621.396.1

1, . . 2 . .

1 . . . 2 »,

:

()

 $R^{(1)}$. [1, .14],

 $R^{(2)}$.

 $R^{(1)}$ $R^{(2)} >> /2T$,

, *T* – [2].

«

,

 $R^{(2)}$. $R^{(1)}$, ,

«Skylab», « », (. .). - »

()

() .

[3] $S = 4 \qquad H \qquad L$

(1) () $_H$, $_L$ –

[4].

,

^(1)

11

 \hat{R} , ^, (() **^**(1) $\hat{R}^{\scriptscriptstyle(1)}$, ^(1)) [3, C. 202,

. 26, 27] ^ $_{H}$, $_{L}$

۰ (0,17°) $_{H}=k_{H}$, $_{L}=k_{L}$, (2)

 k_{H}, k_{L} –

[4].) (.

[4, C. 199] **^**(1)

 $R^{(2)}$.

n

7 п $R^{(2)}$ 8 1. $R^{(1)}$, $R^{(2)}$ $R^{(1)}, R^{(2)}$ [7] [6]. $R, R^{(1)} = R^{(2)}$ R [12-14], $R^{(1)}, R^{(2)}.$ $R^{(1)}$. $R^{(2)}$ $R^{(1)}, R^{(2)}$ *R* . [8] В $R^{(1)}$ (B > 1, 25...1, 3) $R^{(2)}$, (). $R^{(1)} R^{(2)}$: RIAS (, 1994 .), (,2002 .), GRAVES 2005 .), - (, 2006 .), AN/TPY-2 (C , 2006-09 .) [15], ($R^{(1)}$ $R^{(2)}$ -(, 2009 .), [9]. $R^{(1)} R^{(2)}$ () [16]. 2. [10]. $R^{(2)}$. $R^{(1)}$ $R^{(2)}$ [11].). ($R^{(1)}, R^{(2)}$: , . 1. $R^{(1)}, R^{(2)}$ 1 2 $_i (i = \overline{1, N})$, N -

 $[5]. , (). 3 \dots 6$ $n \to \infty \qquad 2 \qquad .$

12

[17].

2

1

 $_{2},$ - , , , , , Δt_{i} -

1,

,

4.

$$f$$

$$f$$

$$(13. C.168), T = (N-1)T$$

$$\frac{2}{(-1)}$$

$$\frac{1}{(-1)}$$

$$\frac{1}$$

•

)

6.

$$_{AM0} = 2 \left(t_0 + \Delta t_0 / 2 \right) / T + <_M,$$

$$\Delta t_0 \qquad \Delta t_i \qquad i = 0.$$

$$\Delta R^{(1)} = (/2) \Delta_{2} \sin_{0} / ,$$

$$\Delta R^{(2)} = (2 /)_{2} s_{0} / ^{2} . (10)$$

$$R^{(1)} R^{(2)} AM0 .$$

$$[0, 2], \qquad m_{1M} \qquad m_{2M}$$

$$(10) \qquad m_{1M} = M \left\{ \Delta R_{PACC}^{(1)} \left(AM0 \right) \right\} =$$

$$= \left(/ ^{2} \Delta _{2} / T_{H} = f_{2} \Delta t_{i} T_{H} / T^{2} , (11)$$

$$m_{2M} = M \left\{ \Delta R_{PACC}^{(2)} \left(AM0 \right) \right\} =$$

$$= \left(4 / ^{2} \Delta _{2} / T^{2} = 4 \qquad f_{2} \Delta t_{i} / T^{2} . (12)$$
5. ,

V [14, . 337].

 $\Delta \hat{R}^{(n)}$

 $m_1 \approx - R_0^{(1)} \Delta_r \mu \sin_V,$

 Δ_r, v^-

 $m_2 \approx - R_0^{(2)} \Delta_r \mu \sin_V ,$ (13)

 $R_0^{(n)} = R^{(n)}(t_0), \quad n = 1, 2,$

 t_0

[14].

$$R^{(1)}$$
 $R^{(2)}$ 3 / 0,3 / 2

()

$$\Delta R^{(1)}$$
 , (13)
 $K_{\rm HKP} = [0,07;1].$

$$R^{(1)}, R^{(2)}$$
 .
 $R^{(1)}, R^{(2)}$ $\begin{array}{c} 2 & 2 \\ \Sigma_1 & \Sigma_1 \\ (4) \end{array}$ (6)

$${}^{2}{}_{1} = \left(\frac{1}{2}\right)^{2} \frac{12}{(N-1)^{2} T^{2}} \left[\frac{L}{Nq_{0}^{2}} + {}^{2}{}_{j}\right],$$

$${}^{2}{}_{2} = \left(\frac{1}{2}\right)^{2} \frac{180}{(N-1)^{4} T^{4}} \left[\frac{L}{Nq_{0}^{2}} + {}^{2}{}_{j}\right]. (14)$$
,

[21, C.123].

$$R^{(1)}$$
, $R^{(2)}$

$$\Delta_{1} \quad \Delta_{2}$$

$$\Delta_{1} = |m_{1M}| + |m_{1}| \approx$$

$$\approx |(/^{2})\Delta_{2}/| +$$

$$+ |K \quad R_{0}^{(1)}\Delta_{r}\mu \quad \sin_{V}|, \quad (15)$$

$$\Delta_{2} = |m_{2M}| + |m_{2}| \approx$$

$$\approx |(4/^{2})\Delta_{2}/^{2}| +$$

$$+ | \quad R_{0}^{(2)}\Delta_{r}\mu \quad \sin_{V}|.$$

$$(15)$$

$$R^{(1)}, R^{(2)}$$

$$\mu = (\Delta R^{(1)}) / (R^{(1)}) (\Delta_{r}) ,$$

$$\approx 10^{-3} / r.$$

$$\Delta_{r} \in [0,3; 2]$$

$$\mu \approx 0,5 (R^{(1)}) \approx 10^{4} / .$$

$$(4.3.8)]$$

$$V_{1} = \sqrt{\frac{2}{\Sigma_{1}} + \Delta_{1}^{2}} , V_{2} = \sqrt{\frac{2}{\Sigma_{2}} + \Delta_{2}^{2}} , (16)$$

$$(14) ... (16)$$

$$(12) ... (14) ... (16)$$

$$(12) ... (14) ... (16)$$

$$(12) ... (14) ... (16)$$

 $\Delta R^{(1)}$

$$\begin{pmatrix} (&), \\ (14)...(16) & q_0^2 = 100, \\ 2 & K_{HKP} = 1 & K_{HKP} = 0,1 \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 8 = 330 & ; & T_0 = 2,62 & ; & n_{min} = 10; & n_{max} = 22. \\ & & & & & & \\ 1 & & & \dagger_{\hat{R}^{(2)}} & 0,8 & / {}^2. & & \\ & & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 8 = 330 & ; & T_0 = 2,62 & ; & n_{min} = 10; & n_{max} = 22. \\ & & & & & & \\ 1 & & & & & \\ 7. & & & & \\ 7. & & & & \\ 7. & & & & \\ 8 = 330 & ; & T_0 = 2,62 & ; & n_{min} = 10; & n_{max} = 22. \\ & & & & & \\ 1 & & & & & \\ 7. &$$

$$P = \sigma_{\hat{\theta}^{(1)}}^2 / \left[\sigma_{\hat{\theta}^{(1)}}^2 \right]_{R^{(2)}} \approx \sigma_{\hat{R}_C^{(2)}}^2 / \sigma_{\hat{R}^{(2)}}^2 , \quad (17) \qquad : \\ B = \frac{1 + 12c/(n^2 - 1)}{\sqrt{1 + 6c(5n - 1)/(n + 1)(2n - 1)(n - 1) + 72c^2/(n + 1)(2n - 1)(n - 1)^2}} , \quad (19)$$

$$c = P \cdot \sigma_y^2 / \left(T_0^2 \sigma_{y^{(1)}}^2 \right) = P \cdot n \cdot \left(n^2 - 1 \right) / \left(12T_0^2 \right).$$
(17)...(19),
$$B_{n=10} \ge 1,82; \quad B_{n=22} \ge 1,56.$$

 $R^{(1)}$ $R^{(2)}$

«

- »

,

•

1

$\Sigma_1, / *$	Σ_2 , / ²			K _{HK}	_P = 1		
<u> </u>	2, / 2	R ⁽¹⁾ , /					
$_V$,	$R^{(2)}$, / ²	180 500 1435			.35		
		$0,1179^{*}$ 0,0674	0,7432 0,4249		$\frac{0,7432}{0,4249}$	<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249
0	40 120	<u>0,0047</u> 0,0047	<u>0,0306</u> 0,0306	<u>0,0047</u> 0,0047	<u>0,0306</u> 0,0306	<u>0,0047</u> 0,0047	<u>0,0306</u> 0,0306
		<u>0,1180</u> 0,0676	<u>0,7439</u> 0,4260	<u>0,1180</u> 0,0676	<u>0,7439</u> 0,4260	<u>0,1180</u> 0,0676	<u>0,7439</u> 0,4260
		<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249	<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249	<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249
	40	<u>0,3647</u> 0,3647	<u>0,1106</u> 0,1106	<u>1,0047</u> 1,0047	<u>0,1106</u> 0,1106	<u>2,8747</u> 2,8747	<u>0,1106</u> 0,1106
		<u>0,3833</u> 0,3709	<u>0,7514</u> 0,4391	<u>1,0116</u> 1,0070	<u>0,7514</u> 0,4391	<u>2,8771</u> 2,8755	<u>0,7514</u> 0,4391
$\frac{1}{2}$		<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249	<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249	<u>0,1179</u> 0,0674	<u>0,7432</u> 0,4249
2		0,3647	0,2706	<u>1,0047</u>	0,2706	2,8747	0,2706

, , 2012,

,

•

.

,

-

4(24)

		120	0,3647	0,2706	1,0047	0,2706	2,8747	0,2706	
			<u>0,3833</u>	<u>0,7909</u>	<u>1,0116</u>	<u>0,7909</u>	2,8771	0,7909	
			0,3709	0,5037	1,0070	0,5037	2,8755	0,5037	
L									<u>.</u>
*			1						•
					1 2:		-		
		_		_				_	$R^{(1)}$
	$- R^{(2)}$.	_	,	,	-	-			

2

 $R^{(1)} R^{(2)}$

		$\frac{K_{\rm HKP} = 0,1}{R^{(1)}, /}$						
$_V$,	$R^{(2)}, / {}^2$	180		500		1435		
		<u>0,1179*</u>	0,7432	0,1179	0,7432	0,1179	0,7432	
0		0,0674	0,4249	0,0674	0,4249	0,0674	0,4249	
		<u>0,0047</u>	<u>0,0306</u>	<u>0,0047</u>	<u>0,0306</u>	<u>0,0047</u>	<u>0,0306</u>	
	40 120	0,0047	0,0306	0,0047	0,0306	0,0047	0,0306	
		0,1180	<u>0,7439</u>	0,1180	<u>0,7439</u>	0,1180	<u>0,7439</u>	
		0,0676	0,4260	0,0676	0,4260	0,0676	0,4260	
		0,1179	0,7432	0,1179	0,7432	0,1179	0,7432	
		0,0674	0,4249	0,0674	0,4249	0,0674	0,4249	
		0,0407	0,0386	0,1047	0,0386	0,2917	0,0386	
	40	0,0407	0,0386	0,1047	0,0386	0,2917	0,0386	
2	10	0,1247	0,7442	0,1577	0,7442	0,3146	0,7442	
		0,0787	0,4267	0,1245	0,4267	0,2994	0,4267	
		0,1179	0,7432	0,1179	0,7432	0,1179	0,7432	
		0,0674	0,4249	0,0674	0,4249	0,0674	0,4249	
	120	0,0407	0,0546	0,1047	0,0546	0,2917	0,0546	
		0,0407	0,0546	0,1047	0,0546	0,2917	0,0546	
		0,1247	0,7452	0,1577	0,7452	0,3146	0,7452	
		0,0787	0,4284	0,1245	0,4284	0,2994	0,4284	

.

FOR RADAR COHERENT PROCESSING SYSTEM

F.M. Andreev, A.V. Statkus

The analytical model for estimates of mean squared error in Doppler and range acceleration of ballistic and space targets supplied with pulse train coherent processing are proposed. It should be used in the decision making on inclusion the pulse train coherent processing system into the radar.

Keywords: early warning radar, coherent processing system, estimation errors, Doppler, range acceleration.

18