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OPTIMAL REGRESSORS SEARCH SUBJECTED TO VECTOR
AUTOREGRESSION OF UNEVENLY SPACED TLE SERIES

An iterative procedure of the parametric identification of autoregressive mod-
els with unequally spaced observations has been developed. The task of the
Sich-2 spacecraft dynamics modeling using its unequally spaced TLE elements
is considered. For all elements, satisfactory quality models were obtained.

Introduction

The problem of improving the accuracy of forecasting the satellite po-
sition is relevant for the tasks of determining time of their existence, catalog-
ing space debris, navigation, etc.

The only open source of orbital data for solving such problem are the
two-line elements (TLE), which regularly and promptly are updated on the
website of the American Space Monitoring System (SSS) [1]. The values of the
orbit parameters contained in the TLE files are calculated by averaging over
specific SGP4 or SDP4 models [2].

Prediction techniques based on statistical models of time series [3, 4],
or on methods of machine learning [5, 6], are aimed at modeling and repro-
ducing the missing dynamics of previously calculated approximations of SGP4
or SDP4 models. This combination improves the accuracy of conventional
numerical, analytical, and semi-analytical methods for determining the posi-
tion and velocity of any satellite or space debris object.

A distinctive feature of TLE-elements series is their time positioning
not on a uniform temporal grid, but with irregular time intervals between ob-
servations, so-called "unequal observations". When solving problems of mod-
eling time series with non-equal observations, they usually try to move to a
uniform grid based on various local approximation procedures on a sliding in-
terval [7]. In this way, the problem of choosing the type and optimal order of
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the smoothing polynomial arises, and so, in fact another replaces the previous
task. When building statistical models of TLE elements series, this distinctive
feature can be used to modify parameter estimation procedures.
The development of a method for constructing autoregressive models
with unequally spaced time observations and its application in modeling the
dynamics of large fragments of space debris in the problem of their removal

from orbits is the goal of this work.
Major part
1 A priori assumptions about a dynamic object represented by

TLE elements series
Assume the functioning of a dynamic object obeys the law in the form

of an autoregressive equation
* * * * 0 0 0 T * (o)
Xi =| Xi-l, Xi=25 ey Xi—p || 01:,02i,...,0pi | +C; =Zi’.(p)®.,i(p)+§i_1,(1)

*

where x; is unobserved value of the output variable of the object at discrete
time t=¢, i=1,2,...,n; n is total number of observations; p is the number of

previous values of the output variable, which affects its current value; J;_; is

unobserved random variable.

In the model of functioning process (1), the (nxp)-matrix Z(p) is the

matrix p of the previous unobserved values of the variable:

X0  X-1 ot Xl-p _Z_l_,'_(fj _)
0w x| | 2a0)
Zp=|. L E ) @)
Xl Xi=2  t Xi—p Z,.(p)
| Xn—1 Xp-2 - xn—p_ _Z n,o(p)_

* *

where, Z ; ,(p) represents the row Z(p), the first element of which is x;-1; in
*

the designation of this matrix, " p " means that the formation of a quantity x;
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* * %
involves p quantities of x;1, x;-2,...,xi—p, i.e., the i-th (px1)-matrix row is
o
multiplied by the i-th (px1)-matrix column O(p).
Assumer; =t; —t;_;, i=1,2,...,n are the values of the time intervals be-

tween adjacent pairs of observations.

(0]
Suppose (p x1)-vector of coeffients ®.;(p) fulfill the equality:

0 o o o \F ' ' T
O.;(p)=|01i,02,..., 0 =(9?’,9§’,...,9;") , i=12,..,n 3)

where
0=(0;,0,,..,0,)" 4)
is (px1)-vector of unknown deterministic coefficients that must be deter-
mined by the results of the object; u; =7,;/0, is the exponent in which the
vector components 0 are raised; J; is some given value.
For example, if we take §; equal to the average value of the time inter-

vals between adjacent pairs of observations:
1 2 1
5t=_zri=_(tn_t0)a (5)
n ;-1 n

then this value will correspond to the time interval of observations in the case
of equidistant observations, i.e. x; =1, i=1,2,...,n

Taking into account (2)—(5) the law of functioning (1), according to
which the output variable is formed, is written in the form

* *

. . . T .
xi =Z ;.(p) (e{‘z ,057,..., 04 ) +Ciq, i=12,.,nm, (6)
where 0 is (p x1)-the vector of unknown deterministic coefficients.

Introduce the notation

wi=2Z () 0o | )
given (7), then write (6)
imxi 4G, =12, ®)
Add another notation
X = (¥inty 02y s i) s X = (ot %2y s ¥iep) )
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C-'(_l):(goac.vl’"'»Cn—l)T’ (10)

where {(-1) is the unobserved random (n x1)-vector; “~1” means that the

quantity {(-1)=¢;_; in (1) and (8) additively participates in the formation of

the quantity x;.
Considering (9)-(10), we write the model of functioning in the vector
form

x=x+{(-1), (11)
where x is the unobservable component of the (nx1)-vector of the variable
values.

For observations of the output variable of the object, the next equation
is introduced:

*

xl‘:xl‘+8i, i:1,2,...,n, (12)

where x; is the observed value of the variable, measured at the time ¢=1¢,

*

i=1,2,...,n; x; is unobserved value, which is formed according to (1), (6) and
(7); €; is random unobserved measurement error.

Given (12), we write the model of the observation of the object in a
vector form

ES

X=X+E¢€. (13)
We formulate assumptions about the statistical properties of random

variables in the models of operation and observation. Let the following as-
sumptions be fulfilled with {(-1) respect to (11):

EE-1}=0,, EEEDE (D=0 -1, (14)
where E{-} is the sign of the expectation of possible implementations of the
vector §(-1); 0, is zero (nx1)-vector; g is variance of the random variable
C; (-1, i=12,...,n, limited value; I, is the unit (n x n) -matrix.

Let the following assumptions be made with respect to & (13):

E{e}=0,, E{ge'}=0,1,, (15)
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where E{-} is the sign of the expectation of possible implementations of the
vector ¢; g, is variance of magnitude ¢;, i =1, 2, ...,n limited value.
We will also assume that random vectors {(—1) and ¢ are statistically

independent:

E{&(-Dg"} = O(n) (16)
where O, is the zero (n xn)-matrix.
Presume that at r=¢;, i=1-2p, 2-2p,...,0,1,2,...,n time points, the
(n + 2 p)-vector of observations of the output variable was obtained
x(0)

T
(xl—Zpa x2—2ps s X0 X5 XD eees xn) = (_;‘_') ’ (17)

where the (2 p x1)-vector x(0) will be used as the initial conditions.

To estimate the unknown coefficients 0 from the observations of the
object (17), we use the results of [8]-[10], where an iterative parametric iden-
tification procedure was developed and investigated for models in the class of
autoregressive equation systems.

2 Estimation of coefficients in autoregressive equations subjected
to unequally spaced observations

From the model of functioning (7) and the generalized form (11) it fol-
lows

Z(p)=Z(p)+T(-2:Z), (18)

where ;( p) is the (nxp)-matrix of unobserved values of the output variable of

*

the object, its structure is similar to the matrix Z(p)in (1)-(2):

X1 X0 X2-p
Z(p)=|_~ _—° T " (19)
Xi-1  Xi=2 =+ Xi-p
| Xn-1  Xn-2 ** Xn-—p |

I'(-2;Z) is matrix of unobserved random variables
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(L Lo o G, ]
Co Cq o C.:l—p

I'(-272)= . (20)

Cia Gz oy

_Cn—Z Cn—3 Cn—l—p_

in the designation of which “~2” means that in (18) the value {,_, is addi-

*

tively involved in the formation of the value x;—;.

Substitute in (13) the vector x of (11) and use (18) for Z(p):

X; =Z,. (p) (e{‘f 057, 0% )T + {ei +T;.(=2;,2) (e{‘f, 057, ..., 07 )T +(l.(—1)} (21)
or

x; = Zio(p) (e;lf b6k )T Y&, i=12,.,n, (22)
where ¢; is a random variable enclosed in braces in (21).

Using (18)—(22) and given that the random vectors €(k), {(—1) and the
random matrix I'(-2;Z) have zero mathematical expectations, and all these
values are statistically independent, for the mathematical expectation
&= (& &pody) ' We get

E{C}=0,, (23)
where 0, is zero (n x1) - vector.

Itroduce the notation

y=x, R=Z(p), (24)
where y is the (nx1)-vector of observations of the output variable; R is the

regressor (n x p) -matrix for the output variable.
Given (24), model (22) can be written
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i
0;
0#1‘ () 0 0o
yi=Ri |72 |+& =R 0118 =R, [0+ =y, +&,
Hi
0
i=1,2,...n, (25)

or in vector form

y=y+E, (26)
where 0% is the designation for component-wise exponentiation u; of all
components of the (p x1)-vector 0.

Finding the (p x1)-vector of unknown deterministic coefficients 0 is a
difficult task due to the fact that in model (25) the components of this vector
are included in the degree depending on the time intervals between adjacent
pairs of observations, which are different for different observation numbers.

We write (25) in a form convenient for constructing an iterative proce-

dure:
M gl ] T £ K W=
yi=R; 077.05,...0,) +& =X R, 057+ = Z R; ;0% 8j+§i=
j=1
p T .
= 215 9] 51’:51',0 (61,62,...,9p) +érl‘, l:1,2,...,7’l, (27)
]:
where R, = ZJH;‘Z ,i=1,2,...,n, j=1,2,..,p is the matrix of new regres-
SOrs.
We write (27) in vector form
(o]
y=RO=y+¢g, (28)

where 0 is the (p x1)-vector of unknown deterministic coefficients that must
be determined.
According to [10], to estimate the coefficients 6 in (28), the following
is fair:
d=Cy, (29)
where for (p xn)-matrix C, equality is fulfilled
Cc=(R"Z'R)'R'E{, (30)
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and X is covariance (n x n)-matrix, mentioned in (22) (n x1) -vector of unob-

served additive random components §.

For the covariance matrix X, the equality is fulfilled [10]:
E;;ZGS'I”'F‘I"FGC'I”, (31)
where ¢, is the variance in the observation model introduced in (15); o is

variance in the functioning model introduced in (14); ¥ is (n xn)-matrix has

the form
C w0 w(+D) e w(p-D) 0 0 0 ]
v w0 s w(p-2) y(p-) - 0 0
W v(-p) v@2-p) - w0  wyH) - 0 0| (32)
0 v(-p) - w=l)  w© - 0 0
0 0 0 0 <y(0)  w(+D)
0 o - 0 0 w(=1) w0 |

In (32), the quantities y(A), A=—p+1,—p+2,...,p—2,p—1 are deter-

mined by the formulas
w(a)=Cov{E; & t=0,-0 1(ij—i))0, (33)
where 1,(i —i,) is a (px p)-matrix, in which all elements are equal to zero,
except elements of a diagonal equal to one: if, A =i —i, =0 then this is the

main diagonal; if, A >0 then this is the diagonal located above the main di-
agonal on the a lines; if, A<0 then this is the diagonal located below the
main diagonal the | a| rows apart.

Taking into account (30)—(33) for the estimates of the coefficients,

AN

d=R'ZR)"R'EEy. (34)
In (30) for the matrix C, the regressor matrix R depends on the unob-

servable matrix R and on the unknown coefficient vector 0. In (31) for the
matrix X, the elements of the matrix ¥, as follows from (32) - (33), depend

on 0. This was used in [10] to form an iterative procedure for calculating the
unknown coefficients in the form (34).
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3 An iterative procedure for estimating coefficients in

autoregressive equations subjected to unequally spaced observations
AN
Let d(r) be the estimate 0 in the form of (34) obtained at the iteration
AN
r of the coefficient vector 0 estimation procedure; matrix R(»—1) is the es-

A\
timate of the regressor matrix Robtained at the iteration r-1; y,(r),
i=1,2,..,n is (nx1l)-vector of the outputs of the regression model; u;(r),
i=1,2,..,nis (nx1)-vector of residuals of the regression model [11]. We write

the regression model (27) in the form convenient for implementing an itera-

tive estimation procedure.

V= §1 ﬁi,j(r—l)c??i_l(r—l)c?j(r)+ui(r): ilgi,j(’”_l)‘?j(’”)"'”i(’”):
j= Jj=

AN T A
R ie(r=1) (a’ 1(r), d 5(r),....d p(r)J +u(ry=y,(r)+u;(r), i=1,2,...,n
(35)

where R, (r-1= lAli,j(r -1) c/} *}"_1(7’ -1),i=1.2,..,n, j=12,....,p.

The iterative procedure for estimating the unknown coefficients of the
regression model in the form (25)—(27) involves three steps.

Stage I. Initial approximation.

Step 1. Form the matrix of observed previous values of the variable
(similar to (19))

xo x_l oo xl—p
xl xO cee xz_p
Z(p;0) = : (36)
X1 X2 Xip
_xn—l Xp—2 xn—p_

Step 2. Form a matrix of observed regressors (similar to (24))

R(0) = Z(p;0) . (37)
Step 3. We form the matrix of new auxiliary regressors in accordance
with (35), assuming p; =1, i=1,2,...,n:
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R(0)=R(0). (38)

N
Step 4. We assume ¥(0) =0,,,,, is zero(n x n) -matrix.

nxn

Step 5. Calculate the estimate of the coefficients:

d(0) = (RO [0, -1, + 6, 1,1 RO) | RO [0, -1, +0¢ 1,1 y.(39)

Step 6. Calculate the model outputs:

y(0) =R(0)d(0). (40)
Step 7. Calculate model residuals:
u(0)=y-y(0). (41)
Step 8. Calculate the target functional:
®(0)=((n=1)~"-u' (0)u(0))'"?. (42)

Stage II. The main stage. At iterations »=1,2,...,r the operations are

performed:
Step 1. Form the matrix of estimates of the previous values of the vari-
able (similar to (19))

A A A 7
yor=0 y(r=1) - y_,(r=1)
A A A
J’1(”_1) J’o(”_l) J’z_p(’”_l)
A . . . o
Zipr-n=|, * T (43)
yi_l(’”_l) yi_z(”_l) yi_p(”_l)
) : ) : . ) :
_yn—l(r_l) yn—Z(r_l) yn—p(r_l)_

Step 2. Form the regressor matrix (similar to (24))

R(r—-1)=Z(p;r-1). (44)
Step 3. Form the matrix of new auxiliary regressors in accordance with
(35)
R, (r=D=R, (r-Dd% ' (r=1), i=1,2,...n, j=1,2,...p. (45)
7a\ A\
Step 4. Calculate the matrix WY(r—1) - values wy(a;r—1),
A=—-p+1,—-p+2,... ,—1,0,1,...,p—2, p—1 calculated by (32)-(33), using as an
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A
estimate 0 the approximation d(»—1)obtained at the iteration »-1; at itera-

AN
tion » =1, we use the initial approximation estimate d(0), obtained in (39).

Step 5. Calculate the estimate of the coefficients:

-
d(r):([g(r_l)]T[cs 'In +T(r—1)+GC 'In]_lg(”_l)J *

<[R(=D]"[o, T, + ¥(r— D+ o, 1,1y, (46)
Step 6. Calculate the outputs of the models:
y(r)=R(r-1d(r). (47)
Step 7. Calculate the residuals of the models:
u(r)=y-y(). (48)
Step 8. Calculate the target functional:
O(r)=((n =7 -u' (HuEr)''?, (49)

Stage III. Breakpoint. The iteration process ends at an iteration r if
the condition
=0 —-1)-®()<3,, (50)
where §, is the given value.

Note that in the case of first-order autoregression(p =1), the matrix
X in (31) has the form X; =c-I,, where, 6 =0, +o, .07 +o. thatis, the es-

timation in the fifth steps of the first and second stages of the procedure is the
usual least squares method.
If the dispersions o, and o, are a priori unknown, then the covariance

matrix X can be estimated (taking into account its structure) iteratively us-

ing the residuals of the autoregressive model, as was done in the procedure
[9]. In this case, the estimates of the usual MLS are taken as the initial ap-
proximation.

Note also that the considered problem of estimating autoregressive
coefficients subjected to unequally spaced observations can be posed and
solved under conditions of structural uncertainty, when the autoregressive
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order is a priori unknown. In this case, the evaluation of autoregression coef-
ficients can be carried out based on the results of [12]-[13].

4 TLE time series simulation for large space debris objects using
the Ukrainian Sich-2 spacecraft

The developed iterative procedure for estimating coefficients in auto-
regressive equations under unequal observation conditions was applied to
simulate the TLE time series of the Sich-2 spacecraft [1]. Sich-2 is a Ukrainian
small-sized remote sensing spacecraft (SC) operating from 2011-2012. It was
intended to observe the surface of the Earth in the optical and mid-infrared
ranges. In December 2012, communication with the Sich-2 spacecraft was
lost. The TLE time series of the Sich-2 satellite are represented by seven main
and three additional variables: (see Table 1).

Table 1
List of variables for Sich-2 TLE data
Designation Title Unit of
measurement

X Apogee km
X, Perigee km
X3 Eccentricity -
X4 Inclination deg
Xs Right ascension of the ascending node | deg
Xg Argument of perigee deg
X7 Mean anomaly deg
Xg Revolution number at epoch revs

X9y tyak Accumulated time hrs

X0, T; The time interval between the current | hrs

and the previous observation

Simulations were performed for seven key variables. Additional vari-
ables xg, xo were used to build the figures, and the variable x,, was used for

the calculation p; =1;/9;, i =1,2,...,n, where ,; is the exponent in which the

vector @ components are raised in (4). Attempts to model directly in the class
of autoregressive models (1) were unsuccessful due to the strong correlation
of autoregressors (correlations between the columns of the matrix (2)). The
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way out of this situation is possible with the help of a priori data that contains
information about the ratio between the coefficients of the autoregressors.

In [14] a method of structural-parametric identification was developed
in the problem of modeling objects by observing their functioning in the class
of beta-autoregressive equations, in which such weighting ratios for autore-
gressors in the autoregressive model are determined based on the density
functions of beta-distributions. These results were used to solve this problem
of simulating TLE-elements of the Sich-2 satellite.

By trial calculations based on the developed iterative procedure and
the method of structural-parametric identification in the class of beta-
autoregressive models [14], it was found that the maximum number of previ-
ous values of output variables x|, x,, ..., x; affecting their current value is suf-
ficient to be equal p=7.

At the first preliminary stage of modeling based on the beta-
autoregression method, the search for the optimal parameter value was car-
ried out for each main variable 3. This parameter indicates the degree of in-

crease in the weight coefficients of the autoregression when approaching the
current value. Having B=1, all weights of autoregression are same: a; =1,

j=12,...,7.,. Having B =13 the weight of the first "lag" in the model is ap-
proximately 0.90, and the sum of the weights of all other delays (their number
is equal p—1=46) is approximately 0.10. When B =25 the weight of the first
"lag" is approximately 0.99, and the sum of the weights of all other delays is
approximately 0.01. Graphs of weight functions for =1,3,...,25 when p=7
presented in Fig. 1.

Further, for each main variable, beta-autoregressive models were con-
structed for a set of parameter £ =1,2,...,15 values. Analysis of the depend-
ence of the mean square error (MSE) of the models on parameter g for seven
variables showed that the optimal values of parameter [ is
B = (7, 7,3,1,10, 6, 13). Further S increasing doesn’t cause significant MSE re-
ducing.

The coefficients of the constructed beta-autoregressive models for
seven main variables for the values B. found are given in Table 2. Table 3 is

ISSN 1562-9945 107



2 (121) 2019 «CucTeMHbIe TeXHOJOTUU»

listing the standard deviations of the model outputs from the observed values

for the seven main variables. The resulting quality of the models can be con-
sidered satisfactory for all variables. It should be noted that the indicator x,

(inclination) in the source data has a constant value (98.2 degrees). The root-

mean-square error of the variable x; (mean anomaly) cannot be considered

satisfactory.

—— alpha=1 beta=1
—— alpha=1 beta=5
—— alpha=1 beta=9

—— alpha=1 beta=13

**** &l —— ajpha=1 beta=15 ||

—— alpha=1 beta=17

—— alpha=1 beta=21

— alpha=1 beta=25

——— alpha=1 beta=3 |
—— alpha=1beta=7 [

—— alpha=1 beta=11 |

—— alpha=1 beta=19 |7

— alpha=1 beta=23 |7

L
0.8

0.6 07 09

1

Figure 1 — Weight functions of coefficients for beta autoregression (¥ = 7) (weight

functions are presented as values of probability density functions J®) for a random

variable ¥ having beta distribution)

Table 2

Coefficients of autoregressive models for seven main TLE variables of the
Sich-2 satellite data

Variable Coefficients of the autoregressive model

a a, a, ay as dg as
X 0,6946 | 0,2326 | 0,06098 | 0,01085 | 0,0009528 | 1,489e-005| 0,0
X, 0,6946 | 0,2326 | 0,06098 | 0,01085 | 0,0009528 | 1,489e-005| 0,0
X3 0,3955 | 0,2746 | 0,1758 | 0,09887 | 0,04394 0,01099 0,0
Xy 0,1429 | 0,1429 | 0,14286 | 0,14290 | 0,1429 0,1429 | 0,1429
X5 0,81881 | 0,1587 | 0,02130 | 0,00160 | 4,16e-005 | 8,13e-008 | 0,0
Xg 0,63785 | 0,2563 | 0,08400 | 0,01993 | 0,002625 | 8,203e-005 | 0,0
X7 0,89338 | 0,1002 | 0,006886 | 0,000218 | 1,68e-006 | 4,104e-010 | 0,0
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Table 3
Standard deviations of model outputs for the seven main TLE variables of
Sich-2 satellite

xy(km.) | x, (km.) X3 x4(deg.) | x5(deg.) | x4 (deg.) | x5 (deg.)

0,001 0,001 | 1,30e-05 0,00 0,05 0,57 0,91

Conclusion

The method of constructing autoregressive models of the large frag-
ments of space debris motion, represented by unequally spaced TLE time se-
ries has been developed. An iterative procedure has been developed for para-
metric identification of autoregressive equations subjected to unequally
spaced observations, which has been studied by statistical testing. Based on
the developed method for constructing autoregressive models, the problem of
modeling the dynamics of the Sich-2 spacecraft using its TLE time series in
the class of autoregressive models was considered. For all elements, satisfac-
tory quality models were obtained.
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