, , , 2012, 4(24) ISSN 2073-7394

004.272.3

,

(),

: , ,

·

, ·

 $\begin{array}{c} m\nu \\ = \frac{m\nu}{\mu} & \underbrace{a_{1,0}} & \underbrace{\frac{(m-1)\nu}{2\mu}} & \underbrace{a_{1,1}} & \underbrace{\frac{(m-2)\nu}{3\mu}} & \underbrace{a_{1,1}} & \underbrace{a_{1,$

). ·

 $F(t) = 1 - e^{-\mu t},$

_ μ- (

. a_0- , ;

 a_1 , ; ; $a_i - i$, (i = 1,

 $a_i - i$, $(i = 1, 2, \dots m);$

 a_m-m , ; $a_{m+j}-m$, j $(j=1,\ 2,\ \dots\ R), \qquad R-$

« – » :

, $\begin{array}{c} (1) \\ \lambda p_0 = \mu p_1 \end{array}$

 $- \qquad \qquad \lambda p_0 + 2\mu p_2 = \mu p_1 + \lambda p_1$

, 2012, 4(24) ISSN 2073-7394

$$\lambda p_{i-1} + (i+1)\mu p_{i+1} = i\mu p_i + \lambda p_i$$
 (1)

 $\lambda p_{m-1} + m\mu p_{m+1} = m\mu p_m + \lambda p_m$

 $\lambda p_{m+R-1} = m \mu p_{m+R} \; .$

(1)

$$\sum_{i=0}^{m+R} p_i = 1. {2}$$

 $p_1 = \frac{\lambda}{\mu} p_0.$

$$p_{2} = \frac{\lambda + \mu}{2\mu} p_{1} - \frac{\lambda}{2\mu} p_{0} =$$

$$= \left(\frac{\lambda + \mu}{2\mu} \cdot \frac{\lambda}{\mu} - \frac{\lambda}{2\mu}\right) p_{0} =$$

$$= \frac{\lambda^{2}}{2\mu^{2}} \cdot p_{0}.$$

$$\vdots$$
(3)

 $p_i = \frac{\lambda^i}{i!u^i} p_0, i = 2, 3, ..., m.$

$$p_{m+j} = \frac{\lambda^{m+j}}{m^j \cdot m! u^{m+j}} p_0, \quad j = 1, 2, ..., R.$$

$$p_{0} \cdot \left(\sum_{i=0}^{m} \frac{\lambda^{i}}{i! \mu^{i}} + \sum_{j=1}^{R} \frac{\lambda^{m+j}}{m^{j} \cdot m! \cdot \mu^{m+j}} \right) = 1$$

$$p_{0} = \frac{1}{\sum_{i=0}^{m} \lambda^{i}} \frac{R}{\lambda^{m+j}} \lambda^{m+j}. \tag{4}$$

 $p_0 = \frac{1}{\sum_{i=0}^{m} \frac{\lambda^i}{i! u^i} + \sum_{i=0}^{R} \frac{\lambda^{m+j}}{m^j \cdot m! \cdot u^{m+j}}}.$

 $p_{i} = \frac{\frac{\lambda^{i}}{i! \cdot \mu^{i}}}{\sum_{i=0}^{m} \frac{\lambda^{i}}{i! \mu^{i}} + \sum_{j=1}^{R} \frac{\lambda^{m+j}}{m^{j} \cdot m! \cdot \mu^{m+j}}} \cdot , i = 1, 2, ..., m \cdot (5)$

$$p_{m+j} = \frac{\frac{\lambda^{m+j}}{m^{j} \cdot m! \cdot \mu^{m+j}}}{\sum_{i=0}^{m} \frac{\lambda^{i}}{i! \mu^{i}} + \sum_{j=1}^{R} \frac{\lambda^{m+j}}{m^{j} \cdot m! \cdot \mu^{m+j}}}, \quad j = 1, 2, ..., R. \quad (6)$$

[3],

1)

2)

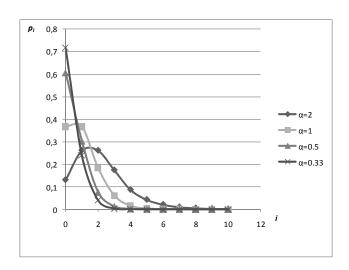
 p_0 ;

 $L = \sum_{i=m+1}^{R} p_i .$ 3)

. 2.

$$p_i = f(\alpha, i), \ \alpha = \frac{\lambda}{\mu}; \ i = 0, 1, ..., 10;$$

: $m = 4, R = 6.$



. 2. , i

1.

p_i	2	1	0,5	0,33
0	0,1306	0,3673	0,6065	0,7165
1	0,2612	0,3673	0,3032	0,2388
2	0,2612	0,1836	0,0758	0,0398
3	0,1741	0,0612	0,0126	0,0034
4	0,0870	0,0153	0,0015	0,00037
5	0,043	0,0038	0,0002	0
6	0,021	0,00095	0,000025	0
7	0,010	0,00024	0	0
8	0,0054	0,00006	0	0
9	0,0027	0,000015	0	0

, , , 2012, 4(24) ISSN 2073-7394

10 0,0013	0	0	0
-----------	---	---	---

,

(

,

 $\begin{aligned} k_i &\leq 1 \ (i=1,\ 2,\ ...,\ m). \\ k_i &: \\ \lambda p_0 - \mu p_1 &= 0 \\ \lambda p_0 + 2\mu p_2 - (\mu + k_1) \, p_1 &= 0 \\ &\dots \\ k_{i-1} \lambda p_{i-1} + (i+1)\mu p_{i+1} - (i\mu + k_1 \lambda) \, p_i &= 0 \,, \end{aligned} \tag{8}$

 $\lambda p_{j-2} + m\mu p_j - (\lambda + m\mu) p_{i-1} = 0, \ j = m+1, ..., \ m+r.$

i = 1, 2, ..., m

 $p_{1} = \frac{\lambda}{\mu} p_{0},$ $p_{2} = \frac{\lambda^{2}}{\mu^{2}} \cdot k_{1} \cdot p_{0},$ $p_{i} = \frac{\lambda^{i}}{\mu^{i}} \prod_{s=1}^{i-1} k_{i} \cdot p_{0}, i = 1, 2, ..., m, \qquad (9)$ $p_{m+i} = \frac{\lambda^{m+i}}{\mu^{m+i}} \cdot \frac{\prod_{s=1}^{m-1}}{m^{i} \cdot m!} p_{0}, i = 1, 2, ..., R.$

$$\sum_{i=0}^{m+R} p_i = 1$$

$$p_0 = \left(1 + \sum_{i=1}^{m} \frac{\lambda^i}{\mu^i} \prod_{s=1}^{i-1} k_i + \sum_{i=1}^{R} \frac{\lambda^{m+i}}{\mu^{m+i}} \cdot \frac{\prod_{s=1}^{i-1}}{m^i \cdot m!}\right)^{-1}.$$
 (10)

m = 4, R = 6,

 $k_i = k = 0,5, 0,25, 0,33$,

 $\alpha = \frac{\lambda}{\mu} = 2, 1, 0, 5, 0, 33, 0, 25$

k = 0,5

2

3

p_i	2	1	0,5	0,33	0,25
0	0,225	0,4352	0,6371	0,7338	0,7897
1	0,450	0,4352	0,3189	0,2446	0,1974
2	0,225	0,1088	0,0398	0,0204	0,0123
3	0,075	0,0181	0,00332	0,0011	0,00051
4	0,0187	0,0022	0,00021	0,000047	0,000016
5	0,009375	0,0005	0,000026	0,000004	0,000001
6	0,004688	0,0001	0,000003	0	0
7	0,002344	0,000035	0	0	0
8	0,001172	0,000009	0	0	0
9	0,000586	0,000002	0	0	0
10	0,000293	0,000001	0	0	0

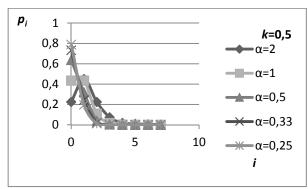
k = 0,33

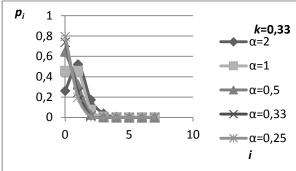
				*	
p_i	2	1	0,5	0,33	0,25
0	0,2608	0,4577	0,6478	0,7394	0,7933
1	0,5217	0,4577	0,3239	0,2465	0,1983
2	0,1721	0,0755	0,02672	0,01356	0,0082
3	0,0379	0,0083	0,00147	0,00049	0,00023
4	0,00625	0,00068	0,00006	0,000014	0,000005
5	0,00312	0,00017	0,000008	0,000001	0
6	0,00156	0,00004	0,000001	0	0
7	0,00078	0,00001	0	0	0
8	0,00039	0,000003	0	0	0
9	0,00019	0,00001	0	0	0
10	0,000098	0	0	0	0

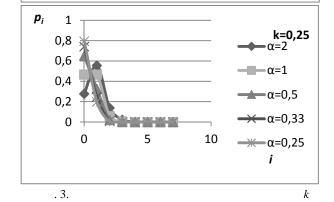
k = 0.25

		k = 0,25				
p_i	2	1	0,5	0,33	0,25	
0	0,2781	0,4681	0,6525	0,7421	0,7949	
1	0,5560	0,4681	0,3262	0,2473	0,1987	
2	0,1390	0,0585	0,0204	0,0103	0,0062	
3	0,0232	0,0049	0,00085	0,00028	0,00013	
4	0,0029	0,0003	0,000027	0,000006	0,000002	
5	0,00145	0,000076	0,000003	0	0	
6	0,00072	0,000019	0	0	0	
7	0,00036	0,000005	0	0	0	
8	0,000186	0,000001	0	0	0	
9	0,000091	0	0	0	0	
10	0,000045	0	0	0	0	

, ', 2012, 4(24) ISSN 2073-7394







.

,

, ;

· •

07.11.2012

MATHEMATICAL MODELS LOAD KERNELS MULTI-CORE MICROPROCESSORS

V. . Yaskevych

The probabilistic model of functioning of multi-core microprocessors is offered on the basis of the use theory of queuing systems, allowing to define basic numerical descriptions of the system.

 $\textbf{Keywords:} \ \textit{multi-core microprocessor, parallelism, digital signal processing, queuing system.}$