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EFFICIENCY TEST FOR GRADIENT OPERATOR AND LAPLACIAN OPERATOR
IN KALMAN FILTER'S TV TRACKING VIA CHI-SQUARE TEST

The spread of electronics to variety of applications created a growing need in systems that track moving ob-
Jjects detected by real time TV imaging. Many applications of such systems exist, for example, computer vision, bio-
medical imaging, and gunfire control systems. The objective of TV tracking is to determine the position in the image
plane of an independent moving object (the target) detected by a TV camera and in to "track” that object throughout
its motion. Results over of comparative tests of different methods of edges determination are brought between char-
acters on a television image. Tests showed that the Laplacian operator is more effective, than gradient operator at

the use of him in the Kalman filter.
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Introduction

The general layout of a real time TV tracking sys-
tem may have the form shown in Fig. 1. The platform
signals, represented by the azimuth and elevation angles
of the camera position with respect to a certain reference,
are the alignment errors due to the difference between the
line of sight (LOS) and the camera optical axis.

These signals are fed into the stepper motor of the
platform to guide the camera in the direction of the
moving target until the optical axis coincides with the
LOS such that the target remains centered in the (FOV).
Finally, the TV monitor is used for supervision enabling
an operator to establish a visual contact of the tracking
process.
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Fig. 1. The general layout
of a real time TV tracking system

TV tracking systems are considered useful in short-
range applications because of the ability to visualize the
target [1]. Their high resolution capability and However,
atmospheric conditions and complicated background en-
vironments affect their performance, where it becomes
difficult to identify targets under such circumstances.
Most of the techniques are based on pattern recognition,

which uses statistical and structural methods. Such an
approach is based on the hypothesis that features of ob-
jects from different classes lie in easily separable regions
of the multidimensional feature space, while features
from the same class cluster together [2]. Passive nature
make more effective in situation where transmitted sig-
nals are subjected to noise jamming and other counter-
measure techniques, as opposed to other systems.

Image Segmentation

To describe target motion in a time-varying se-
quence of images, a complicated image is converted
into a simpler form by a process known segmentation.
This is the process that subdivides an image into its con-
stituent parts or objects [3].

Edge Detection

An edge is the boundary between two regions with
relatively distinct gray-level properties. In the following
discussion, the assumption is that the regions in ques-
tion are sufficiently homogeneous so that the transition
between two regions can be determined on the basis
gray-level discontinuities alone. When this assumption
is not valid, basically the idea underlying most edge-
detection techniques is the computation of a local de-
rivative operator. Fig.2 Illustrates this concept.

Fig. 2-a shows an image of a light stripe on a dark
background, the gray-level derivatives of the profile.
Note from the profile that an edge (Transition from dark
to light) is modeled as a smooth, rather than as an abrupt
change of gray-level.This model reflects the fact that
edges in digital images are generally slightly blurred as
a result of sampling. Fig.2-a shows that the first deriva-
tive (1) of the gray level profile is positive at the leading
edge of a transition, negative at the trailing edge, and, as
expected, zeros in areas of constant gray level.
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The second derivative (2) is positive for that part
of the transition associated with the dark side of the
edge, negative for that part of the transition associated
with the light side of the edge, and zero in areas of con-
stant gray-level. Hence the magnitude of the first de-
rivative can be used to detect the presence of an edge in
an image, and the sign of the second derivative can be
used to determine whether an edge pixel lies on the dark
or light side of an edge. Note that the second derivative
has a zero crossing at the mid-point of a transition a
gray-level. Zero crossings provide as a powerful ap-
proach for locating edges in an image. Although the
discussion so far has been limited to a 1-D horizontal
profile, a similar argument applies to an edge of any
orientation in an image.

We simply define a profile perpendicular to the
edge direction at any desired point and in interpret the
results as in the preceding discussion . The first deriva-
tive at any point in an image is obtained by using the
magnitude of the Gradient at that point. The second de-
rivative is similarly obtained by using the Laplacian.
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Gradient operator

The gradient of an image f(x,y) at location (X,y) is
the vector. It is well known form vector analysis that the
gradient vector points in the direction of maximum rate of
change of fat (X, y). In edge detection an important quan-
tity is the magnitude of this vector, generally referred to
simply as the gradient and denoted of equation (3).

2 2 1/2
Vf = mag(G) = ‘GX +Gy‘ , (3)
Vi ~[Gy|+[G, |, )
a(x,y)=tan"' (G, /G, ), (5)
ze(Z7 +2Zg +Z9)_(Zl+222 +Z3), (6)
Gy=(Z3+2Z6+Z9)—(Zl+2Z4+Z7). (7)

This quantity equals the maximum rate of increase
of f(x, y) per unit distance in the direction of G. Com-
mon practice is to approximate the gradient with absolute
value, equation (4), which is much simpler to implement,
particularly with dedicated hardware. The direction of the
gradient vector also is an important quantity.

Let a(x,y) represents the direction angle of the vec-
tor at (x,y). Then from vector analysis, Where the angle
is measured with respect to the x axis. From equations
(4) and (5) show that computation of the gradient of an
image is based on obtaining the partial derivatives
of /ox and Of/dy at every pixel location. Derivatives

may be implemented in digital form in several ways.
However, the Sobel [3] operators have the advantage of
providing both a differencing and a smoothing effect.

Because derivatives enhance noise, the smoothing
effect is a particularly attractive feature of the Sobel
operators derivatives based on the Sobel operator
masks. Where, as before, z's are the gray levels of the
pixels overlapped by the mask at any location in an im-
age. Computation of the gradient at the location of the
center of the masks then utilizes Fig. 3, giving one value
of the gradient.

Z Z | Z3 -1 -2 -1 -1 0 1
Zy | Z5| Zg 1} 0 0 2 0 2
Z7| 23| Zg 121 1o

Fig. 3. The Sobel operator masks

To get the next value, the masks are moved to the
next pixel location and the procedure is repeated. Thus,
after procedure has been completed for all possible loca-
tions, the result is a gradient image of the same size as
the original image. As usual, mask operations on the
border of an image are implemented by using the ap-
propriate partial neighborhoods.

Laplacian operator

The Laplacian of a 2-D function f{x,y) is a second
order derivative defined as in the case of the gradient,
equation (2), may be implemented in digital form in
various ways.

V2f=425—(22 +Z4 +Z6 +28). (8)
For 3x3 region, the form most frequently uncounted in
practice The basic requirement in defining the digital

Laplacian is that the coefficient associated with the cen-
ter pixel be positive and the coefficients associated with
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the outer pixels be negative. Because the Laplacian is a
derivative, the sum of the coefficients has to be zero.
Hence the response is zero whenever the point in ques-
tion and it is neighbors have the same value. Although,
as in indicated earlier, the Laplacian responds to transi-
tion in intensity, it is seldom used in practice for edge
detection for several reasons, As a second-order deriva-
tive, the Laplacian typically is an unacceptably sensitive
to noise. Moreover, the Laplacian produces double
edges and is enable to detect edge direction. For these
reasons, the Laplacian usually plays the secondary role
of the detector for establishing whether a pixel is on the
dark or light side of an edge [3]. A more general use of
the Laplacian is in finding the location of edges using
it's zero-crossings properly (see Fig.4). This concept is
based on convolving an image with the Laplacian of a
2-D Gaussian function of the form equation

h(x,y)= exp(—(x2 +y? )/(202)) ,

where o° is the

2 =x%+ y2 . Then from equation (10) the Laplacian is

standard deviation [4]. Let

Fig. 5-a shows as a cross section of this circularly sym-
metric function. (Note the smoothness of the function).
This shape is the model upon which equation (10) and
the mask in Fig. 4 is based.

Vh=((r2—02)/02)exp(—r2/(202)). (10)

When viewed in 3-D perspective with the vertical
axis corresponding to intensity, equation (10) has a clas-
sical form. It can have shape. The average value of the
Laplacian operator is zero. The same is true of the
Laplacian image obtained by convolving this operator
with a given image [3].

Tracking results testing

Results of the tracking stage are store in profiles,
to test them in this section the Chi-Square test is used to
examine these output results, to get the error in this out-
put apply the equation (11)

2
Ei=(0i—ei) /ei, (11)
where E; is an error, o; is an actual x., and e; is an

estimated x, . for i" scene.

Testing the edge detection results

It is first starts with an output of Kalman filter's
tracking, which used Gradient operator centroid, to get
the error in this output apply the equation (11). The Chi-
Square value with (y = 30) degree of freedom and con-
fidence interval (a =0.05), is ( X* = 13.2500 ) and the
tabled value of the Chi-Square is ( x*=43.773 ), while
X? < y* that is mean an estimated values is accepted.

Secondly the output of Kalman filter's tracking,
which is used Laplacian operator's centroid and to get
the error in this output apply equation (11). The Chi-
Square value with (y = 30) degree of freedom and con-
fidence interval (a =0.05), is (X* = 11.9528) and the
tag‘?t):d value of the Chi-Square is (x> =43.773), while
X? <y that is mean an estimated values is accepted.

Conclusion

The results of two operators showed that X* for an
operator Laplacian less than X? for the operator of Gra-
dient, which avaricious operator Laplacian, more effec-
tive for the Kalman filter.
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Penensent: 1-p TexH. Hayk, npod. B.M. Pynuunpkuii, Yep-
KacbKHi iepxKaBHUII TeXHOJNOriuHM yHiBepcuTeT, Yepkacu.

E®EKTUBHICTb TECTY N1 ONEPATOPA MPALLIEHTA | ONEPATOPA JIAMJIACA B TENEBI3IMHOMY
BIACTEXEHHI ®llIbTPA KAJIMAHA YEPE3 TECTYBAHHA KCI-KBAOPAT

Anb-JIxanabu Axin baxn Tapxan, JLLA. IllyBanosa

Memoio TB mpexiney € eusnauents NOA0JiCEHHsL 8 NIOWSUHT 300PAdICCHHS HE3ANEINCHO20 PYXOMO20 00'ekma (Yini) npu 6uss-
JIEHHT CTQY, OMPUMAH020 810 00 '€kma Ha npomsasi oeo pyxy. Hasedeni pesynomamu nopigHAIbHUX GUNPOOYEAHb PISHUX MEMO-
0i6 8uU3HaAUeHHs. KOHMYypie 00'ckmis 6i0 ony 306padicenns na ekpani menegizopa. Bunpodysanns noxasanu, wo onepamop Jlan-
aaca € Oinvut eghekmusHUM, HIJIC 2padieHmuuLl onepamop, Koau 6in ukopucmosycmcs y ginomp Karmana.

Knrouogi cnosa: onepamop epadicuma, onepamop Jlanaaca, ¢hinomp Kanomana.

QOPEKTUBHOCTb TECTA ANA ONMEPATOPA rPAOUEHTA N ONMEPATOPA JNTAMNACA B TENEBU3UOHHOM
OTCNEXUBAHUN ®UNTBbTPA KAJIMAHA YEPE3 TECTUPOBAHUE KCU-KBAOPAT

Anp-Jlxxanabu Ak baxm Tapxan, JI.A. IllyBanosa

Lenvio TB mpexunea sgasiemesi onpeoenenus NON0ACEHUS 6 NIOCKOCIU U300PANCEHUS HE3ABUCUMO20 OBUNCYIE20CH 00b-
exma (Muuienu) npu 0OHapyd*ceHuU cieoda, NOLYYeHHO20 Om 00beKma Ha npomsadcenuu e2o ogudcenus. IIpusedenvl pesynoma-
Mbl CPABHUMENLHBIX UCHLIMANUT PA3TUYHBIX MEMOO08 OnpedeneHus. KOHMypog 00beKmos us Qona Ha menesusuoHHOM u3oopa-
orcenuu. Mcnvimanus nokasanu, yumo onepamop Jlanniaca 6onee sghpexmusen, uem onepamop epaouenma npu UCHOIb306aHUU
e2o ¢ Qunvmpe Kanvmana.

Knrouesvie cnosa: onepamop epaduenma, onepamop Jlanaaca, ¢runomp Kanomana.
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