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Endpoints Issue in Time Series Adjusting
Methods based on the moving averages are largely used for times series filters construction . Yet, the times 

series endpoints are too sensitive to the type of the method used. A preferable method is supposed to be cho­
sen by a statistician according to his/her experience and competency The article aims to study the issue of 
choice of a method of time series decomposition by comparing the existing approaches The issue of endpoints 
adjusting by use of Henderson smoother is discussed, and a new smoothing based on Epanechnikov kernel is 
presented
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Time series analysis aims to reduce the effects of 
random variations in order to extract meaningful sta­
tistics from the data. Time series analysis takes into 
account the fact that data points taken over time may 
have an internal structure consisting of different sys­
tematic pattern components (trend, cycle and seaso­
nality, Han, Kamber, 2001) and of a random error 
component tha t should be accounted for The trend 
and the cyclical component, usually referred to as 
trend-cycle, are estimated jo in tly  To estimate a sea­
sonally-adjusted time series or one without seasona­
lity, the most common tool is moving averages

It is possible to build a symmetrical moving av­
erage series, with desirable characteristics in terms 
of trend saving, noise reduction, flexibility and/or 
non-phase effects tha t are well adapted to the goal of 
analysis . Different approaches can be used to estimate 
a trend-cycle component (Grun-Rehomme, Ladiray, 
1994; Gray, Thomson, 1996; Guggemos et al. , 2012) . 
However, with symmetrical moving averages, the 
treatm ent of the endpoints remains an issue. A mo­
ving average of 2p+1 order, for example, does not al­
low smoothing of the p  endpoints of the time series, 
or the p beginning points (although beginning points 
may be less important in a long data series because 
they are the oldest)

We can mention the following techniques which are 
currently used to smooth time series endpoints (Bian- 
concini, Quenneville, 2010; Proietti, Luati, 2008):

1. The symmetric and asymmetric filters asso­
ciated with the Henderson smoother. Following the 
tradition already established in the related literature, 
both symmetric and asymmetric filters are called Hen­
derson filters Henderson kernel filters of any length 
can be constructed, including infinite ones (Dagum, 
Bianconcini, 2006)

2. W ithin the family of Henderson filters, we 
can distinguish the asymmetric Henderson smooth­
ers developed by Musgrave (1964a and 1964b) . They 
are based on the minimization of the 15 mean squared 
revisions between the final estimates (obtained by

application of the symmetric filter) and the prelimi­
nary estimates (obtained by application of an asym­
metric filter) subject to the constraint tha t the sum 
of the weights is equal to one (Laniel, 1985; Doherty 
1992;Dagum , Bianconcini, 2006). The same tech­
nique can be applied to the starting observations of a 
time-series . This technique is implemented in X11, for 
example (Doherty, 2001; Ladiray, Quenneville, 2001; 
Quenneville et al. , 2003) . However, while the M us­
grave filter is optimal for revision (w ith knowledge of 
new data records) it does not use the Henderson opti­
mization criteria

3 . Time series forecasting by the ARIMA model 
followed by use of the symmetrical moving average, 
as performed by X11-ARIMA (Dagum, 1982) . The 
major innovation introduced by Dagum consists in 
extending the series with forecasts to lessen the use 
of X11’s asymmetric filters . For this purpose, she pro­
posed to measure the theoretical reduction in revi­
sions

This paper analyzes the adjusting of endpoints 
of time series following the Henderson technique 
and proposes a new smoothing technique to treat 
endpoints We use the same length for the asymmet­
ric moving averages to keep the same level of smoo­
thing This principle is based on the Loess estimator 
proposed by Cleveland (1979) and further developed 
by Cleveland and Devlin (1988), which is also known 
as locally-weighted polynomial regression However, 
the Loess estimator approach (w ithout moving ave­
rages) cannot be compared with the one proposed by 
Dagum and Bianconcini (2008; 2012), since they are 
completely different

R esearch issue
We consider a monthly seasonally-adjusted time 

series xt (the technique is similar for quarterly time se­
ries) which is additive and can be decomposed into a 
trend-cycle component (denoted by tct) and a random 
error component £t, called noise:

Xt = t C t + £ { . (1)
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The random error component in the decomposition 
model is often presented as white noise with variance aj .

The goal of this study is to estimate a globally 
smooth trend-cycle component tha t is assumed lo­
cally to follow a polynomial . There exist different ap­
proaches, such as local polynomial regression, gradu­
ation theory, and so on . Here we are interested in a 
kernel smoothing method (based on weighted moving 
averages) .

Let p  and f  be two non-negative integers. The 
value of the initial time series at time t  is replaced by 
a weighted average (w ith d coefficients) of p  “past” 
values of the series, the current value and f  “future” 
values of the series . The quantity p+ f+ 1  is called the 
moving average order. W hen p  is equal to f, the mo­
ving average is said to be centered. If, in addition, we 
have d = dt for every t, the centered moving average 
is said to be symmetric

The transformation of xt using moving averages 
MA can be w ritten as follows:

x*t = M A (x t) = ' £ u kxt+k. (2)

s ;°  =
i f  t = t.0 »
i f  t * t n

The application of moving averages of order 
p + f+ 1  and coefficients [QJ transforms it into the fol­
lowing time series:

_ \ ^ t 0- t  if t  =  to  ’

0 otherwise.
M A W ) -

It is easy to show tha t for a moving average MA 
to conserve a polynomial of a certain degree d, it is 
necessary and sufficient that the coefficients dt verify:

= 1 and V k e {1,2,....., 4  f / e ,  = 0 . (3)
~P ~P

The returned coefficients, when applied to data, 
perform a polynomial least-squares fit within the fil­
ter window The symmetrical moving averages have 
some good properties (w ithout phase shift), but they 
are not convenient for estimation of the time series 
endpoints

Henderson moving averages are mostly used for 
time series smoothing. An estimate tct of the trend- 
cycle must be a smooth curve . Let us denote the Dirac 
time series S‘° by:

It is sufficient to impose that the curve of the co­
efficients of moving averages is smooth The Dirac 
time series is a base of the set of time series, since all 
series xt can be w ritten as xt = ^^xto S ‘a. Henderson’s

t0s Z

initial requirement is that the filter should repro­
duce a cubic polynomial trend He suggested using,

i=+aO

as criterion of smoothness, the quantity: Z ( V 33 )2,
i = - o o

where V represents the first-order difference operator 
(VXt = X t -  X t1) . The lower this quantity, the more 
flexible are the transformed series The symmetric 
Henderson filter is an unbiased estimator for polyno­
mials of degree 3

Henderson’s weights (d )  are solutions of the fol­
lowing optimization problem:

Min
e

± ^ e , f l ± G , = l ,  £ t f , = 0 ,  2 ^ = 0  1.(4)
- p  - p  - p  - p  

As we are interested in monthly time series, we 
will consider a Henderson moving average of order
13 (p+f+1 = 13) with p varying from 6 (centered ave­
rage) to 12 (last known point) As we are interested 
only in the most recent values of the series, we assume 
tha t f  < p .

For asymmetric filters, we keep the same length 
of smoothing as for symmetric filters in order to main­
tain the same level of smoothness For moving ave­
rages H-6-6 to H-9-3 (Table 1), we can see tha t the 
coefficient of the current value is larger than the other

Table 1
Coefficients of the Henderson filter according to moving average order

t H-12-0 H-11-1 H-10-2 H-9-3 H-8-4 H-7-5 H-6-6

-12 0.08514

-11 0.14861 0.04644

-1 0 0.10217 0.07662 0.01625

-9 -0.05239 0.04257 0.02167 -0.00542

-8 -0.23577 -0.04912 0 -0.01625 -0 . 01858

-7 -0.34294 -0.14736 -0.03930 -0.02554 -0 . 03715 -0.02322

-6 -0.30007 -0.18933 -0.06877 -0.02292 -0.03406 -0.04102 -0.01935

-5 -0.10288 -0.13503 -0.06001 0 0 -0.02554 -0.02786

-4 0.17683 0.01072 -0 0.04501 0.05894 0.02947 -0

-3 0.41914 0.19647 0.10002 0.10502 0.12574 0.10806 0.06549

-2 0.51083(*) 0.34383 0.20630 0.16504 0.18004 0.18219 0.14736
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Table 1 continued

-1 0.40867 0.38313 0.27506 0.20630 0.19647 0.22220 0.21434

0 0.18266 0.29334 0. 27245 0.21285 0.20576 0.22505 0.24006

1 0.12771 0.19505 0.17879 0.15718 0.17683 0.21434

2 0. 08127 0 .11378 0.10217 0.10806 0.14736

3 0.04334 0.04954 0.04257 0.06549

4 0.01393 0.00232 0

5 -0.00697 -0.02786

6 -0.01935

! In this table, bold font indicates the highest value in each column (coefficients of moving average)

coefficients This corresponds to the idea that the 
current value “dominates” the estimated value of the 
trend at the current date

For the last three orders (i e from 10 to 12), the 
largest value of the coefficients remains around date 
t-2; this is not satisfactory because it indicates that 
the last observed values weigh less than those at t-2 
Such an observation was already formulated by Da­
gum and Bianconcini (2008; 2012) Also note that 
the Henderson moving average, which only keeps the 
straight lines, has the same disadvantage

A new approach
The kernel method is generally used to estimate 

the density of a probability distribution of a sample, 
taking into account the local character of this density 

Briefly, let x 1, . . . ,x n be a random sample drawn 
from an unknown continuous distribution with den­
sity function f. The kernel density estimator of f  is:

n /1 1 A
where K(. ) is a kernel, an integrated function, 

positive (bu t not necessary positive when we are fit­
ting a cubic polynomial locally) and X > 0 is a smoo­
thing parameter called the bandwidth . K  is a probabi­
lity density:

| a: = 1 with M ax^(jc) = ^ ( 0 )  .
R X

For example: K ( x )  =  I[_V2 1/2](X)

)̂ = 4V F(1“ T )7^ ^ (°-

The Epanechnikov kernel is defined as

* .(0  = | ( 1-* 2) W 0 .

Hereafter we use the term “Epanechnikov kernel” 
for K(t), because we are dealing with probability den­
sities

The kernel method can also be used to define 
the coefficients d of the moving averages, since we

can write в, = K (tU ) where X is the bandwidth

where I

1 X
is the indicator function, or K (x) = —̂ e x p ( ------)

л]2я 2
(Gaussian kernel) .

parameter chosen in order to ensure a filter length 
equal to p + f+ 1  . Intuitively, one wants to choose as 
small as the data allow; however, there is always a 
trade-off between the bias of the estimator and its 
variance

This moving average remains constant because
f  і

. For example, for X=l, we obtain 6t = -------- .
-p 2 p  +  l

Let us suppose that we wish to smooth a time se­
ries x , decomposed into a trend-cycle (noted tc ) and 
a residual component £ t (white noise):

x t =  tc t +  e t .

It can be noted that dg (weight of the current 
date for the smoothing) will be always larger than 
the weights attributed to the previous or later dates 
Moreover:

For a symmetric moving average of orderWe can show (Weyman, Wright, 1983) that in the 

class of even, positive kernels verifying J x 2K (x )d x  =  1 ,
R

the minimum of the Mean Integrated Square Error in an int erval \t P>p \ and 0 — ^  

(M ISE): MinJ £ [ / ( * ) - / „ ( * ) ]  dx is reached for

2p+1, it is necessary to choose Л = to remain with 
' УІ5

4 p  - 1
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• For asymmetric moving averages, with

0 < f < p, it is necessary to choose A ^  -^=, for example:

A = -Ц= and in this case 
V5

e,=- (1- ^ >

(P + /  + 1-
S2 , where S2 
. . 2 '

■b2
- p

The main advantage of this kernel approach is 
tha t the current value has a larger weight, while the 
weights of past and future values decrease as we move 
away from the present value This property also re­
mains valid for asymmetric moving averages

The largest weight at the current date permits to 
show the most recent variations (Table 2)

Table 2
Coefficients of moving averages according to  the Epanechnikov kernel

t N-12-0 N-11-1 N-10-2 N-9-3 N-8-4 N-7-5 N-6-6

-12 0

-11 0.018821 0

-1 0 0.036006 0.019700 0

-9 0.051555 0.037523 0.020879 0

-8 0.065466 0.053471 0.039560 0.022546 0

- 7 0.077741 0.067542 0.056044 0.042440 0.025084 0

-6 0.088380 0.079737 0. 070330 0.059681 0.046823 0.029412 0

-5 0.097381 0.090056 0. 082418 0.074271 0.065217 0.054299 0.038461

-4 0.104746 0.098499 0. 092308 0.086210 0.080267 0.074661 0.069930

-3 0.110475 0.105065 0.1 0.095490 0.091973 0.090498 0.094406

-2 0.114566 0.10975 0.105494 0.102122 0.100334 0.101810 0.111888

-1 0.117021 0.112570 0.108791 0.10610 0.105351 0.108597 0.122377

0 0.117840* 0.113508 0.109890 0.107427 0.107023 0.110859 0.125874

1 0.112570 0.108791 0.106100 0.105351 0.108597 0.122377

2 0.105494 0.102122 0.100334 0.101810 0.111888

3 0.095491 0.091973 0.090498 0.094406

4 0.080267 0.074661 0.069930

5 0.054299 0.038461

6 0

* In this table, bold font indicates the highest value in each column (coefficients of a moving average)

The noise is transformed by the moving average
into a sequence of random variables of constant vari- 

/
ance: a 2( ^ 0 t2). Reducing the irregular component, 

- p

and therefore its variance, amounts to reducing the 
f

quantity The output signal is assumed to be ‘as 
- p

close as possible’ to the input signal when noise com­

ponents are removed; that is why we will call this cri­
terion the ‘fidelity’ criterion For this moving average, 
we obtain around 90% noise reductions (variance) for 
each order Furthermore, it preserves constants, but 
not straight lines and parabolas

In this part, we look for the moving average with 
coefficient that is closest to the results of the kernel 
approach and which keeps parabolas
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Let xt be the coefficients of this kernel, with ^ xt =1.
- p

It is necessary to solve the following optimization problem:

f  f  f  f  
Min \ £ (6 t - x t )2/ ± 0 t =  1, £ t e t = 0, £ 126t = 0 I (5)

According to the Kuhn and Tucker conditions for ordinary convex programming (Rockafellar, 1970, sec­
tion 28), we obtain:

f  f  \

= A~l

-p
f X S 3 S 2'

л 2 Z *  x t , with A  = S i S 2 S i where:
-p

0 l S 2 S i S o )

S 0 ~ P  +  f  + 1 >

ь - Ь - Ь - Ь  = / ( / + 1 ) - ^ + 1 )  
- p  ї ї  2

^ = Ъ 1=Ъ 2 +Ъ2= ^ ± і& + і) + / ( / + іх 2/ + і)
- p  1 1 6

(6)

- p i i  4

s < = Ъ4=ЪА +Ъ4=р(р+1)(бр3+9р2+р -  + sv+w 3+ 9/ 2 + /  - 1)

1 1 30

and

(S0S2 -5 ,2) ( £ г 2хг) + ( З Д  - З Д Х І > г)
T _  _______________________ - p ________________________________________ - P

3 ~  d et( À )  ’

( З Д - S 0S}) ( £ t 2xt) + (S0S4 - S l ) f c t x t) 
- p  - p

a2 =
det(y4) (7)

( S . S , - S 22) f c t 2xt) + (S2S3- s & x f ' t x , )
2 ________________ - p__________________________ - p

^  det(^ ) '

Then 0 t =  Xt — "I" ^ 2  ̂ )'

W ith this moving average, the noise reduction is around 85% for each order, except for MM-12-0 (only 
50%) and MM-11-1 (73%) (Table 3) .
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Table 3
Coefficients of moving averages according to the Epanechnikov kernel fitting a parabola

t MM-12-0 MM-11-1 MM-10-2 MM-9-3 MM-8-4 MM-7-5 MM-6-6

- 12 0.120879

-11 0.032967 0.032967

-1 0 -0.032967 0.000000 -0.032967

-9 -0.076923 -0.021978 -0.021978 -0.076923

-8 -0.098901 -0.032967 -0.008991 -0.032967 -0.098901

-7 -0.098901 -0.032967 0.005994 0.005994 -0.032967 -0.098901

-6 -0.076923 -0.021978 0.022977 0.039960 0.022977 -0.021978 -0.07692

-5 -0.032967 0.000000 0.041958 0.068931 0.068931 0.041958 0.00000

-4 0.032967 0.032967 0. 062937 0.092907 0.104895 0.092907 0.06294

-3 0.120879 0.076923 0. 085914 0.111888 0.130869 0.130869 0.11189

-2 0.230769 0.131868 0.110889 0.125874 0.146853 0.155844 0.14685

-1 0.362637 0.197802 0.137862 0.134865 0.152847 0.166832 0.16783

0 0.516484* 0.274725 0.166833 0.138861 0.148851 0.167833 0.17483

1 0.362637 0.197802 0.137862 0.134865 0.152847 0.16783

2 0.230769 0.131868 0.110889 0.125874 0.14685

3 0.120879 0.076923 0.085914 0.11189

4 0.032967 0.032967 0.06294

5 -0 . 032967 0.00000

6 -0.07692

* In this table, bold font indicates the highest value in each column (coefficients of a moving average)

This approach preserves parabolas bu t has 
the same disadvantage as the H enderson moving 
average (the  greatest value of the coefficients does 
not correspond to  the current time). The constraints 
are too strong and as a result the coefficients do 
not depend on the reference moving average with 
respect to  which we minimize the distance .

W hen the points at both  ends of a tim e series 
have to  be estim ated w ith asymmetric moving 
averages, th is filter should be rather short and 
have a gain G(w) close to  one for small frequency 
ш (for example, between 0 and n/6) and near to 
zero for higher frequencies . The gain function G(u) 
describes how much the am plitude of the time 
series com ponents is changed by the filtering. In 
the annex we present the gain function for some 
asymmetric moving averages (Table 2 and 3); it has 
the same form for the other asymmetric filters We 
have two groups: from 6-6 to 9-3 and from 10-2 to 
12-0. In each group, we obtain roughly the same 
curve shape . It is apparent th a t the asymmetric filter 
does not amplify the signal and converges faster to 
the final one There exists a trade-off between the 
am plitude and phase shift effects induced by an 
asymmetric filter

Conclusions
For the kernel approaches, two elements remain 

constant:
-  In the method which keeps the parabolas, a shift 

takes place between asymmetric moving averages of 
order 9-3 and those of order 10-2, when we move from 
a concave curve to a convex curve. A concave curve 
attributes a dominant weight coefficient to the current 
value that seems to be reasonable A convex curve 
attributes the largest weight to the last observed value, 
which is less reasonable

-  W ith the kernel method which keeps only 
constants, the largest weight is always the weight of 
the current value and the weights decrease as we move 
away from the current value This suggests that for the 
last values, it may be better to take moving averages 
which keep only constants (even the straight lines); 
otherwise the last observed values are over-weighted 
and strongly influence the trend This is in contrast to 
the definition of a trend, which describes the long-term 
evolution of the series and must be relatively robust

There are many methods for time series 
decomposition The statistician-economist must 
choose the one that seems to be the best smoothing 
technique according to his/her experience . The present 
paper contributes to the choice issue by examining the 
properties of different moving average methods
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