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A MULTI-OBJECTIVE IMMUNE APPROACH TO
RECONSTRUCT GENE REGULATORY NETWORK USING
ALGORITHM CLONAL SELECTION

Abstract: The inference of gene regulatory networks is one of the main
challenges in systems biology. In this paper we address the problem of finding gene
regulatory networks from experimental DNA microarray data. We suggest to use a
multi objective clonal selection algorithm to identify the parameters of a non linear
system given by the observed data. Not only the actual parameters of the examined
system are unknown, also the connectivity of the components is a priori not known.
However, this number is crucial for the inference process. Consequently we propose a
method based on algorithms of artificial immune system which uses the connectivity
as an optimization objective in addition to the data dissimilarity (relative standard
error RSE) between experimental and simulated data.

Keywords: gene regulatory networkst; multi objective optimizacion; clonal
selection algorithm; SOS DNA repair network.

1. INTRODUCTION

Gene Regulatory Networks (GRNs) are the functioning circuitry in
living organisms at the gene level. It is regarded as an abstract mapping
of the more complicated biochemical network which includes other
components such as proteins, metabolites, etc. The purpose of GRN is to
represent the regulation rules underlying the gene expression.
Understanding GRNs can provide new ideas for treating complex diseases
and breakthroughs for designing new drugs [1].Gene regulatory network
reconstruction is currently a topic under heavy research in the
computational biology field. The study of GRN is made much easier with
the recent introduction of microarray technology. Using this method,
expression levels of thousands of genes can be measured simultaneously,
as they change over time and are affected by different stimuli. Thereby,
it is possible to obtain a global view of the dynamic interaction among
genes. But it is a great challenging problem to discover these networks of
interacting genes that generate the fluctuations in the gene expression
levels [1]. Gene regulatory networks are distributed system of genes in
various combinations. The interaction of genes controls the biological
structure and functions of proteins. Properties of a gene undergo changes
when it comes in the presence of other genes. Identifying a gene network
is a complex nonlinear problem. Before the invention of microarray
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technology, parallel processing of the genes was a complex and difficult

problem for the biologists. The introduction of microarrays transformed
the problem of gene profiling to a simple and efficient one. For example,
microarray representation may be used for -clustering genes and
reconstruction of gene network making use of gene expression time series.
Reverse engineering approach for the identification of gene networks is a
well-accepted approach in the literature. In this, gene expression profiles
identified by the microarray are used to predict the gene regulatory
network [2] . Inference of GRNs based on microarray data is referred to
as reverse engineering [3], as the microarray expression levels are the
outcome of gene regulation. Mathematically, reverse engineering [RE] is
a traditional inverse problem.

Reverse Engineering (RE) can be considered as a process from which
is possible inferring structural and dynamics feature of a given system
from external observations and relevant knowledge. Thanks to this
feature, today RE techniques play a central role in systems biology [4-5],
since it is not only important a knowledge of genes and proteins, but also
to understand their structures and dynamics [6].

The solution to the problem is, however, not tri vial, as it is
complicated by the enormously large scale of the unknowns in a rather
small sample size. In addition, the inherent experimental defects, noisy
readings, and many other factors play a role. These complexities call for
heavy involvement of a powerful mathematical modeling together with
reliable inference, which play an increasingly important role in this
research [1].

Many types of models have been already proposed for reconstruction
of gene regulatory networks in biological systems, including Boolean
networks [7], linear weighting networks [8], differential equations [9],
Bayesian Networks [10], S-system [11], Fuzzy Set [12] and Artificial &
Recurrent Neural Network [13] etc. Researchers have proposed a number
of evolutionary algorithms for the construction of gene regulatory
networks. In work [14] has proposed a LMS-GP algorithm that uses
Genetic programming (GP) to reduce mean-square-error between
observed and experimentally identified arrays. In this algorithm, a
general form of differential equation is used to model the system. In work
[15] has proposed a Genetic Program proposed which makes use of
Kalman filter for estimating the parameters of the model.The algorithm
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requires the noise statistics for the successful optimization of the

parameters of the regulatory network using Kalman filtering. Hence, it
is not easy to apply for the reconstruction of GRN. In work [16] proposed
a method that consists of a decomposed S-system model and an extended
version of the fitness function. S-system is a power full nonlinear model
proposed by Savageau [17] based on the mathematical modeling of
chemical processes. An evolutionary algorithm called trigonometric
differential evolution along with a greedy search is employed to optimize
the parameters. The effect of decoupled S-system reduces the
dimensionality in computation. For clustering purpose, a hybrid
algorithm that consists of Genetic algorithm and expectation
maximization algorithm is employed. Another work is the adaptive fuzzy
evolutionary gene regulatory network reconstruction framework proposed
in work [18]. This approach is based on the fuzzy clustering using EA
and Spearman correlation. In [19], authors considered biological
network as a scale free network and used advancement of GA called
Distributed genetic algorithm to optimize S-system parameters. The issue
here is that the knowledge about such properties are often not available.
Gene Regulatory Network Modeling using Cuckoo Search and S-system
[20] used a cuckoo search method for the optimization of the S-system.
This approach converges at a faster rate when compared to existing Clonal
selection based algorithm using S-system [21]. In work [22] proposed a
memetic inference method for gene regulatory network based on S-
system. The memetic algorithm is a hybrid algorithm, which employs a
combination of genetic algorithm (GA) and covariance matrix evolution
strategy (CMES) [22]. GA is used to optimize the structural topology, and
the evolutionary strategy is a local search algorithm for optimizing the
S-system parameters. This is considered as a standard algorithm, which
is used for comparative studies of new proposal of this paper. S-system is
the most well accepted and standard differential equation model
introduced by Savageau [17]. Even though S-system is the best model as
per the current state of art, this model has disadvantages. Number of
parameters in the model is large and it will reduce the convergence speed
for the problem. The exponential terms will again affect the
computational speed. In order to avoid such disadvantages in this paper
introduced a new model called Two Weight Matrix model (TWM).
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Currently, most of the existing algorithms developed for the

reconstruction of the GRN are single-objective [23].

However, previous research on single objective GRN showed that on
single objective can generate similar results of experimental data, but
they may not be numerical or structural similarity with real network [24-
26].

This may occur because the optimization process is caught in local
optima. Stochastic multi-objective approaches preserve the diversity of
solutions in a population and present them as a Pareto front. Thus they
are able to find multiple optima hopefully including the global optimum
[27]. The multi-objective optimization approach is likely to be more
suitable for genetic regulatory modeling and its associated parameter
estimation based on following three reasons [28]:

a) Multiple data types (continuous, discrete, and/or categorical) are
very problematic for the design of a single objective function;

b) Individual data sets usually are from different sources and may be
inconsistent;

c) Tradeoffs between solutions may reveal the magnitude of
discrepancies.

On the basis of the above reasons, research on multi-objective
algorithms in modeling gene regulatory network is relatively new but
rapidly growing area of research. There are few attempts to use more
objective approach to GRN have been described in [27-28]. Further more,
previously work on this topic showed that, due to the multi-modal
character of the solution space, several sets of parameter exist, which fit
the data satisfactorily. Thus, standard optimization techniques are easily
caught in local optima, i.e. finding a solution with a good RSE but with
no structural resemblance with the true system. This is known to be a
major problem in the inference process [23-28]. Because multi-objective
algorithms preserve the diversity of the solution within a population by
maintaining the Pareto-front and are therefore able to find multiple
optima hopefully including the global optimum. All work on the
application of multi-objective algorithms for reconstruction of GRN apply
genetic algorithms. Researches have shown the advantage of artificial
immune system algorithms to genetic algorithms, since the first combine
local and global search. For that reason, this paper is devoted to
application of clonal selection algorithm to solve the problem of
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reconstruction GRN using multi-objective optimization based on s-

systems.
2. PROPOSED METHOD
2.1. The Genetic Network Model and S-System

While there are a series of attempts already been conducted by
different researchers, received all the solutions are still not satisfactory,
that in relation to the time required and the achieved degree of accuracy.
Therefore there is need for further research on this topic to reach
satisfactory solutions with improved performance. GRNs network
describe bimolecular interactions that are inherently non-linear and can
be expressed by a common system of differential equations. Biochemical
systems like GRNs are generally modeled by systems of ordinary
differential equations (ODEs). However, nonlinear differential equation
models, such as S-system, can model much more complicated GRN
behavior successfully. In general, modeling GRNs may be considered as a
nonlinear identification of dynamics problem. If there are N genes of
interest; define xi as the state (such as the gene expression level) of the
i-th gene, then the dynamics/interactions of the GRN may be modeled as

)l o) 0] )

for i = 1,...,N, where N this number of genes, x; — gene expression
level, but f; —a function that describes the influence of genes on a gene i.
. For example, if j-th gene activates i —th gen, the value fiincreases with
xj and conversely, if j-th gene inhibits i-th gene.

The proposed method used by S- system, which is widely recognized
as a model for the reconstruction of gene regulatory networks .

One of the ways the mathematical description of a genetic network is
the S-system [17], which is a system of differential equations of the form:

S o [TX -p X @
dt j=1 j=1

where n - number of state variables that characterize the investigated

object or the number of reagents X;. aiand fiare the positive rate constants

for increasing and decreasing respectively. g;;jand h;; are the exponential

parameters that are also called as kinetic orders. If gi; > 0, gene j will

excite the expression level of gene i. On the other hand, gene j will inhibit
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the expression level of gene i if gi; < 0. #h;; have the inverse effects on

controlling gene expressions compared to gi,j. S-system model is
characterized by power-law functions and it has the rich configuration
capability of capturing various dynamics in many complex biochemical
systems. As the S-system model has been proven to be successful in
modeling GRNs.
2.2 Multi-objective criterion [29]

For examining the connectivity and the RSE in parallel, we used a
multi-objective EA, which optimizes the parameters of g, &, a;and B,in

respect to the following two optimization objectives:

a.) For evaluating the RSE fitness of the individuals we used the
following

equation for calculation of the fitness values:

2
N T - X.
i,cal,t i,exp,t
3
-3 ( 1 J @

i=1t=1 i,exp,t

~

where N is the total number of genes in the system, T is the number
of sampling points taken from the experimental time series Xicqu - the
level of expression of the gene X;-th gene at time t is calculated
numerically by solving a system of differential equations (1) for the
intended set of parameters and X;; exp; :+ is experimentally observed gene
expression level of X; in time t.

The problem is to minimize the fitness value fi.

b) The second optimization objective is to minimize the connectivity
of the system, as biologically the gene regulatory network is known to be
sparse. The connectivity is defined in two different ways: first, the
maximum connectivity of the genes, i.e. the total number of interactions
of the system:

- g(]sign(oci] +|sign(B )()+ gé([sign(gi’j} + ‘sign(hi’j )) (4)

And secondly, the median average connectivity of all genes, i.e. the
median
average number of interactions of each gene:
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fy = median[%} (5)

The proposed method is based on an algorithm of artificial immune
network (AIS). The structure of the genome (the antibody Ab) is
represented as a set of values of the optimization parameter

s Bis &ijo My -
2.3. Clonal Selection Algorithm

When solving the optimization problem, the goal is to find the
optimal values (minimum or maximum) of some criterion,

y =1, fzb), x, eX,i= flwhere X - the feasible set of tasks. In general,

we consider problems of multi-objective optimization:

y= (fp fzb) — min , (6)

where y; = fi(f;, fs fzb), j=1n- number of objective for the task.
Depending on the conditions of the problem finding possible global or
local optima.

In optimization problems, the generalized form of antibodies is a

vector of arguments Ab = (x,, x,, ..., X;), and as antigens used optimality
criteriay;, expressed as functions Ag = f(x;, X,, ..., x;) . Affinity values g,
calculated on the basis of criteria values y;reflected in the set of

nonnegative numbers such as:
f: X>NR F:R->NR (")

Thus, there is some affinity function g = F (f(xl, Xgy veey X, )), that

determines that determines the degree of conformity of individuals to
each other. In such problems, we can not to operate the notion of distance,
so that the best value criteria is previously unknown, and, therefore, we
do not know the maximum possible extent to which individuals. Thus, the
control dynamics of AIS is performed by the relative affinity values or by
rank individuals set. This approach is very close to the concept of
suitability (fitness) used in evolutionary algorithms that have some earlier
theory of artificial immune systems
Formally algorithm of clonal selection can be represented as:
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CLONALG = (P',G*, I, k, m,,, 5, f, I, 1, AG, AB, S, C, M, n, d), (8)

where P'is space of search (space of forms); G* 1is space
representation; lis the length of vector of attributes (dimension of space

of search); tis the length of antibody receptor; m, is dimension of
population of antibodies; & is the expression function; f is the affinity

function; / is the function of initialization of the initial population of
antibodies; 7is the condition of completion of algorithm work; AG is the
subset of antigenes; AB is population of antibodies; § is the operator of
selection; C is the operator of cloning; M is the mutation operator; »is
the number of the best antibodies selected for cloning; 4is the number of
the worst antibodies subjected to substitution for new ones.

Consider the shape- space (Pl) phenotypes and their space images as

antibodies (Gk) or genotype space .

Function:
5: P 5 G* 9)

is a function of conversion options with P’ solutions to their internal
image G* in a population of individuals.

This function is another called function expression. It should be
noted that in practice, the development AIS often impose similar
transformation for reasons of convenience, the application of immune
operators and calculate affinity individuals.

For example, a vector of real attributes of dimension / can be
transformed into a bit string of length k£, which enables the use of specific
operators mutation and affinity calculations using different types of
Hemming distance.

Therefore, the terms "genotype”, "phenotype” and "expression” in
this description are borrowed from relatives by their functional structure
and evolutionary algorithms, although more suitable for use in the
context of the evolution of chromosomes than the molecular structure of

antibodies. It is assumed also that for every solution p e P' there is one
and only one of his images J(p)eG'. Thus in general the opposite

assertion is not correct.

Using a generalized mapping [29], you can type affinity function f:
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f:P' xP >R, (10)

This problem is to maximize the function of affinity. Taking the
initial population size of antibodies (m .)» you can enter the initialization

function as:
I:G*xm, — AB(G"). (11)
Often, the initialization is carried out randomly with uniform
distribution.
Let the Q- unary operator stochastic transformation on the set G*,
which uses administering set K, to generate control parameters that

determine the way to convert the current step of the procedure. For
example, if mutations bit string, bit mask can be used as a control
parameter, which determine the position of individual numbers of the
individual bits that undergo mutations. Thus, the functional entry
operator QO can be represented as follows:

Q:G"xK, > G". (12)

The optimum solution of Ab . € G* concerning the operator of O

opt

and antigen Ag € AG, AG cC G" is called an individual, whose affinity
can't be increased at further influence of the operator of transformation

0, ie
Vk e K, : [(@Ab,,,, k), Ag)< f(4b,,,, Ag). (13)

The condition of shutdown (T) is executed when the population of
antibodies fully recognizes the population of antigens, ie

VAg € AG : 3Ab e G" | Ab = Ab,,,. (14)

Operator selection S forms a subset of G, individuals whose affinity

is better in this generation. Thus, S together with the management set
K represents the function:

S:G" x Ky —1{0,1}, (15)
set, which is formed by the selection:

Gy = {Ab c G* | S(4b, ke) =1}, |G| =n. (16)
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Similarly, the selection is made of individuals in a population of cells

of memory. Operator cloning C increases of elements of the set G,in

population and with the management set K can be written as:
C:GyxK, > Gg. (17)

The operator of a mutation of M with operating set K, :
M:G"xK, - G*. (18)

Metadynamic system expressed as a function of substitution worst
antibody population:

R:G"xd — AB,(G"). (19)

Worse antibodies previously selected by the operator selection.
Model process of transformation states populations clonal antibodies
using procedures:

ABt Selection(S) N GS Cloning(C) N GC Mutation(M )

Repeat mutation(S) Replacement(d )
GM GS AB t+1°

wheret— number generation; AB— population of antibodies (
detectors); G,— best subset of selected antibodies; G, — a subset of the
clones; G, — a subset of clones after mutation.

Let us show the generalized stepwise description of the algorithm.

1. Initialization. Creation (usually by random generation) of the
initial population of antibodies AB.

2. Determination of affinity. For every antibody ABJ. , ABj € AB

determine its affinity relative to every antigen Ag,, Ag, € AG. Write the
result into the matrix of affinities D:D= UAG| xm,, and
d,; = f(Ab,, Ag,) d, € D.

3.Clonal selection and propagation. Select from population n of each
the best antibodies for every row of the matrix D and place them into

separate population of clones ABC,ABC‘zn-‘AG‘. It is necessary to

generate clones of elements of the population 4B proportionally to their

affinity, i.e., the greater it is, the greater number of clones is generated
and vice versa.
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4. Affinity maturation. Subject to mutation all the clones of
population AB,. with probability inversely proportional to affinities, i.e.,
probability of mutation is the greater, the lower is its affinity. Determine

new affinity of every antibody 4B, 4B, € AB_similar to item 2 and obtain

the matrix of affinities D . Select nantibodies from the population 4B,

for which the corresponding vector-column of the matrix D_gives the best
generalized result of affinity, and transfer them into population of cells

of memory M ,.

5. Metadynamics. Substitute the worst d antibodies of the population
AB by new random individuals.
6.Substitute nantibodies of the population 4B by cells of memory

from M, and pass to item 2 until the stoppage criterion is reached.

The operator of cloning used to create a set of copies of the best
individuals in the population . This operator makes it possible to increase
the study intensity of solutions area space. Cloning (generation of
identical copies) is the selection of an individuals quantity, while the
quantity of copies in proportion to their affinity: the higher the affinity,
the larger clone (offspring quantity). In optimization tasks the n
antibodies with highest affinity are shown. The number of clones is
calculated by the formula:

N, = imund(ﬁ -N), (20)

i=1
where N, is the total number of clones created for each of the

antigens-multiplying factor, NV - is the total number of antibodies, ” ound:)
- rounding operator of argument to an integer.

Each antibody is seen in the local scale and does not have any
advantages when cloning to other antibody. Antigenic affinity (matching
the value of objective function) further is used to determine the hyper
mutation level for each clone of the antibody.

After cloning operation, the clones are subject to a hypermutation
process inversely proportional to their affinity; the higher the affinity
the smaller the mutation rate. Hence, the mutation rate of a clone is
inversely proportional to the fitness of its parent. The antibodies in each
subpopulation which consists of the parent and its clones maturated by
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hypermutation operation are then evaluated in the affinity function, and

the best antibody of each subpopulation becomes memory cell and is
allowed to survive. The antibodies with d lowest affinities are replaced by
the new antibodies generated randomly to maintain the diversity of
antibody population so that the new areas of the search space can be
potentially explored. The next generation starts with a new antibody
population produced as described above. These processes are repeat d until
a termination criterion is attained or a predetermined generation number
is reached [30-32].

Principle 1: The proliferation rate of each immune cell is proportional
to its affinity with the selective antigen (higher the relative affinity,
themoreprogeny ) [33].

Principle 2: The mutation suffered by each immune cell during
reproduction is inversely proportional to the affinity of the cell receptor
with the antigen (higher the relative affinity, the lower the mutation ) [33].

Each candidate solution (an attribute string in a given shape space)
has an independent mutation rate in proportion to its affinity with the
optima solutions. Thus, candidates in higher peaks of the affinity land
will be subject to smaller mutation rates while candidates located far from
optima solutions will suffer larger mutation rates. One problem with this
approach is that, usually, nothing is known a priori about the optima
solutions of a problem In this case, one can evaluate the relative affinity
of each candidate solution by scaling (normalizing) their affinities. The
inverse of an exponential function can be used to establish a relationship

between the hypermutation rate a(-)and the normalized affinity D" [30-

32]. In some cases it might be interesting to re-scale a to an interval such
as [0..0.1 ].

a(D")= exp(- pD *), (21)
where p is a parameter that controls the smoothness of the inverse
exponential, and D is the normalized affinity, that can be determined by
D' =D/D,_,.
3. EXPERIMENTS AND RESULTS

This methodology has been analyzed in the reconstruction of well-
known SOS DNA repair network in Escherichia coli. It is the longest, most
complex and best understood DNA damage-inducible network to be
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characterized to date. In this work, the experiment was carried out by the

gene expression data set collected in Uri Alon Lab. It was taken from

www.weizmann.ac.il/mcb/UriAlon/Papers/SOSData/. In this system,

there are six major genes that control the process of repair. Those genes
are uvrD, LexA, umuD, recA, uvrA and polB. The data set obtained was
normalized before using it for the prediction of relations in the gene
network. In the SOS DNA repair system of Ecoli.
of all the other genes. Whenever DNA damage occurs, the concentration

LexA is a suppressor

of LexA drops. This activates all other genes and starts repairing. After
repairing, LexA gets back to original position and all the other genes are
suppressed. Thus, the system attains a stable state.

INPUT

| ,

Creating a random population of
individuals

LI

¥

The inverse transform of every
individual of the clones in the
population structure of the GRN

The inverse transform of each
individual in the genetic structure
of the network (GRN’s)
|

v

Assessment of the synthesized
GRN

!

Evaluation synthesized GRN on
the training sample data

!

!

Choosing n individuals, the
relevant structures of the best GRN
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individuals , the relevant structures of

the best farm and transfer them into the
main population

P
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A 4

Cloning of selected individuals to
form a population of clones
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farm structures , new random
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!

The impact on the population of
clones immune operator
hypermutation

Yes

Check stop conditions
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Selection of the best
structures of population
GRN meet the criteria

fl’be

!

OUTPUT

Fig. 1. Workflow of multi-objective clonal algorithm optimization for the

identification of a gene regulatory network

RecA identifies the damage and activates the processing of cleavage
of LexA. Hence, the concentration of the LexA will be reduced and will
lead to the excitation of other genes. After the clearance of damage,
cleavage of LexA will be slow downed and stopped, and this leading to
increased concentration of LexA. The LexA will repress the other genes
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and will advance to a balanced state. Construction of gene network allows
predicting the roles of each of the genes in the DNA repairing
system.There are 50 time periods for the experiment in which 49 are used
for the experimentation where the first time period is at zeroth time and
contains zero knowledge. Out of the 8 genes we had selected, 6 important
genes are specified. All the values in the expression are normalized in the
range of [0, 1].

Table 1 shows the results of reconstruction of the gene regulatory

network using as an objective function f,

Table 1.
The results of the application of clonal selection algorithm for single
optimization
ubrD lexA umuD recA uvrA polB

ubrD 0 0 1 1 0 0
lexA 1 1, -1 0 1, -1 1, -1 -1
umuD 1, -1 0 1 1 1

recA -1 1, -1 -1 0 1 1
uvrA 1 1 0 0 -1 1
polB 0 0 0 0 0 -1

In Table 2 shows the results of the reconstruction of gene networks

using multi-objective function y=(f,, f;)—> min

Table 2.

The results of the reconstruction of gene networks using clonal selection
algorithm with the application of multi-objective optimization

ubrD lexA umuD recA uvrA polB
ubrD -1 -1 -1 0 0 1
lexA -1 -1 0 -1 1 1
umuD 0 -1 -1 -1 1 -1
recA 0 -1 -1 1 1, -1 -1
uvrA 1 -1 1 -1 -1 -1
polB 1, -1 0 -1 -1 1, -1 -1

Using clonal selection algorithm with the application of multi-
objective optimization predicted the major biological relations such as
lexA to lexA, umuDec, recA, and uvrA. It also identified major positive

80
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relation from recA to lexA, recA to recA and lexA to lexA. The proposed
clonal selection algorithm identified two biological relations (recA to

recA, lexA to umuDc) that are not identified by the clonal selection
algorithm based S-system approach. The existing clonal selection
algorithm based S-system approach predicted six biologically identified
relations and the proposed approach identified seven biologically
identified relations. An advantage of the proposed approach is that the
number of uncertain relations identified is much lower than that of clonal
selection algorithm based S-system approach. Uncertain relations are the
relations that are not sure whether they exist. For the clonal selection
algorithm based S-system approach, the numbers of uncertain relations
are 22 and for the proposed clonal selection algorithm are 12. This clearly
indicates that the proposed approach can successfully use for the real life
data set, and it is efficient in predicting relation than the clonal selection
algorithm based S-system.

4. CONCLUSION

In this work, we presents an immune multi-objective approach to
inference network of S-system, using the clonal selection algorithm based
S-system. Due to the proposed multi-objective optimization model, there
is no need to preset any parameter value before the inference MOEA is
run. Thus, our method could be generally applicable to various kind of
GRN model. Future work will be focused on inference of GRN based on
noisy data, and how to generalize the proposed method to infer big-scale
GRNSs.
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