УДК 622.411.33

Ю.В. КУДИНОВ, докт. техн. наук, зав. отд., МакНИИ, г. Макеевка, В.И. ПАВЛОВ, канд. техн. наук, доц., С.И. КУЛАКОВА, аспирант, ДонГТУ, г. Алчевск

ВЛИЯНИЕ НЕРАВНОМЕРНОСТИ ДОБЫЧИ УГЛЯ НА МЕТАНООБИЛЬНОСТЬ ОЧИСТНОГО ЗАБОЯ

Выполнен анализ изменчивости среднечасовых значений метанообильности и добычи с учетом организации работ в очистном забое. Показано, что увеличение неравномерности метанообильности очисного забоя обусловлено ростом добычи в текущее и прошлые периоды времени.

Ключевые слова: очистной забой, смена, метанообильность, добыча, неравномерность.

При интенсификации очистных работ на высокогазоносных угольных пластах происходит активизация процессов метановыделения. Периодически происходит срабатывание автоматической газовой защиты, свидетельствующее о возникновении экстремально высоких метановыделений, превышающих прогнозные значения. Закономерности формирования подобных ситуаций требуют всестороннего изучения и детализации, так как вынужденные простои высокопроизводительного оборудования существенно снижают эффективность очистных работ, к тому же нередко провоцируют работников добычного участка снизить чувствительность системы автоматического газового контроля.

Процесс выемки угля является первопричиной активизации газовыделения в пределах выемочного участка. Чем больше нагрузка на очистной забой, тем больше метанообильность[1]. Во время технологических перерывов при обслуживании оборудования в ремонтную смену или при временной остановке комбайна в добычные смены процесс дренирования метана из угольного и породного массива продолжается. Происходит естественная дегазация горного массива в окрестности очистного забоя. При возобновлении выемки угля метанообильность снова возрастает. В связи с этим возникают сменные, суточные циклические колебания метанообильности [2].

Целью настоящей работы является исследование влияния суточной динамики добычи угля на неравномерность метановыделения.

[©] Ю.В. Кудинов, В.И. Павлов С.И. Кулакова, 2014

Для уточнения степени влияния неравномерности выемки угля на показатели динамики метанообильности был проведен непрерывный мониторинг работы 28 орловской лавы пл. k_2 ш. «Молодогвардейская» ООО «Краснодонуголь». Наблюдения проводились в период устойчивой работы лавы после освоения проектной нагрузки в течение 1200 часов (50 суток). Лава продвинулась за период наблюдений на 95 м и работала по обычному графику — четыре шестичасовые смены: одна ремонтная и три добычные. В каждой смене отмечалось положение комбайна в лаве по номеру секции механизированного комплекса и текущее время суток на начало выемки и его остановки. Таким образом, оценивалась добыча за каждый период непрерывной выемки и длительность простоев. Текущие значения метанообильности рассчитывались по данным автоматического контроля количества воздуха и концентрации метана на исходящей струе из лавы.

В результате обработки данных установлено, что циклическая динамика среднечасовой добычи за весь период наблюдений практически полностью совпадает с изменением среднечасовой метанообильности в течение суток (рис.1).

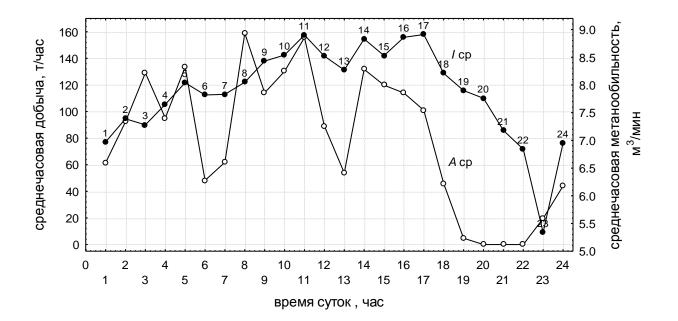


Рис. 1. Динамика изменения среднечасовой метанообильности и среднечасовой добычи в течение суток

Связь с достаточной надёжностью (коэффициент корреляции r = 0.59) можно представить линейной регрессией:

$$I_{cp} = 7,1146 + 0,0096 \cdot A_{cp}. \tag{1}$$

Коэффициенты уравнения регрессии значимы. Отклонения от линии регрессии за доверительный интервал, который на рис. 2 выделен пунктирными линиями, объясняются обычно влиянием многочисленных дополнительных факторов, например, шагов обрушения непосредственной, основной кровли, неравномерностью геологического строения угольного пласта и боковых пород [3,4].

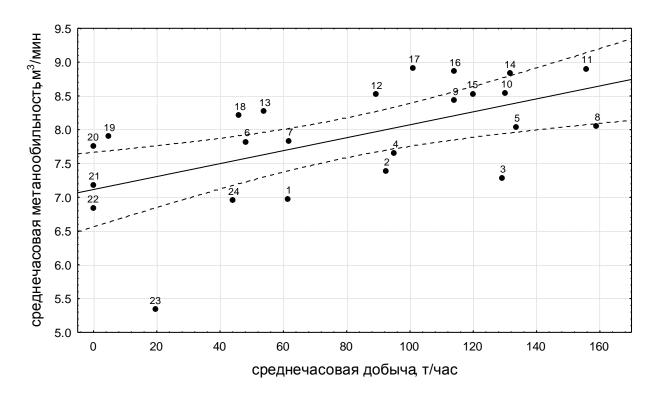


Рис. 2. Зависимость среднечасовой метанообильности от среднечасовой добычи в течение суток

Для установления причин отклонений был проведен корреляционный анализ показателей: $I_{\rm cp}$ — среднечасовой метанообильности , м³/мин.; σ_I — среднеквадратического отклонения $I_{\rm cp}$, м³/мин.; $A_{\rm cp}$ — среднечасовой добычи, т/час; σ_A среднеквадратического отклонения $A_{\rm cp}$. Приведенные коэффициенты в таблице 1 все значимы. В первую очередь следует отметить, что существует связь между нагрузкой и её среднеквадратическим отклонением, т.е. при увеличении нагрузки возможная величина её колебания тоже увеличивается. Вместе с тем, величина σ_A связана с σ_I линейной зависимостью (рис. 3):

$$\sigma_I = 1,6918 + 0,0038 \cdot \sigma_A \,. \tag{2}$$

Таблица 1 Коэффициенты корреляции

Показатель	A_{cp}	$I_{ m cp}$	$\sigma_{ m A}$	σ_I
A_{cp}	1,00	0,59	0,90	0,68
$I_{ m cp}$		1,00	0,45	0,61
σ_{A}			1,00	0,71
σ_I				1,00

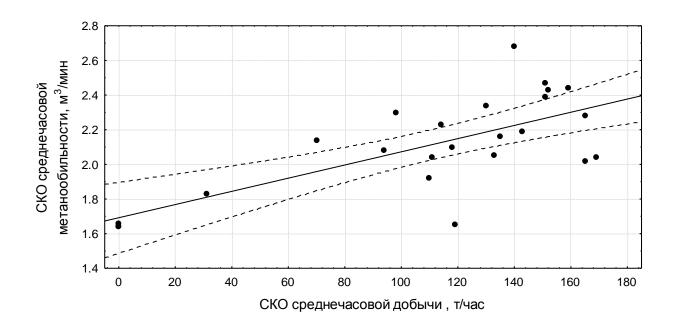


Рис. 3. Зависимость среднеквадратических отклонений (СКО) метанообильности и добычи

Обобщая полученные зависимости (1) и (2) можно сделать вывод о динамике метанообильности — метанообильность увеличивается вследствие увеличения нагрузки на механизированный комплекс. При этом возрастает и амплитуда колебания метанообильности вследствие роста амплитуды колебания нагрузки.

Интересен также тот факт, что на рис. 2 практически все точки подряд от №12 до №20, находящиеся выше доверительного интервала и имеющие завышенные значения метанообильности, получены усреднением часовых данных, зафиксированных в третью добычную и ремонтную смены. Эти смены характерны резким падением добычи (рис. 4). Точки, которые находятся ниже доверительного интервала, с номерами 23, 24, 1-4 и имеют заниженные значения, получены по данным, зарегистрированным

после сравнительно длительного технологического перерыва в ремонтную смену (рис. 4).

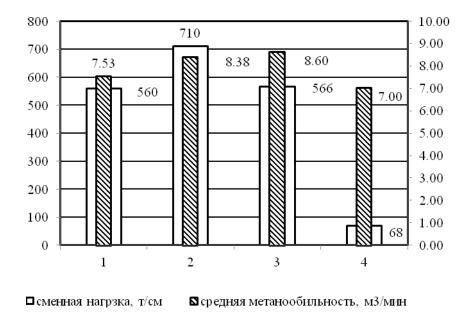


Рис. 4. Сравнение среднесменных значений добычи и метанообильности: 1, 2, 3 – добычные смены; 4 – ремонтная смена

Завышенные значения метанообильности объясняются инерционностью геомеханических процессов – сравнительно большая скорость выемки во вторую рабочую смену вызывает интенсивные опускания кровли, под воздействием которых уже в последующие две смены, несмотря на снижение добычи, продолжается повышенная деформация горного массива в зоне опорного давления и снижение газопроницаемости угольного пласта. В свою очередь заниженные значения метанообильности обусловлены снижением содержание метана в призабойной зоне угольного пласта вследствие естественной дегазации за время вынужденных простоев очистного оборудования.

ВЫВОДЫ

Таким образом, из приведенных результатов исследований следует, что возникновение экстремально высоких выделений метана наиболее вероятно в последние добычные смены, когда, как правило, нагрузка на механизированный комплекс достигает наибольших значений за текущие сутки.

На текущее значение метановыделения оказывает влияние не только нагрузка в данный момент, но и прошлые события: добыча за прошлые смены, простои очистного оборудования.

При построении математических моделей для описания динамики метановыделения с количественной оценкой влияющих технологических (управляющих) факторов необходимо учитывать текущее состояние и прошлые события, поэтому целесообразно применение методов теории временных рядов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Руководство по проектированию вентиляции угольных шахт: ДНАОТ 1.1.30-6.09.93. Офиц. изд. К.: Основа, 1994. 312 с. (Государственный нормативный акт по охране труда).
- 2. Лысенко В. Н. Влияние производственных процессов на стохастические характеристики системы проветривания добычного участка шахты / Лысенко В. Н., Тян Р. Б. // Известия вузов. Горный журнал. 1970. №3. С. 50-54.
- 3. Полевщиков Г. Я. Газокинетический паттерн разрабатываемого массива горных пород / Г. Я. Полевщиков, Е. Н. Козырева // Горный информационно-аналитический бюллетень. 2002. №11. С. 117-120.
- 4. Иотенко Б. Н. Прогноз метановыделения на выемочном участке при первичной посадке непосредсвенной и основной кровли / Б. Н. Иотенко // Способы и средства создания безопасных и здоровых условий труда в угольных шахтах: сб. науч. тр. / МакНИИ. Макеевка-МакНИИ, 2009. №1(23). С. 24-38.

Получено: 24.03.2014

Виконано аналіз мінливості середньогодинних значень метановості видобутку з урахуванням організації робіт в очисному вибої. Збільшення нерівномірності метановості очисного вибою обумовлене зростанням видобутку в поточний й минулий періоди часу.

Ключові слова: очисний вибій, зміна, метановість, видобуток, нерівномірність.

The analysis of value change of hourly mean methane-bearing capacity and production taking into account the mining organization in the mining face. It is shown that the increase of methane bearing capacity irregularity of a mining face is caused by production increase both in last and present time period.

Keywords: mining face, shift, methane bearing capacity, production, irregularity.