,	, <i>2014</i> ,	2(30)	ISSN 2073-7394		
621.372					
		,			
	·		,		
[1]		t_c, p			
()) $Z_1 = Z_1(1)$. 2.			
(7 (7 (s) = sZ		
[1],	. ,	$Z_2(s) = \frac{Z_1(Z_1(s))}{Z_1 - s}$	$\frac{(1)}{sZ_1(s)}$. (1)		
,		3.	$Z_2(s)$		
		$1-s^2$	$Z_2(s)$		
т,		$Z_2 = Z_2(1) \qquad . \qquad .$,		
		1 - s	2		
	· .		. 3.		
			· · · ,		
· · ·		$1-s^2$.			
			, (1),		
		,	$\frac{1-s^2}{0/0}$		
			[3].		
			(1)		
	-				
,					
[2],		$1 - s^2 - (1)$	(1 + c)(1 + c)		
	,	1-5 -(1-	s)(1⊤s),		
$\frac{1}{7}$		$s \rightarrow \pm 1$.	(1)		
$\mathcal{L}_1(s), s - mp_c,$ (,	$s = \pm 1$:			

$$Z_{n}(s) = \frac{d[Z_{n-1}(Z_{n-1}(s) - sZ_{n-1})]}{d[Z_{n-1} - sZ_{n-1}(s)]} = -Z_{n-1} \frac{d}{ds} Z_{n-1}(s) - Z_{n-1}}{Z_{n-1}(s) + s} \frac{d}{ds} Z_{n-1}(s), \quad s = \pm 1.$$
(2)

$$Z_{n}(s) = \frac{d[Z_{n-1}(z_{n-1}(s) - sZ_{n-1})]}{ds} = -Z_{n-1} \frac{d}{ds} Z_{n-1}(s) + s \frac{d}{ds} Z_{n-1}(s), \quad s = \pm 1.$$
(2)

$$Z_{n}(s) = \frac{d}{ds} - \frac{1}{s} \frac{1}{$$

$$Z(s) \qquad s \to 0:$$

$$Z(s) = \frac{1}{pC} = \frac{a_0}{b_1 s} = \frac{a_0}{b_1 p t_c}.$$
(4)

$$C = \frac{b_1 t_c}{a_0} \,. \tag{5}$$

).

•

() : ()

$$C = \sum_{k=1}^{n} \frac{t_c}{Z_k}.$$
 (6)

 $\frac{f}{t}$

$$\begin{array}{c} X \\ \underline{3arctgg} \\ t \end{array} > S$$

. 1.

0 **X**

,

t

. .

$$Z(s) = \frac{s^2 + u^2}{s(s^2 + g^2)}, \quad 0 < u < g.$$
(8)

g	2	4	6	8	10	14	20	30	60	100
U _{opt}	0,573	0,474	0,399	0,349	0,314	0,366	0,223	0,182	0,129	0,1
	1,057	1,266	1,342	1,381	1,405	1,432	1,452	1,468	1,484	1,49
$m = \frac{Z_1}{Z_2}$	1,336	3,123	5,08	7,06	9,048	13,034	19,025	29,012	59	99

(. 3)

Z(s)

,

 $=\frac{\mathsf{u}_{1}^{2}\mathsf{u}_{2}^{2}+s^{2}(\mathsf{u}_{1}^{2}+\mathsf{u}_{2}^{2})+s^{4}}{s'_{1}^{2}}+s^{3}('_{1}^{2}+s'_{2}^{2})+s^{5}}.$

2(30)

$$Z(s) \longrightarrow Z_1 \qquad Z_2 \qquad Z_3 \qquad Z_4$$

. 3.

0 <

2

(17)

, 1	2	3	4	5	6	8	10
U _{1opt}	0,31	0,223	0,171	0,139	0,116	0,088	0,07
U _{2opt}	3,226	4,492	5,839	7,215	8,605	11,403	14,2
	1,41	1,59	1,688	1,749	1,79	1,842	1,873
$Z_1 = Z_4$	1	1	1	1	1	1	1
$Z_2 = Z_3$	0,25	0,111	0,062	0,04	0,028	0,016	0,01
$m = \frac{Z_1}{Z_2}$	4	9	16	25	36	64	100

$$t_1 > tg\frac{f}{5}.$$

$$Z(s)$$
:

$$u_{1} < t_{1} < u_{2} < t_{2}.$$

$$B = \frac{5 \cdot \operatorname{arctg} t_{1}}{t}, B = 2,5. \quad (18)$$

$$Z(s) \longrightarrow Z_{1} \qquad Z_{2} \qquad Z_{3} \qquad Z_{4} \qquad Z_{5}$$

 $Z_1 = Z_5,$. 3. u₁,u₂,'₂.

3

1	0,727	1,7	2	2,33	3,1	6
U _{1opt}	0,325	0,182	0,144	0,124	0,086	0,033
U _{2opt}	1,376	2,1	2,381	2,771	3,65	7,029
2opt	3,078	5,3	7,213	7,11	6,953	13,046
	1	1,654	1,76	1,86	2	2,237
$Z_1 = Z_5$	1	1	1	1	1	1
$Z_2 = Z_4$	1	0,161	0,098	0,08	0,055	0,0135
Z 3	1	0,076	0,044	0,028	0,011	0,001345
$m = Z_{\hat{a}1}/Z_{\hat{a}3}$	1	13,11	22,8	35,26	91,9	743,3

(. 5)

. 6

$$\begin{aligned}
B &= \frac{6 \cdot arctg'_{1}}{s(s^{2} + u_{1}^{2})(s^{2} + u_{2}^{2})(s^{2} + u_{3}^{2})}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2}))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2}))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2}))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + (\frac{1}{2})))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + \frac{1}{2}))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + (\frac{1}{2})(s^{2} + \frac{1}{2}))} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = B = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = \frac{6 \cdot arctg'_{1}}{s(s^{2} + \frac{1}{2})} = \frac{6 \cdot arctg'_{1}}{s(s^$$

,

$$B = n/2.$$

n

.

1. Shih-Cheng Lin, Pu-Hua Deng, Yo-Shen Lin, Chi-HsuehWang, Chun Hsiung Chen. Wide-Stopband Microstrip Bandpass Filters Using Dissimilar Quarter-Wavelength Stepped-Impedance Resonators. IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 3, march 2006, 1011.

	Ζ.			•	•		,
•		,	•		.:	, 1976 248	•

24.032014

:- , , ... , , .

• •

Розроблено процедуру оптимізації секцій фільтрів нижніх частот, побудованих на багатоступеневих лініях передачі.

MINIMIZATION DIFFERENTIAL WAVE RESISTANCE MULTISTAGE FILTERS

V.V. Kozlovsky

The procedure of optimizing the low-pass filter sections, built on the multi-stage transmission lines.