, *2014*, 3(31) ISSN 2073-7394 629.783 2 2 1962 [1]. 5. (USNO) (NPL) Telstar, 5 10 . [2, 3] ±1 σ_{τ} =0,1 (0,1) [2]: (1) 1. P_{C} 2.

 σ_{τ}

 $\uparrow_{\pm} = \sqrt{3} / (fh\Delta f).$ $h\Delta f \ge 5.10^{9}.$ 3. (2)), †_‡ ≤ 0,1

4.

, *2014*, 3(31) ISSN 2073-7394 $h \ge 500$, =10 0 $g = P_C / P$ VLBJ $g \approx 100$, h = 500 Δf [6] =10 (1) t_{C} $=5.10^{-6}$. [4], - 0,2 ; - 0,02 / . $\dagger_f = 2.10^{-6}$. VLBJ-[6,7] (. . 1). 0,1 . 1 (), [5], VLBJ 0,1 0,2 <100 GPS 20 100 1000 Loran-C 100 <100 . 1): (<100 GMS 20 GPS <100 (common

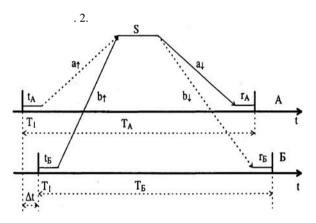
view) CS-2 2 10 10 NV 100 t, r

($a \uparrow, b \uparrow$ Η, >> 8) t_2 , r_2 $a\downarrow,b\downarrow$ $a \uparrow, b \uparrow$ $a\downarrow,b\downarrow$; Δt -

 t_1, r_1 t_A, t -. 1. ; r ,r -

; *a* ↑ ; S -

; *a* ↓


 T_1 f_1

 f_2 $a \downarrow$

.

, $T_{1},$.

2 3,

.3.

- ; - ; - :

 $t_1, t_2, t_3 - \dots, t_1, t_2, t_3 - \dots, t_1, t_2, t_3 - \dots$

 $a\uparrow,b\uparrow$ –

 $a\downarrow,b\downarrow$ –

 S_1 , S_2 –

 T_A T ,

. $T_A = T$,

 $T_A = \Delta t + t + \uparrow + S + a \downarrow + r_A,$ $T = \Delta t + t + \uparrow + S + \downarrow + r.$

 $\Delta t = 0.5[(T_A - T_-) + (t_A - t_-) + (r_- - r_-) + ,$ $+ (a \uparrow - a \downarrow) + (\uparrow - \downarrow)] + T_r$ (3)

 T_r - .

, , , 2014, 3(31) ISSN 2073-7394

TERRESTRIAL AND SPACE RADIOINTERFEROMETR: REQUIREMENTS FOR ACCURACY SINHRONYZATSIYI TIMELINE

E.S. Kozelkova, I.O. Dmitriev

Analysed requirement to exactness of synchronization of time-scales in a dvukhelementnom ground-space radiointerferometer. **Keywords:** spacecraft radiointerferometr with extra-long base radio engineering complex, broadband noise signal