser algorithm complexity in case of sequential
validation of the same XML after some changes.

Research description

Basically, before the process of XML validation against XSD sche-
ma, it is required to make two steps: firstly, perform syntax analysis of
a document and secondly, perform syntax analysis of its schema.

There are two main techniques of XML processing:

e DOM (Document Object Model);
e SAX (Simple API for XML).

The first technique is parsing and building of full element tree of
the document. The majority of XML applications works with documents
using DOM. Data types of DOM nodes are abstract; every implementa-
tion has its own programming language dependent data types. The main
disadvantage of DOM is extensive use of memory, because before any
operation upon DOM requires XML to be fully loaded, processed and
transformed to the object tree (fig 2).

N
{]

- [9\] 0\
XML e — /\
& &
&/ */
XML Parser DOM Tree

Document
Fig 2 — Parsing XML into DOM

DOM model is very useful for data manipulating due to loading the
whole document into memory. However, this can cause excessive use of
memory.

ISSN 1562-9945 7

6 (89) 2013 «CucrteMHBIE TEXHOJOTUH »

SAX solves the problem of memory overuse by scanning the docu-

ment from the beginning till the end and notifying the application about

such events (fig 3) as “start of element” and “end of the element”. This

approach allows reducing the use of memory considerably. However, this

also means that manipulating the document will be impossible due to ab-

sence of elements tree as with DOM.

startDocument
startElement (data)

<?xml version="1.0"?> characters (abc)
<dataz gerain endElement (foo)
L e il
<foo>xyz</foo> characters — (xy2)
</entry> Elarent {ertr]
<e2§§¥> ;‘:'r:a/zf';> AN startElement (entry id="a2")
<foo>baz</foo> St (150
gt characters (ban
endElement (foo)
</ da {:a> startElement (foo)

startElement (entry id="a1")
startElement (foo)

characters (baz)
endElement (foo)

endElement (entry)

;ndElement (data)
endDocument

Fig 3 — SAX XML processing

Al e o e e s

Finally, let us look through the main opportunities of XML schema:

strong controlling of data typing document nodes and
attributes;

defining sequence of nodes appearing, observe for the
presence of mandatory nodes and attributes;

demanding the element uniqueness in specified context;
creating optional nodes that require presence of one or
another node, depending on the context;

fulfilling the requirements of specific predicate on the group
of nodes and attributes.

Schema features

XSD describes a document schema by declaring set of definitions

(parameters, elements and attributes), which describe its class in terms

of syntax restrictions for this document. XSD is developed from DTD

(Document Type Definition — previous W3C recommendation for XML

schema). Thus, it has common features such as set of regular expres-

78

ISSN 1562-9945

6 (89) 2013 «CucremMHbIe TEXHOJIOTIN »
sions that can be performed upon atomic terms or elements. However,
XML schema also extends functionality of DTD by:

e patterns (any, anyType, anyAttribute) that make possible
usage of any element from specified namespace;

e substitution group that defines the group of types that can be
used instead of specific one;

e amount of occurrences and opportunity of specifying of
minimal and maximal amounts for any element.

Speaking about algorithmic complexity, it should be mentioned that
validation upon XML schema is heavier than wvalidation upon DTD.
However, the latest XML specification simplifies this process signifi-
cantly.

Building a validator

As it was said at the beginning of the article, the main use case for
this validator is when it is already known that XML is valid and re-
quired to be validated again after some small changes.

For the beginning, let us specify the list of simple structure chang-
es that will be checked for correctness:

e Add: creating of new sub-element with the type X on the
position N;

e Remove: removing of sub-element from the position N;

e Move: element carrying from the position N to the position M
(even if this action reduces to element remove and add, but
intermediate state may be inconsistent).

The basis of validating algorithm is in converting XSD model to fi-
nite state machine (FSM) which consists of two parts: one is for parti-
cles and another is for terms.

To translate a particle to an FSM ending at the state S [6]:

1. Set the start state n to S;
2. If the particles MaxOccurs is infinity:
2.1. Add a new intermediate state t; which is got as a result of
translating term to an FSM;
2.2. Add lambda (also known as epsilon, or empty) edges from t
to n and from n to S (fig 4).
3. If MaxOccurs is numeric:

ISSN 1562-9945 79

6 (89) 2013 «CucrteMHBIE TEXHOJOTUH »
Build a chain of (MaxOccurs-MinOccurs) copies of the term trans-

lation of backwards from S, with lambda transitions from inter-
mediate state on each step to S;
For example, for min=2 and max=4 (fig 5)

n i Term machine: > ¢ §

n ‘Term machine i x :Term machine : - S

..

Fig 5 — Particle FSM for min/max values

4. Build a chain of MinOccurs copies of the translation of term from
start state n, and as the result of previous steps.
As for the second step, building of FSM with specified final state S
for concrete term:
1. If the term is a pattern (any):

1.1. Create new state b and connect it with edge S, which is
labeled with the term type.

1.2. Return b;

2. If the term is element definition:

2.1. Create new state b and for each element of the substitution
group create edge from b to S, labeled with the type of the
element.

2.2. Return b;

3. If the term is a choice:

3.1. Create new state b, for every choice element create machine
(first step) and connect it with lambda edges with state b and S.

3.2. Return b;

4. If the term is a sequence:

4.1. For every sequence element create machine (first step) and

connect them in reverse order, starting from the state S.

80 ISSN 1562-9945

6 (89) 2013 «CucrteMHBIE TEXHOJOTUH »

4.2, Return the first state in received chain.

After applying of proposed algorithm to every type in schema, ac-

cordance of type and the validating FSM is received in outcome. In addi-

tion, the last task would be selecting of proper FSM for validating of
changed node of the document. This could be achieved by use of PSVI

(Post Schema Validation Infoset) which is generated by almost every full

validator. For every tree node, it points to according schema type. Final-

ly, if there was an element X and it was added a new sub-element B, val-
idation would be performed by FSM of X element (fig 6).

O

Conclusions

The results of performed tests are below:

Validation time tests

Data type according PSVI—

®

Fig 6 — Validation of X element after B was added

Table 1

Amount of | Nesting | Amount | Average vali- Implementation of

element level of types | dation time by | algorithm average
structure Xerses time
32 4 16 10 ms <1 ms
32 4 40 17 ms <1 ms
12000 4 16 47 ms <2 ms
12000 4 40 56 ms <2 ms
12000 32 16 2460 ms <5 ms
12000 32 40 2650 ms <6 ms

ISSN 1562-9945

81

6 (89) 2013 «CucremMHbIe TEXHOJIOTIN »

As it can be seen from the table, proposed validation technique

shows great performance increase, thus making this algorithm suitable

for use in visual editors and for validation of batch operations upon
XML documents.

82

REFERENSES

. Bray T., Paoli J., Sperberg-McQueen C. M., Maler E. Extensible

Markup Language (XML) 1.0 (Second Edition). // W3C. - Boston,
2000.

. Balmin A., Papakonstantinou Y. Incremental Validation of XML

Documents. // University of California, San Diego. - 2002.
Wu Y., Qi Z., Zhiqgiang Y. A Hybrid Parallel Processing for XML
Parsing and Schema Validation. // The Markup Conference. - 2008.

. Thompson, Henry S., Mendelsohn N. XML Schema Validator. //

W3C and University of Edinburgh. - 2003.

. Thompson, Henry S., Mendelsohn N., Maloney M., Beech D. XML

Schema Part 1: Structures. // W3C. - Boston, 2001.
Aho A., Ullman J. Principles of Compiler Design // Addison-Wesley.
- 1977. Reading, MA.

ISSN 1562-9945

