, , , 2012, 4(24) ISSN 2073-7394

621.396.1 2 $R^{(1)}$. [1, .14], [3, C. 202, $R^{(2)}$. . 26, 27] H, L $R^{(2)} >> /2T,$ $0,17^{\circ}$) $_{H}=k_{H}$, $_{L}=k_{L}$, [2]. k_H , k_L – $R^{(2)}$. «Skylab», « », [4]. [3] $S = 4 \qquad H \qquad L$ [4, C. 199] (1) $_H$, $_L$ - $R^{(2)}$.

11

n

[4].

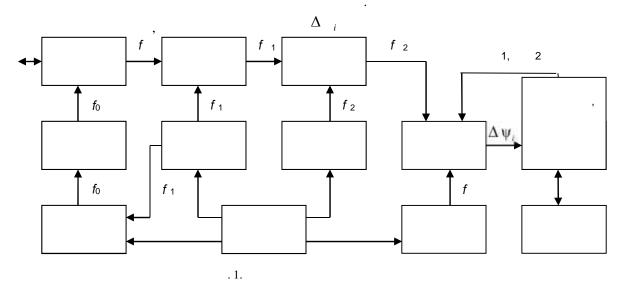
```
[5].
                                                                  ( ).
                                                                                                 3 ... 6
                       2 .
n \to \infty
                                                                                                                            7
                           n
                                                   R^{(2)}
                                                                             8
                                                                        1.
                                                                                                                           R^{(1)},
                                                                  R^{(2)}
R^{(1)}, R^{(2)}
                                                          [7]
                                         [6].
        R, R^{(1)}, R^{(2)}
                                                                                        R
                                                                                                   [12-14],
                                                                              R^{(1)}, R^{(2)}.
R^{(1)}. R^{(2)}
                                                                  R^{(1)}, R^{(2)}
           R .
                            [8]
                                                      R^{(1)}
                                                                                       ( B > 1,25...1,3)
R^{(2)},
                                                                                       ( ).
                                                R^{(1)} R^{(2)}
                                                                               : RIAS ( , 1994 .),
( ,2002 .), GRAVES
2005 .), - ( , 2006 .),
AN/TPY-2 (C , 2006-09 .) [15],
               R^{(1)} R^{(2)}
                                                                                                          ( , 2009 .),
                                                         [9].
                                           R^{(1)} R^{(2)}
                                                                  [16].
                       [10].
                                             R^{(2)}.
                                            R^{(1)} R^{(2)}
               [11].
                                                                                                                               ).
                      R^{(1)}, R^{(2)}
                                                                                         R^{(1)}, R^{(2)}
                                                                           _{i} (i=\overline{1,N}) , N-
```

, 2012,

4(24)

ISSN 2073-7394

, 2012, 4(24) ISSN 2073-7394


() $\Delta \times i$ -

() $\Delta \mathbb{E}_{-i}$ f_{-2}

1 [17].

 $_{2},$ - $_{i}$, $_{\Delta t_{i}}$ -

1 Δt_i

 $R^{(1)}, R^{(2)},$ $R^{(1)}, R^{(2)},$ $R^{(1)}, R^{(2)}$ $R^{(2)}$ $\begin{array}{ccc}
N \\
R^{(1)} & R^{(2)}
\end{array}$ [11]

 $R^{(1)}, R^{(2)}$ $\int_{1}^{2} = \left(\frac{1}{2}\right)^{2} \frac{12L}{N(N-1)^{2} q_{0}^{2} T^{2}},$ N

 $\Delta \Psi = \{ \Delta_{i} \}_{1}^{N}. \qquad \qquad {}_{2}^{2} = \left(\frac{1}{2} \right)^{2} \frac{180L}{N(N-1)^{4} q_{0}^{2} T^{4}}, \qquad (4)$ $- \qquad \qquad q_{0}^{2} - \qquad \qquad / \qquad \qquad ,$ $R^{(1)} \qquad T_{C} \qquad - \qquad \qquad , \qquad L \qquad - \qquad .$

 $(R_m^{(1)}, R_n^{(2)}), m, n - R^{(2)}, R^{(2)}$

 $R^{(1)}, R^{(2)}$ 3,75 1,25 , ', 2012, 4(24) ISSN 2073-7394

4. [13, C.168]. T = (N-1)T[18, .283, (5.4.36)]. $q_1^2 \approx -60$ [18], ... 10^{-6} - 10^{-7} [20]. $_{1}^{2}\cong10^{-6}$ ². $= \sum_{i=1}^{3} (\Delta_{i} / 3)^{2} + \Delta_{i}^{2} / 12,$ 2 $f_2 = 5 \cdot 10^{-8}$ [19, .132]. $\{\Delta_j, j=1...3\}$ $\Delta f_2 = f_2 \cdot f_2 = \pm 0.8$. n = 9 - 1 . . = =360°/ $(2^n - 1) \approx 0.7$ °. [17]. $\Delta (t) = \Phi_{\rm M} \cos(2 t/T + \zeta),$ $_{1} = 5,00847[$. $.^{2}] = 7,5722 \times 10^{-4}[$ $^{2}].$ 2 $T \approx 5$ [16]. 2 $_{1} \cong 2$ 2 $_{1} = 1,51543 \times 10^{-3}[$ $^{2}].$ T_{H} () [20, I_{Ci} I_{Si} $\mathbb{E}_{i} = \operatorname{arctg}(I_{Si}/I_{Ci}).$.152] $\Delta = {}^{3} \Delta f_{2} \Delta t_{i} \left(/T \right)^{2}. \tag{8}$ $_{2}^{2}$ $_{2} \approx 2$ $_{1}^{2} = 1.5 \times 10^{-4} [$ $_{2}^{2}],$ $\Delta R^{(1)} = (/2)\Delta_2/$ $\Delta R^{(2)} = (2 /)\Delta _2 / ^2$ (9) j = 1 j = 2 j (j=1 - 1), (9)

4(24) , 2012, ISSN 2073-7394

$$A_{M0} = 2 \left(t_0 + \Delta t_0 / 2 \right) / T + \zeta_M,$$

$$\Delta t_0 \qquad \Delta t_i \qquad i = 0.$$

$$\Delta R^{(1)} = \left(/2 \right) \Delta_{2} \sin_{0} / ,$$

$$\Delta R^{(2)} = \left(2 / \right)_{2} s_{0} / ^{2}. \quad (10)$$

$$R^{(1)} R^{(2)} \qquad A_{M0} \qquad .$$

$$[0, 2], \qquad m_{1M} m_{2M}$$

$$m_{1M} = M \left\{ \Delta R_{PACC}^{(1)} \left(A_{M0} \right) \right\} = 0$$

$$\left(/ 2 \right) \Delta_{M0} / T = 0 \quad \text{for } \Delta t T / T^{2} \quad (11)$$

$$= (/^{2})\Delta _{2}/T_{H} = f_{2}\Delta t_{i}T_{H}/T^{2} , (11)$$

$$m_{2M} = M \left\{ \Delta R_{PACC}^{(2)}(_{AM0}) \right\} =$$

$$= (4 /^{2})\Delta _{2}/T^{2} = 4 f_{2}\Delta t_{i}/T^{2} . (12)$$
5. ,

[14]. $\Delta R^{(1)}$

V [14, . 337].

 $\Lambda \hat{R}^{(n)}$ $R_0^{(n)} = R^{(n)}(t_0), \quad n = 1, 2,$ $m_1 \approx - R_0^{(1)} \Delta_r \mu \sin_V$

$$m_1 \approx - R_0 \Delta_r \mu \sin_V,$$
 $m_2 \approx - R_0^{(2)} \Delta_r \mu \sin_V,$ (13)
 Δ_r, V^-

$$R^{(1)}$$
 $R^{(2)}$ 3 / 0,3 / 2

 $\Delta R^{(1)}$, (13)

 $K_{\text{HKP}} = [0,07;1].$

 $R^{(1)}$, $R^{(2)}$

$$R^{(1)}, R^{(2)}$$
 $\begin{array}{ccc} 2 & 2 \\ \Sigma 1 & \Sigma 1 \end{array}$ (6)

$$= (/^{2})\Delta \frac{1}{2} - (-1)^{2}\Delta \frac{1}{2} - (-1$$

[21, C.123].

$$\Delta_{1} \quad \Delta_{2}$$

$$\Delta_{1} = |m_{1M}| + |m_{1}| \approx$$

$$\approx |(/^{2})\Delta_{2}/| +$$

$$+ |K \quad R_{0}^{(1)}\Delta_{r}\mu \quad \sin_{V}|, \qquad (15)$$

$$\Delta_{2} = |m_{2M}| + |m_{2}| \approx$$

$$\approx |(4 / ^{2})\Delta_{2}/^{2}| +$$

$$+ |R_{0}^{(2)}\Delta_{r}\mu \quad \sin_{V}|. \qquad (15)$$

$$R^{(1)} \cdot R^{(2)}$$

$$\mu = (\Delta R^{(1)}) / (R^{(1)}) (\Delta_{r}), \qquad (4.3.8)]$$

$$\approx 10^{-3} / r.$$

$$\Delta_{r} \in [0,3;2]$$

$$\mu \approx 0.5 (R^{(1)}) \approx 10^{4} / . \qquad (14)...(16)$$

[23].

15

, , , 2012, 4(24) ISSN 2073-7394

(14)...(16)
$$q_0^2 = 100$$
, $q_0^2 = 100$, $q_0^2 =$

$$R = 330$$
 ; $T_0 = 2.62$; $n_{\min} = 10$; $n_{\max} = 22$. () $R^{(2)}$
. 1 † $\hat{R}^{(2)} = 0.8$ / 2. † $R_C^{(2)} = 0.5$ [5, C. 308, (4.68)]

,
$$\uparrow_{R_c^{(2)}} = \frac{12\sqrt{5} \uparrow_R}{T_0^2 \sqrt{n(n^2 - 1)(n^2 - 4)}}$$
 (18)

$$P = \sigma_{\hat{\theta}^{(1)}}^2 / \left[\sigma_{\hat{\theta}^{(1)}}^2 \right]_{R^{(2)}} \approx \sigma_{\hat{R}_C^{(2)}}^2 / \sigma_{\hat{R}^{(2)}}^2 , \qquad (17)$$

$$B = \frac{1 + 12c/(n^2 - 1)}{\sqrt{1 + 6c(5n - 1)/(n + 1)(2n - 1)(n - 1) + 72c^2/(n + 1)(2n - 1)(n - 1)^2}},$$
(19)

$$c = P \cdot \sigma_y^2 / \left(T_0^2 \sigma_{y(1)}^2 \right) = P \cdot n \cdot \left(n^2 - 1 \right) / \left(12 T_0^2 \right).$$
(17)...(19),

 $B_{n=10} \ge 1,82$; $B_{n=22} \ge 1,56$.

 $R^{(1)} = R^{(2)}$

Δ_1 , /*	$\frac{\Sigma^2}{\Delta_2}, /^2$	$K_{\text{HKP}} = 1$ $R^{(1)}, /$						
1, /	2, / 2							
V ,	$R^{(2)}, /^2$	180		500		1435		
		0,1179* 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	
0	40 120	0,0047	0,0306 0,0306	0,0047 0,0047	0,0306 0,0306	0,0047	0,0306 0,0306	
		0,1180 0,0676	0,7439 0,4260	0,1180 0,0676	0,7439 0,4260	0,1180 0,0676	0,7439 0,4260	
		0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	
	40	0,3647 0,3647	0,1106 0,1106	1,0047 1,0047	0,1106 0,1106	2,8747 2,8747	0,1106 0,1106	
		0,3833 0,3709	0,7514 0,4391	1,0116 1,0070	0,7514 0,4391	2,8771 2,8755	0,7514 0,4391	
$\frac{}{2}$		0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	
_		0,3647	0,2706	1,0047	0,2706	2,8747	0,2706	

, , 2012, ISSN 2073-7394 4(24)

120	0,3647	0,2706	1,0047	0,2706	2,8747	0,2706
	0,3833	0,7909	1,0116	0,7909	2,8771	0,7909
	0,3709	0,5037	1,0070	0,5037	2,8755	0,5037

1 2: $R^{(1)}$ $R^{(2)}$.

2 $R^{(1)} R^{(2)}$

		(I						
		$K_{\text{HKP}} = 0.1$						
		$R^{(1)}$, /						
$_{V}$,	$R^{(2)}, /^2$	180		500		1435		
		0,1179* 0.0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	
0	40 120	0,0047 0,0047	0,0306 0,0306	0,0047 0,0047	0,0306 0,0306	0,0047 0,0047	0,0306 0,0306	
		0,1180 0,0676	0,7439 0,4260	0,1180 0,0676	0,7439 0,4260	0,1180 0,0676	0,7439 0,4260	
		0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	
	40	0,0407 0,0407	0,0386 0,0386	0,1047 0,1047	0,0386 0,0386	0,2917 0,2917	0,0386 0,0386	
		0,1247 0,0787	0,7442 0,4267	0,1577 0,1245	0,7442 0,4267	0,3146 0,2994	0,7442 0,4267	
2		0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	0,1179 0,0674	0,7432 0,4249	
	120	0,0407 0,0407	0,0546 0,0546	0,1047 0,1047	0,0546 0,0546	0,2917 0,2917	0,0546 0,0546	
		0,1247 0,0787	0,7452 0,4284	0,1577 0,1245	0,7452 0,4284	0,3146 0,2994	0,7452 0,4284	

1. . .

. – .: , 1967. – 256 2.

// 3. , 1998, 7, . 10 – 15.

. – .: , 1961. – 319 .

4. , 1985. – 216 . 5.

. – .: , 1967. –

400 .

, 2012, 4(24) ISSN 2073-7394

- 6. Kibbler, G.O.T.H. A Radar Pulse Train Optimum Processor for Accelerating Targets.-Trans. IEEE, v.AES - 3, pp. 808 – 818, September, 1967.
- 7. Kelly E.J. The Radar Measurement of Range, Velocity and Acceleration. - IEE Trans, v.MIL, pp. 51-57, April,1961.
- range acceleration // IEEE Trans., v.AES 7, 4. -pp. 711 -716, 1971.
- with coherent pulse trains // IEEE Trans., v. AES 7, 4. pp. *630 – 636, 1971.*

10.

2-

− 150. 12.

», 1998. – 826 13.

1976. – 455. 14.

8. Rihaczek A. W. Radar performance on Targets with 608 9. Mitchell R.L. Resolution in Doppler and acceleration

// C.

2. - 2005. - .147

-1969.-704

15. http://www.raytheon.com

16. http://www.rti - mints.ru/prls.htm

. – 1983. – 444. 18.

– 1991. –

19.

1. - 1984. - 23220.

1966. – . 54. – 2. – . 150 – 157.

21. 2002. - 469.

22. . – 1982. – 624 . 23.

// . – 2013.

10.11.2012

. 2. (

EVALUATION OF MEASUREMENT ACCURACY IN DOPPLER AND RANGE ACCELERATION FOR RADAR COHERENT PROCESSING SYSTEM

F.M. Andreev, A.V. Statkus

The analytical model for estimates of mean squared error in Doppler and range acceleration of ballistic and space targets supplied with pulse train coherent processing are proposed. It should be used in the decision making on inclusion the pulse train coherent processing system into the radar.

Keywords: early warning radar, coherent processing system, estimation errors, Doppler, range acceleration.