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Abstract. A problem of the robust decentralized inventory control strategy 

synthesis for supply networks under uncertain external demand and transport 

time-delays and with presence of asymmetric structural constraints on states 

and controls is considered. Decentralized control is designed in the form of 

linear non-stationary feedback with respect to deviation of the current stock 

level from the chosen safety level and is based on solving convex optimization 

problems of subsystems dimension. Solvability conditions of the synthesis 

problem are stated in the form of linear matrix inequalities and reduced to 

solving semidefinite programming and one-dimensional convex optimization 

problems. To analyze the stability of the controlled supply network with 

decentralized controllers the comparison method and mathematical tool of 

vector Lyapunov functions is used. 
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Introduction 

A supply network is a complex system consisting of intercon-

nected agents which is engaged in the extraction of raw materials, pro-

duction, storage, transportation and distribution of products to satisfy 

consumer demand [1]. Supply network may be represented as a directed 

graph with vertices corresponding to the network nodes which define 

types and volumes of controllable inventory and arcs which are control-

lable and uncontrollable flows in the network. Controllable flows de-

scribe processes of resource reprocessing and redistributing between 

network nodes and external supply processes for raw materials. Uncon-

trollable flows describe the resource demand formed by external con-

sumers.  

Operation of production links associated with supply network 

nodes and influence of demand from external consumers make resource 
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stock in the network nodes change with time. This leads to the need in 

control methods for supply networks to construct optimal inventory con-

trol strategies, with various uncertainty factors taken into account. We 

take a supply network control strategy as a structure of rules of deter-

mining instants and volumes of the resupply order.  

In terms of supply network control, it is reasonable to consider 

volumes of demand on the resources that are received at the network 

nodes from the external environment as external disturbances. The 

choice of inventory control model is defined by nature of demand. At 

present, the inventory control strategy with the given demand model is 

synthesized using the Model Predictive Control [2]. 

In practice, generally, there is no information for constructing a 

proper model of external demand needed to construct the predictive con-

trol. One of approaches to the solution of the inventory control problem 

under demand uncertainty is use of the concept of "unknown, but 

bounded" inputs [3]. The respective demand model is characterized by 

the interval uncertainty. 

Analysis of recent research and publications 

Most of the procedures for the analysis and synthesis of auto-

matic control systems in recent decades were developed using a central-

ized approach, where all the information about the current system state 

is transferred to a single regulator, which formed the control actions for 

all system nodes. A lot of results on the stability and robustness of cen-

tralized control algorithms, recently obtained [4].  

However, a centralized approach to the construction of the con-

trol system is characterized by significant computational complexity and 

the need a centralized system for collecting information. Therefore, for 

the control problems of supply networks the decentralized approach is 

perspective, in which the original optimization problem is replaced by a 

set of local problems of smaller dimension that can be solved in parallel 

and independently. At once, it is necessary to ensure the robust stability 

of the whole system, taking into account the availability of relation-

ships. 

Main attention focuses on the problem of robustness of a decen-

tralized control structure [5, 6]. Synthesis of stabilizing control algo-

rithms in the form of a static output feedback was performed with the 

help of Lyapunov’s function using the estimate of the upper bound of 
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non-linear terms or relationships between local subsystems using the es-

timate of the upper bound of non-linear terms or relationships between 

local subsystemsis. To get the results that are acceptable from the point 

of view of computational complexity, the stability conditions are formu-

lated using the technique of Linear Matrix Inequalities (LMI) [7]. How-

ever, in this approach, decentralized control is found by solving the op-

timization problem whose dimension is determined by the dimension of 

the complete system. 

To reduce the dimension of decentralized control problem for 

large-scale systems synthesis the concept of a diagonal or block-diagonal 

dominance can be applied. Using of this concept, in [8] an approach to 

the synthesis of decentralized control is proposed, which is based on the 

method of equivalent subsystems. Initially, a suitable method of synthe-

sis decentralized controllers has been developed as a technique in the 

frequency domain on the basis of the Nyquist method. In this work an 

approach similar to the method of equivalent subsystems used for the 

synthesis of decentralized control in the state space. The main advan-

tage of these approaches is that the static output feedback, providing 

robust stability and given performance values, is constructed for the in-

dividual subsystems, which reduces the dimension of the problem to the 

dimension of the subsystems. In this case, the estimates of the degree of 

subsystems stability obtained as a result of the optimization problem so-

lution are considered as constraints on the level of the relationships be-

tween the subsystems. However, in this approach in the model does not 

take into account the structural constraints, as well as external distur-

bances, while they are highly significant for supply networks control. 

A characteristic feature of the inventory control problem is the 

presence of transport time-delays caused by delays in replenishment 

about the moment of ordering. Also it should be noted that in the works 

devoted to the problem of suppression of bounded external disturbances, 

LMI technique is usually applied to suppress disturbances that are lim-

ited in some norm. While the specifics of the inventory control problem 

is a non-negative values of variables that leads to the presence of asym-

metric constraints on values of the states and control actions. 

The aim of this work is the synthesis of robust decentralized in-

ventory control strategy for supply network under the action of an un-

known, but bounded external demand and transport delays with the de-
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fined structural constraints on the states and control actions. 

Problem formulation 

Consider the supply network S , consisting of interconnected 

nodes NiSi ,1, = , each of which is multinomenclature system, described 

by the discrete state-space model. As the state variables available inven-

tory levels of resources are considered. Control actions are orders vol-

umes for the resources supply, which are formed by nodes in the current 

period, as well as external disturbances is the demand orders, which ar-

rive at the network nodes from the outside. 

System behavior is determined by the equations describing the 

change in the stock levels of each node iS . It is assumed that the supply 

network structure is known, and the states are available to direct meas-

urement. It is also assumed that the measured values of the local states 

come only on their local controllers. 

Transport time-delays are described using the discrete delay 

model. Values of delays that give the time duration of transportation 

and resource reprocessing at the network nodes are supposed to be 

known and are multiples of the sampling period. Then each node is de-

scribed by a difference equation with delay 

,,1,)()()()1(
max

0
Niktkkk

iΛ

t
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t
iii =+−+=+ ∑
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where ,...2,1,0=k  is number of discrete time interval; in
i k Rx ∈)(  is state 

vector of node iS ; im
i k Ru ∈)(  is control actions vector; in

i k Rw ∈)(  is ex-

ternal disturbances vector; max
iΛ  is discrete variable, multiple of the 

sampling period, that determines the maximum value of the time-delays 

of controlled flows between the node iS  and the network nodes that are 

resource suppliers for him; max,0, i
mnt

i Λtii =∈ ×RB  are control influence 

matrices, ii nn
i

×∈ RE  is disturbances influence matrix. Obviously, the 

network structure is determined by the matrices i
t
i EB , , which are con-

structed by the methods, described in [9]. The vector 

[ ]TTT
2

T
1 )(...,),(),()( kkkk Nxxxx = , which composed of the individual nodes 

state vectors, is the state vector of the whole system S  and has dimen-
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External actions for each node iS  include the functions of exter-

nal demand generated outside the network, and internal demand gener-

ated by nodes for which the node iS  is a resources supplier: 
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where qk Rd ∈)(  is external demand vector; Njiji nn
ij ,1,, =∈ ×

RП  are 

technological matrices, which are formed on the basis of the process de-

scription being implemented by the supply network: the element value 

( )tsij ,П  is equal to the amount of resource units ins ,1=  of node iS  re-

quired to produce one resource unit jnt ,1=  by node jS ; qn
i

i ×∈ RП  is 

external demand influence matrix. Obviously, a matrix 
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completely characterizes the nodes interactions that define the supply 

network structure and given technological process.  

During the system’s operation, the structural constraints should 

hold: 
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where the vectors max
ix  and max

iu  setting maximal storage capacities of 

the network nodes and maximal transportation volumes are considered 

given. 

We assume that the vectors of external disturbances satisfy the 

constraints: 

{ },:)( maxmin dddRdd ≤≤∈=∈ qDk   

where the vectors mind  and maxd  give the boundary values of demand 

and are supposed to be known. 

Sets of admissible values of the states iX , controls iU  and de-

mand D  are bounded polyhedrons given by intersection of finite number 
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of closed semispaces, i.e. they are compact convex sets, with the coordi-

nate origin being outside their interior: ( ) ( ) ( )DUX ii int0,int0,int0 ∉∉∉ . 

For a system consisting of the nodes, the dynamics of which is 

described by equations (1) and the relationship defined by the matrix 

(2), we consider the problem of synthesizing a decentralized robust with 

respect to an unknown, but bounded demand Dk ∈)(d  inventory control 

strategy that for any initial state )0(x , where NiX ii ,1,)0( =∈x  provides:  

- full and timely satisfaction of both external and internal de-

mand;  

- minimization of the local quality criteria;  

- the asymptotic robust stability of the whole interconnected sys-

tem;  

- fulfillment the given constraints on the state and control (3). 

Synthesis of local controllers 

Perform the transformation node model (1) to the standard form 

without delays with extending the state vector [10]:  

[ ] .)(...,),2(),1(),()( maxTTTT T
uuuxξ iiiiii Λkkkkk −−−=   

Then the equations of the extended model of the node take the 

form: 
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where the matrices iiiiiiii Nn
i
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i ,, ×××× ∈∈∈∈ RCRGRBRA , , 

max
iiii ΛmnN +=  have the respective block structure [9].  

Execute approximation of the external actions set for each local 

node by an ellipsoid of minimum volume. The boundary values of the 

external actions of network nodes may be found by the following algo-

rithm: 
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Then the external actions set for node iS  can be approximated by 

ellipsoid: 

( ) ( ) ( ) ,1)()(:),( *1T**
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whose matrix w
iP  and vector *

iw  defining the center coordinates are de-

termined by solving a semidefinite programming problem: 

mindetlog →− W   (6) 

subject to constraints on the matrix ii nn ×∈= RWW T  and vector inRz ∈  

variables: 
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where jw  are the vectors which contain all possible combinations of 

values of the vectors min
iw  and max

iw .  

The solution of (6) 
ˆ ˆ
W, z  defines the parameters of the ellipsoid 

(5): 

ˆ ˆ ˆ2 * 1P W , w W zw
ii

− −= = .  

The local control law is designed in the form of linear non-

stationary feedback with respect to the error signal between the avail-

able and safety stock levels 

( )*)()()( iiii kkk ξξKu −= ,  (7) 

where ii Nm
i k ×∈ RK )(  is the non-stationary feedback gain matrix at the 

instant k . 

The values of the vector *
iξ  that consists of 1max +iΛ  vectors *

ix  

and gives the amount of safety stock levels are calculated based on the 

upper boundary values max
iw  of external actions for the node iS  consid-

ering the time-delay value max
iΛ : 

maxmax*
T

1

T*T** ,...,,
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Λ
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i
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=

+
		
		��
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Then the extended model of the closed-loop subsystem takes the 

following form 
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Local control synthesis problem reduces to the computation of the 

feedback gain matrices )(kiK  such that closed subsystems (8) is asymp-

totically robustly stable. The stability conditions of the whole controlled 

supply network with decentralized controllers will be discussed below. 

Synthesized controller should ensure the minimizing of the fol-

lowing local subsystem criteria in case of an infinite time horizon: 

( ) ( )∑
∞
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where iiiiii mm
i

mmu
i

NN
i

×∆××ξ ∈∈∈ RRRRRR ,,  are diagonal positive defi-

nite weighting matrices; )1()()( −−=∆ kkk iii uuu . 

The first term in (9) determines the amount of penalties for de-

viation of available resources levels from safety stock levels, the second 

one– take into account the cost of resources transportation and storage, 

and the third – is introduced for smoothing of control actions jumps, 

since the change in resources production volumes should be carried out 

smoothly.  

Stabilizing control algorithms are generally based on the estima-

tion of the upper boundary value of the system performance criterion 

using a Lyapunov function. We define the quadratic Lyapunov function, 

which is built on the subsystem (8) solutions: 

( ) ( ) ( ) .0)()(,)()()()( T*T** ≻kkkkkkV iiiiiiiiii PPξξPξξξξ =−−=−  (10) 

We require that 0≥∀k  and any value of the external action be-

longing approximating ellipsoid ),()( * w
iii Ek Pww ∈  for the first difference 

of the Lyapunov function computed by k  the inequality guaranteeing 

decrease with time of the function (10) value is occurred: 

( ) ( ) )()()1( ** kJkVkV iiiiiii
∞−≤−−−+ ξξξξ . (11) 

If inequality (11) holds we can show that 0≥∀k  the following 

inequality is valid: 
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Local control actions )(kiu  will be determined from the minimiza-

tion condition of the criterion (9) upper bound. Then in accordance with 

(12) we find the control actions from the minimization condition of the 
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Lyapunov function: 

( )*

)(
)(minarg)( iii
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i kVk
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ξξu
u
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∈

. (13) 

The problem (13) is equivalent to the problem of minimum value 

computation of a scalar 0)( >kγi  such that 0≥∀k  the following inequal-

ity is valid: 

( ) ( ) ).()()()( *T* kγkkk iiiiii ≤−− ξξPξξ  (14) 
In accordance with [11], introduce the matrix variables  

)()()( 1 kkk iii
−γ= PQ   (15) 

and using Schur lemma we present the problems of minimizing the sca-

lar value )(kiγ  under the condition (14) as a semidefinite programming 

(SDP): 
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Thus the synthesis problem of local robustly stable control is to 

calculate at each instant k  of the feedback gain matrix )(kiK  which 

stabilizes the closed subsystem (8) and minimizes the Lyapunov function 

(10). The appropriate results are presented in the following theorem. 

T h e o r e m. Consider the subsystem (4) with constraints (3) 

which is closed-loop with the control law (7), and let the feedback gain 
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is obtained by solving the optimization problem 
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where )()()( kkk iiiii YBQAΣ += , )1(1 −=− kik KK , ∆+= i
u
ii RRR , « + » is 

Moore-Penrose pseudoinverse, x
iP  is the matrix of the ellipsoid that ap-

proximates the set iX  of admissible state values and is calculated by 

solving the problem, which is similar to the problem (6). 

If the problem (17) which can be viewed as a set of one-

dimensional convex optimization problem respect to the parameter iα  

and SDP has a solution, then the subsystem (4), which is closed using 

control law (7), for any initial state ii X∈)0(x  under the action of exter-

nal disturbances ),()( * w
iii Ek Pww ∈  is asymptotically robustly stable un-

der constraints (3). 

The proof is analogous to the proof of the Theorem 2 in [12]. 

Stability analysis of the decentralized supply network control system 

If under the decentralized control synthesis for each subsystem 

iS  the optimization problem (17) is solved, it may be argued that all 

closed local subsystems are asymptotically robustly stable. In order to 

analyze the stability of the whole controlled supply network S  with de-

centralized controllers, represent the equations of the extended node 

model (4), taking into account the relationships (2), by analogy with [5] 

as follows: 

),)()()()1(
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 (18) 

where [ ]
jiji mmmmijiij ××= 00ПEB ⋯T

, [ ]qmqmiii ii ××= 00ПEF ⋯T
. 

The dynamic equation (18) under the control (7) takes the form: 

( ) ( ) ),()()()()()1(
,1

*** kkkkkk i

N
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jjijiiiiifi dFξξFξAξξAξ +−++−=+ ∑

≠=
  

where [ ].)()(T
jiji NmNmjijiij kk ××= 00KПEF ⋯  

To analyze the stability of the controlled supply network S  with 

decentralized controllers the method of comparison and the mathemati-
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cal tool of vector Lyapunov functions  is used [13].  

Consider vector Lyapunov function: 

( ) ( ) ( )[ ] ,)(,...,)()(
T**

111
*

NNN kvkvkV ξξξξξξ −−=−  (19) 

where [ ]TTT
1 )(...,),()( kkk Nξξξ =  and ( ) ( ) TT*T*

1
* ...,, 




= Nξξξ  are a composite 

vectors of appropriate dimension.The components of the function (19) is 

a Lyapunov functions of local subsystems in the Siljak form [14]: 

( ) ( ) ( ) ,,1,)()()()(
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 −−=− ξξPξξξξ   

where the matrices )(kiP  in accordance with (15) are equal 

).()()( 1 kkk iii
−γ= QP  

On the basis of function (19), the general Lyapunov function for 

system S  may be formed as follows: 

( ) ( )*
0

*
0 )()( ξξPξξ −=− kVkV ,  (20) 

where [ ] Nippp iN ,1,0,...,, 00010 =>=P . 

Thus the linear comparison system for system defined by differ-

ence equations: 

),()(),()()1( 0 kυkηkυkkυ PΛ ==+  (21) 

where [ ]TTT
1 ...,, Nυυυ =  is the state vector of comparison system; η  is scalar 

function, which is the output of comparison system; NNk ×∈ RΛ )(  is non-

stationary matrix with non-negative elements.  

In [15] was formulated the theorem according to which for the 

vector (19) and general (20) Lyapunov functions following inequalities 

hold 

( ) ( ) ),()(),()( *
0

* kηkVkυkV ≤−≤− ξξξξ   

if the elements of the matrix )(kΛ  is determined by characteristic equa-

tion of the quadratic forms beam:  
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iiiifiif
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Herewith [ ] 2
1

max)( ijij µkλ = , where max
ijµ  is the maximum value of 

the appropriate characteristic equation (22) root. Thus the comparison 

system (21) majorizes componently vector Lyapunov function (19) and 
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gives an upper estimate of the processes behavior of the composite sys-

tem S . As a result stability analysis of the controlled supply network S  

with decentralized controllers reduces to the analysis of the comparison 

system (21).  

Under supply network model construction, the nodes are num-

bered and grouped according to the stages of processing of raw materi-

als and semi-finished products, starting with those that receive external 

demand. Moreover, any layer of the network combines nodes that are re-

source suppliers for the nodes belonging to the layers with numbers 

strictly less than l  and at least for one node of the layer 1−l . As a re-

sult, if a directed graph showing the supply network, is a tree, that is, 

has no cycles, then non-stationary dynamic matrix )(kΛ  of the compari-

son system (21) is lower triangular. Since the diagonal elements values 

of the matrix )(kΛ  are calculated based on the first of equations (22), 

their values are positive and and no larger than 1: 1)(0 << kλii . As a re-

sult, non-stationary matrix kk ∀)(Λ  is nilpotent and therefore, the com-

parison system (21) is stable. Consequently, the whole controlled supply 

network S  consisting of interconnected subsystems NiSi ,1, = , which are 

closed by local feedback decentralized controllers (7) is Lyapunov stable. 

Conclusions 

In this paper the approach to robust decentralized inventory con-

trol problem solving in supply networks is proposed. The specific fea-

tures of this problem are uncertainty, but boundedness of external de-

mand and availability of asymmetric structural constraints on the states 

and control actions values. 

To suppress influence of disturbances that simulate the change of 

external demand together with ensuring stability of the closed-loop local 

subsystems, the invariant ellipsoid technique was applied that allowed 

stating the problem in terms of LMI and reduce the control synthesis to 

SDP and one-dimensional convex optimization problems. The most im-

portant property of obtained solution is the Lyapunov stability of the 

whole controlled supply network with decentralized controllers which is 

guaranteed by use of the comparison method and the technique of con-

structing vector Lyapunov functions. 

The resulting control depends on the chosen desirable value of the 

safety stock levels. One can choose optimal values of local safety levels 
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within the proposed technique since the solution of the robust decentral-

ized control synthesis problem involved actually gives the algorithmic 

dependence between the local safety stock level and the optimal value of 

the local performance criterion. 
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