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ALGORITHM OF IDENTIFICATION OF NONLINEAR TECHNICAL SYSTEMS
ACCORDING TO MEASURED DATA

Application nonlinear smoothing of a procedure, evaluation of a gradient of criterion quality gradient of
quasinewton procedure, enables reaching a minimum of functional of quality. For the solution in a problem of accessible
smoothing effect, the nonlinear return information filter has been used.

The obtained algorithm of identification of nonlinear technical systems can be utilized for construction of
mathematical models of steady and nonsteady technological procedure.
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Introduction. The problem of solving the
problems of identification in various scientific fields
occupies an important place. Despite the diversity of the
developed methods [1], is comparable to a large class of
theoretical and applied problems that require solutions.
This is especially true of nonlinear systems in some
areas of technology [2].

Purpose. Develop an algorithm for parameter
identification of nonlinear systems by a number of
measured data.

Materials and result obtained. Algorithms for
parameter identification of nonlinear systems are based
on minimizing the error between measurements of the
output signal of the object and output the mathematical
model if applied to the input signal of some type. In most
cases, this pseudo signal as white noise, or a binary
sequence or harmonic signals of different frequencies
(including one that changes periodically) [2, 3].

The dynamics of nonlinear systems in the general
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Where:

8 — vector of unknown parameters;

S — vector scaling factors for the measurements;

b — displacement vector measurements relative to
the average value;

X(t), u(t), w(t), v(t) — state vectors, contraols, states
and noise disturbance measurements.

Vector of unknown parameters, we find from the
minimum of the functional:
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where ©, P, Q, R — weighting matrix. The first term in
equation (3) account a priori information on the
parameters of the object, for example the results of
estimating the parameters of the regression model on the
basis of previous experimental data. If the model
equation (1), (2) as a limitation, then the solution of the
optimization problem can be written Lagrangian:
ty
3=3o+ [T Offc (xE)ult) wit)t.a)-x(t)dt, @)
t
where I(t) - vector of Lagrange multipliers.

Minimizing the criterion J equivalent to minimizing
the criterion Jg with constraints (1), (2).

For the solution of the optimization problem we
use the variational method. The first variation J with
respect to small changes of unknown is defined as:

dJ :tjt{ a‘])d x(t)+ o) dw(t)|dt+

Nto ax(t ow(t) &
0J 0J
+ g‘)—ax(ti )d x(t; )+adq.

In the stationary point of the functional J its first
variation dJ must match the zero for arbitrary
variations dx(t),dw(t) and dq . For a given set of

parameters of equation (4), (5) are nonlinear smoothing.
The task of smoothing on a fixed time interval for

the discrete nonlinear system put as follows. For

nonlinear systems described by a system of equations:

x(k+1)= fq[x(k)u(k)w(k)kq] (6)

2(k)=Shy [x(k Ju(k).ka]+b+v(k) 7
and experimental data {zy,(k)}, k=1,N to find the
value x(0) and the sequence {w(k)}, k=0,N-1,
minimizing the criterion:
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This nonlinear programming problem because
constraints (6), (7) and criteria as relatively unknown
nonlinear parameters. In addition to the usual quadratic
nonlinearities that are inherent criterion J , last term of
(8) contains other types of nonlinearities. This is because
the error model is defined as

Vk+1)=zp(k+1)-z(k +1)= 2y (k +1)-

—{E hp[x(k +1), u(k +1), k+1,q]+b+v(k +1)}. ©)

This nonlinear problem is solved by successive
computation of minimum extremist neighboring
trajectories satisfying the constraint (6), (7) until you
reach the minimum criteria J. For this purpose is
defined by the nominal trajectory, which also satisfies
the equations that form restrictions. For the solution of
the problem must specify the initial conditions
x(0)=x, and the sequence of values [w(i)], that in
many cases the solution of equations are zero. equation
(3) used to calculate quality criterion that is linked to this
trajectory. Using as a basis the basic trajectory, then
calculate the adjacent path so that the criterion for the
quality received with less importance than in the
previous cycle. The procedure continues until, until you
reach the minimum criteria.

To calculate the family of trajectories using
variational approach. Variation second order quality
criterion has the form [1, 4]:

dJ =[x(0)-xq ] Pytd x(0)+1/2d x(0)" Pytd x(0)+
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Variation constraint (6), linking variations d x(k),

dx(0) and dx(k):

dx(k+1)=f,(K)dx(k)+ f, (K)dw(k), (11)

k=0,N-1.
Gradients f,(k), f,, (k) and hy(k) in equations
(10) and (11) are defined by the expressions:
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and evaluated along the nominal trajectory defined by
sequences of values [x(k)], [u(k)], [w(k)].

Thus, it is necessary to calculate the trajectories of
the family, given variations d x(0) and [dw(k)]. This

variation of the quality criterion should take a more
negative value and satisfy restriction (11). This leads to
the solution of the problem of so-called "minimum
achievable." Based on the fact that the partial derivatives
f, (k), f,,(k) and h;(k) remain approximately constant

when moving along the face and adjacent trajectories
(this is confirmed by the decomposition equations
forming limit and the rejection of the second order term
of the expansion and above), one could argue that the
minimization problem similar to the problem of
smoothing for linear systems and can be solved by using
one of the known algorithms for smoothing. To prove
this similarity, modify the criteriaas d J by introducing

hy (k

additional members:
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Additional terms in (13) will not function variables
dx(0) and [dw(k)], but because they are constants in
solving minimization problem. If a value criterion of
equation (10) into equation (13) and perform the
appropriate transformations we obtain the extended
criteria:

dJ; =1/2[d x(0)+ x(0)— xo ] Py 2[d x(0)+ x(0) - xo ]+
+%’i\l_ol[[w(k)+d w(k)F Q7 w(k)+d w(k )]+
o] (k+ DR Dy (k + 1)
(14)
where
1(6)= 2 +1)- .
—Efhy (k+2)d x(k)+hp [x(k +2),u(k + 1),k +1,]-b
Minimizing the criterion d J; under the constraint
(11) is a linear smoothing, which dx(0) — unknown
initial conditions; [dw(k)] - unknown sound of an

object. For the solution of the problem ™achievable"
smoothing, we use a nonlinear inverse filter information.
This allows you to calculate the next trajectory for which
the criterion value decreases nonlinear smoothing.
Neighboring trajectories (family) are calculated
iteratively as long as the change variations d x(O) and

[dw(k)] is sufficiently small. From this it follows that
dJ as "small" and the result is a minimum criterion.

Finding solution using nonlinear inverse filter
information based on the following steps:
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1.Based on the initial conditions x(0) and
sequencing [w(k)], obtained at the previous iteration (or
initial conditions), calculated nominal trajectory

(equation (6), (7); quality criterion J ; equation (8) and
gradient matrix f,(k), f,,(k) and h;(k); equation (12).
2. For nonlinear inverse filter information put zero
terminal conditions yy/y =0 and Sy/n =0.
For i=N, 1 find smoothed estimates in reverse
time [5, 6]:
Yirk = Yisket +hx (KETR ™ x (16)
x{2(k)~ En [x(k).u(k).k g ]-b},
Sk/k =Sk/ksr + Ny (KETRTEN(K), (A7)
KB(k)z[Qil_F fv?l- (k) Sk+1lk+l:| ’ (18)
wg (k)=Q fy (k) [1 = fi (k) Kg ()] Yicsr/ st (19)
Yijiv = fx (k) [1 = iy (K (K]
x[Yistrken +Skarrien fu(kK)w(k)]
Skrkin = o (k) [1 = (k) Kg (k)] x 21)
X Ski1/k+1 fx(k)*
Remember: /i, W, Se1/ks1 | Kg (k).

(20)

3. Calculate the initial conditions for smoothing in
the forward direction:

dx(0)= [50/1 +Pyt ]_1 {YO/l +Pyt[xo - X(O)]}
X, (0)=x_(0)+d x(0), (22)
Where x,(0),x_(0)— previous and the new
initial value.
For i=0,..,N -1, compute
w, (k)=w(k)+dx(k)=
= wg (k) - Kpg (k)[fx (k) x(k)~ f (k)w(k)]
dx(k+1)= f, (k) dx(k)+ fy,(k)w, (k)-w(k)], (24)
1(k) =Sy /d x(k)= Yy - (25)
4. Perform iterations until until the change of
values x(0) and w(k) will not be "enough” small, ie
criterion J reaches the minimum value. From equation

(5), after the solution of the problem of smoothing
variation dJ must be zero. But:

(23)

0J
dJ=——dq=J,dq. 26
P q=Jqdq (26)

Then the stationary point of the product Jg dq
must also match zero. However, given the availability of
methodological and computational errors, the last piece
will not be exactly zero, and therefore need to find a new
vector of evaluation parameters q , reducing the value
of the criterion as J. Using the adjusted variables

a(t),w(t) and i(t), can calculate the gradient

criterion J with respect to the parameter vector q with
the following functions:
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where E - matrix of dimension ( m x m ),whose elements
are defined as E;(j,k)=1, if j=k=i, and

Ei(j,k)=0 otherwise. It is assumed that the weight
matrix Q is block-diagonal with blocks Qq.QE iQy,
and the matrix Qg and Qy, - diagonal.

Evaluation gradient matrix and updating quality
criterion with respect to the parameter vector will
perform with dvoranhovoyi procedure. let g; and Vi J;

- gradient vector of parameters and quality criteria with
respect to the parameter vector for i— i1 iteration. New
estimates of the parameters are calculated using the
following procedure kvazin'yutonivskoyi [2]:

diy1 =0i —aiB Vg Jj, (28)
where B; - Hessian estimate for the vector q;. scalar
a; - weighting (step size), which provides the
convergence criterion as to minimum along the search
direction, which is given by — Bi‘lvq NI
Gradient as a criterion for the new parameters qj,q
defined as VqJ;. Growth parameters and gradient
vector is given by:

Pi =Qi+1 Qi
ai =VqJdiz1 —VgJi-
Evaluation Hessian B; updated using two outer

(29)

products of vectors p; and g; . This matrix is updated
B; accordance with the expression

T TRT
Bi.1 =Bj + q‘?‘ B FT)i pT, o (30)
di Pi  Bj pi pj
In order to show the peer property of this
procedure, we write equation (30) as:
T (Ve (Vea )
=B+ g LaT AT ()

qiT b I (Vq.]i )T p:
Where a; - scalar which sets the step size for the

quasi-Newton procedure (28). From equation (31) we
can conclude that a peer update to occur when the update
of the gradient vector g; place simultaneously with the

update vector Vg Jj.
The initial value of the matrix By You can specify

any positive definite symmetric matrix. Very often this
is done using the identity matrix, is the first update of
the parameters in the direction of steepest descent. In



CucTemm ynpasniHHSA, Hasirauii Ta 38’a3ky, 2014, sunyck 3(31)

ISSN 2073-7394

this algorithm, double rank procedure is used as part of
the quasi-Newton procedure for updating the parameters
of the process.

Finally, the linear identification algorithm can be
summarized as follows:

1) to set parameters q, obtained in the previous
iteration (or initial conditions), solve the problem of
nonlinear smoothing to calculate the smoothed time
series for classes and functions that perturb using the
above algorithm for nonlinear smoothing. Necessary to
calculate and evaluate quality criterion J, defined by
equation (3);

2) calculate the gradient estimate J with respect
to the parameters q using equations (27);

3) update the parameter vector q using the quasi-
Newton procedure (28), using it for reference Hessian
double-rank algorithm updates the parameters;

4) repeat the algorithm as long as the quality
criterion reaches a minimum value.

Conclusions. The resulting algorithm allows to
construct nonlinear mathematical model for stationary
and non-stationary processes. In particular, the authors
see a promising application of the algorithm for creating

a mathematical model of a specific production process
blocks of transparent quartz glass.
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Hagiiiwna go pegakuii 10.04.2014

PeueH3eHT: a-p TexH. Hayk, npod. A.M. CinbBecTpos,
HauioHanbHWiA TeXHIYHWIA yHiBepcuTeT YKpaiHu «KIMl», Kuis

ANMTOPUNTM NOEHTUDPUNKALNN HEJIMHEMHbBIX CUCTEM MO N3MEPEHHbIM OJAHHbBbIM
A.B. LWWedgep, B.H. lanai

Mcnonb3oBaHue Npoueaypbl HEMMHEIHOTO CrNa>KWBaHMs, OLEHMBAHNS TPaaueHTa KpUTepns KauecTBa, KBasvHbIOTOHOBCKOI
MPOLEAYPb!, AT BO3MOXKHOCTb AOCTWYL MUHUMYMA (hyHKLMOHANA KauecTBa. [is peLleHns 3aaum JOCTUXKIUMOTO CriayKnBaHus

MCNOMb30BaH HENMHENHBI 06paTHbIA MHOPMALMOHHBIV AL TP.

MonyyeHHbIA anropuTM MAEHTU(DMKALMU HENVHENHBIX TEXHUYECKNX CUCTEM MOXKET ObiTb UCMONb30BAH ANs MOCTPOEHMS
MaTemMaTUYeCKUX MOAENeli CTaLMOHaPHbIX 1 HECTALMOHAPHBIX TEXHONOMMYECKMX MPOLIECCOB.

KntoueBble cnoBa: NpoLeaypa, KpuTepuii KauecTea, (PYHKLUMOHAN KAuecTBa, aNropuTM MAEHTU(NKALUM, NHDOPMALMOHHBIN
thUbTP, CTaLUMOHAPHbIA NPOLLECC, HECTaLMOHAPHBI NPOLECC, HeNMHeliHas cucTema.

ANMTOPUTM IAEHTU®IKALIT HEMIHIAHX CUCTEM 3A BUMIPAHUMMW JAHUMN
O.B. LLedep, B.M. lanait

BuKopuCTaHHS mpoueaypy HENiHiiHOrO 3rnaf>KyBaHHs, OLiHIOBaHHA rpajieHTa KpuTepis SKOCTIi, KBa3iHblOTOHOBCHKOI
npoueaypy, Aae MOXKMMBICTb JOCATTM MiHiMyma (byHKUioHana SKOCTi. [ns BMpilIEHHA 3adadi 3rnaf>KyBaHHS BMKOPUCTaHWiA

HENiHINHWMIA 3BOPOTHI iHhopMaLiiHMiA inbTp.

OTpuMaHuii anropuTM igeHTuUdikauii HeNniHIMHUX TexHiYHMX cucTemM MoXKe OYyTW BUKOpUCTaHWiA Ansa nobygosu
MaTeMaTWNYHUX MOJeneil CTauioHapHUX Ta HecTauioHapHUX TEeXHONOTiYHUX MPOLECIB.
Kntoyosi croBa: npouegypa, KpuTepiii SKOCTi, (yHKUiOHan AKOCTIi, anropuTM igeHTudikayii, iHhopmaliiHmin dinbTp,

cTauioHapHWiA NpoLiec, HecTaLioHapHUIA NPoLeC, HeNiHiliHa cucTemMa.
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