6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

UDC 004.432.4
V.G. Vasilenko, I.V. Baklan, V.V. Shyrii

ABSTRACT DATA TYPES IN PROBABILISTIC
PROGRAMMING LANGUAGES

Annotation. Today, there are quite a few different probabilistic programming
languages that to some extent use the concepts of probability theory for their
calculations. But we wanted to know what data types exist for solving probabilistic
tasks. In the present paper we present a system analysis of abstract data types in
selected languages of probabilistic programming.

Keywords: Probabilistic programming, Abstract data types, Probabilistic
programming languages, Programming languages.

Formulation of problem

Probabilistic programming languages, in their simple form, extend
the well-known deterministic programming language with primitive
constructions for random choice [17]. However, over time, there was a
creation of new tools for probabilistic inference and the emergence of new
complex probabilistic simulation programs. The presence of a large
number of probabilistic programming languages led to the idea that there
is a certain programming paradigm, the so-called probabilistic
programming.

Figure 1 - Classification of programming paradigms [17]

Basic principles language design and probabilistic programming were
given in [8]. Also in this article describes the differences between

Probabilistic Programming and Probabilistic Model Checking.
© Vasilenko V.G., Baklan I.V., Shyrii V.V., 2017

166 ISSN 1562-9945




6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

Literature review

About each of probabilistic programming languages there are
relevant article or the corresponding page on the Internet from their
authors. Therefore we will list those languages about which we will speak.
Namely: Church (MIT BCS/CSAIL) [5, 13], Anglican (MIT, Oxford
University and DARPA PPAML) [2-4, 15], Venture (MIT BCS/CSAIL) [9,
11, 18], Infer.Net (Microsoft Research) [12], TensorFlow [6, 13] (Google)
with libraries TensorFlow Distributions (Google, Columbia University) [1]
and Edward (Columbia University) [7, 8, 16].

The purpose and objectives of Article

In each of the languages of probabilistic programming with the help
of abstract types, the basic concepts of probability theory are realized:
probability space set, random variable, probability, probability
distribution. These concepts, in our opinion, must necessarily be
implemented in languages of probabilistic programming.

In this article, we will analyze the implementation of the basic
concepts of probability theory with abstract data types in probabilistic
programming languages. Namely: Church, Anglican, Venture, Infer.Net,
TensorFlow with libraries TensorFlow Distributions and Edward.

Main part

Church (MIT BCS/CSAIL).

Let's start our analysis with the Church. Church - a universal
language for describing stochastic generative processes. Church is based
on the Lisp model of lambda calculus, containing a pure Lisp as its
deterministic subset.

We will provide the partial description of language with [5]: «Church
language is based upon a pure subset of functional language Scheme, a
Lisp dialect». What we can understand from the reading: Church uses the
same abstract types as Scheme. Feature of Church is the fact that
expressions are values and these expressions describe generative
processes.

In Church there is one interesting feature — all computation returns
to Church in the form of random variable [12].

To specify sets, you can use built-in commands, such as list, vector
and map. Using the built-in Scheme types to represent probabilities,

ISSN 1562-9945 167



6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

Church uses the type number. And it can be like integer or, if it is
necessary to calculate probability, rational.

For calculation of probability a distribution function is used. It
returns value from evaluating the body given env and values of formal
parameters.

Anglican (MIT, Oxford University and DARPA PPAML).

Because Anglican is like the Clojure programming language, it uses
the same data types. Here are just Clojure data types are Java data types,
which also means that all values in Clojure are regular Java reference
objects.

For representation of sets, Anglican, as well as Church, uses the list,
vector or hashmap types. Sample method returns a random sample and
roughly corresponds to the default implementation of the sample
checkpoint.

For storage and work with probability, Anglican uses library
java.lang.BigDecimal — decimal values or other classes, because Java
primitives are usually boxed in Clojure functions. The observe method
returns the log probability of the value, which roughly corresponds to the
default implementation of the observe checkpoint.

To determine the distribution used macro defdist. It takes care of
defining a separate type for every distribution so that Clojure
multimethods (or overloaded methods) can be dispatched on distribution
types when needed.

Venture (MIT BCS/CSAIL).

Venture is essentially a Lisp-like higher-order language augmented
with two novel abstractions:

Probabilistic execution traces (PETSs or abbreviated as “traces”) are a
first-class object that represents the sequence of random choices that a
probabilistic program makes. Each program subcomputation that yields a
result corresponds to a random variable.PETs serve as the only native
form of mutable storage in Venture, and map dynamic “addresses”
assigned over the course of program execution to the manifest values
taken by the program at those addresses;

Stochastic procedures (SPs). SPs are used to encapsulate simple
probability distributions, as well as user-space VentureScript programs
and foreign probabilistic objects. An SP consists of a linked collection of
programs and meta-programs that collectively describe aspects of a

168 ISSN 1562-9945



6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

probabilistic program that are important for its use in modeling and
inference. SPs are designed to allow simple probability distributions, user-
space VentureScript, and foreign probabilistic programs to be treated
uniformly as building blocks of complex probabilistic computations;

The authors state that Venture uses the usual scalar and symbolic
data types from the programming language Scheme. Also in Venture there
is support for collections and additional datatypes corresponding to a
primitive object from the probability theory and statistics. There is
support for the stochastic procedure datatype for using compound
procedures returned by lambda.

Here is a list of the most important values:

e Atoms — discrete items with no internal structure or ordering;

e Numbers — data types like as integer, rational, real, and complex;

e Collections — vectors, which map numbers to values and support
O(1) random access, and maps (map values to values) with support O(1)
amortized random access;

e Stochastics procedures — standard library components and can also
be created by Lambda and others stochastic procedures.

Infer.NET (Microsoft Research).

Infer . NET framework for running Bayesian inference in graphical
models. Infer.NET provides the state-of-the-art message-passing
algorithms and statistical routines needed to perform inference for a wide
variety of applications.

In Infer NET it is possible to create three types of variables: random
(values are unknown and whose posterior distributions can be calculated
during inference), constant (fixed values), observed (values not specified
when the model is constructed, but are given before performing
inference).

Infer . NET is used to create variables other than simple data types,
such as bool, double, int, enum, string, char. Vector and
PositiveDefiniteMatrix are used as vector and matrix types for creation
of probabilistic sets. In addition, all of them and also TDomain [],
ISparseList <>, IList <> can be used for discrete, continuous,
multivariate and sequence distributions.

For greater convenience and possible simplicity, the developers
provided methods for creating random variables with various distribution
factors. It can pass in random variables as arguments e.g. Variable <bool>

ISSN 1562-9945 169



6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

instead of int. In [11] you can see examples of such usage, as well as with
the description and syntax on Infer.NET. Built-in functionality allows
you to use different types of data parameters. For example, with discrete
distribution.

TensorFlow (Google), library TensorFlow Distributions (Google,
Columbia University) and Edward (Columbia University).

TensorFlow is based on use of so-called tensors. We will give small
definition about tensors. Tensors are simply mathematical objects that
can be used to describe physical properties, just like scalars and vectors.
In fact tensors are merely a generalization of scalars and vectors; a scalar
is a zero rank tensor, and a vector is a first rank tensor [18].

The rank (or order) of a tensor is defined by the number of directions
(and hence the dimensionality of the array) required to describe it. For
example, properties that require one direction (first rank) can be fully
described by a 34Ul column vector, and properties that require two
directions (second rank tensors), can be described by 9 numbers, as a 343
matrix. As such, in general an nth rank tensor can be described by 3n
coefficients.

Tensors are used to represent the data structure in programs written
in TensorFlow. Using tensors, TensorFlow represents the probability space
is an N-dimensional array or list. The tensor has a static type and a
dynamic dimension.

TensorFlow provides several possibilities for creating so-called
random tensors with different distributions. In this case, after each call
and calculation, new random values are created.

Tensors can be of such data types: bool, half, float, float64, uint8,
int8, intl6, int32, int64, complex64, complex128, string. But you can
also use standard data types with Python. For example, as bool, str, list
or tuple.

More recently, for TensorFlow, another library of adaptation of the
vision of probability theory to the modern deep-learning paradigm of end-
to-end differentiable computation. It is called TensorFlow Distributions
[1]. It is constructed on such two abstractions: Distributions and
Bijectors. The first provides a collection of approximately 60 distributions
with fast, numerically stable methods for sampling, log density, and many
statistics. The second one allows composable volumetracking
transformations with automatic caching. Together these enable modular

170 ISSN 1562-9945



6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

construction of high dimensional distributions and transformations not
possible with previous libraries.

Also, this year was presented Edward [15] — deep probabilistic
programming library, which expands deep-learning research by enabling
new forms of experimentation, faster iteration cycles, and improved
reproducibility. Edward provides a language of random variables to
construct a broad class of models: directed graphical models, stochastic
neural networks, and programs with stochastic control flow. In Edward,
random variable is an object parameterized by tensors. For Edward, the
TensorFlow Distributions library has a backend.

Conclusion and future research directions

We will write short outputs about each of the probable languages
selected by us. We will select several highlights. The first is that all the
languages we choose use the data types of their "parent” programming
languages. The second is that for the use of distributions and random
variables, the built-in functions or methods in each of the languages are
used. And the list of these distributions can be different. Depending on
various factors (development experience, knowledge in the field of
probability theory, etc.), the development of own probabilistic concepts
can cause confusion.

LITERATURE

1. Alemi A., Dillon J.V., Langmore I., Tensorflow Distributions. 2017p.

2. Anglican Homepage. URL:
https://probprog.github.io/anglican/index.html (mara sBepuenHsa
28.11.2017).

3. Anglican Language syntax, URL:
https://probprog.github.io/anglican/ index.html (gaTa 3BepHenusa
28.11.2017).

4. Anglican Inference methods, URL:
https://probprog.github.io/anglican/ inference/index.html (zara
3BepHeHHda 28.11.2017).

5. Computation in Church, URL:
http://projects.csail.mit.edu/church/wiki/ Computation_in_Church
(mata 3BepHeHHda 25.11.2017).

6. Constants, Sequences, and Random Values page, URL:
https://www.tensorflow.org/api_ guides/python/constant op (mara
3BepHeHHA 28.11.2017).

ISSN 1562-9945 171



6 (113) 2017 «CucreMHBIE TeXHOJOTHUI »

7. Edward Homepage, URL: http://edwardlib.org/ (nata 3BepHeHHS
27.11.2017).

8. Developing Custom Random Variables URL:
http://edwardlib.org/api/model-development (maTa sBepHeHHA
27.11.2017).

9. Gordon A. D., Henzinger T. A., Nori A. V., Rajamani S. K. (2014,
May). Probabilistic programming. Proceedings of the on Future of
Software Engineering. 2014. PP. 167-181.

10. Lu A. Venture: an extensible platform for probabilistic meta-
programming: auc. ... KaHJI. TeXH.. HayK.

11. Mansinghka V., Selsam D., Perov Y. Venture: a higher-order
probabilistic programming platform with programmable inference.
12. Infer.NET 2.6, URL: http://research.microsoft.com/infernet (zara

3BepHeHHsa 14.11.2017).

13. Probability Theory and The Meaning of Probabilistic Programs,
URL:
http://projects.csail.mit.edu/church/wiki/Probability Theory and T
he Meaning of Probabilistic Programs (zara 3Beprenns 14.11.2017).

14. TensorFlow Homepage, URL: https://www.tensorflow.org/ (gara
3BepHeHHs 27.11.2017).

15. Tolpin D., van de Meent J. W., Yang H., Design and
Implementation of Probabilistic Programming Language Anglican.
2014.

16. Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., &
Blei, D. M.: Edward: A library for probabilistic modeling, inference,
and criticism.

17. Vasilenko V., Shyrii V., Baklan I. Modern programming paradigm
- probabilistic programming. In XIIV International scientific
conference “Intellectual systems of decision-making and problems of
computational intelligence”. 2017.

18. Venture Homepage, URL: http://probcomp.org/venture,/ (zmara
sBepHenHsa 14.11. 2017).

19. What is a Tensor. URL:
https://www.doitpoms.ac.uk/tlplib/tensors/ what_is tensor.php (zara
3BepHeHHs 26.9.2017).

172 ISSN 1562-9945



