

КРЫСАН ВЛАДИМИР ИВАНОВИЧ

Кандидат технических наук, член Украинского общества по механике грунтов, геотехнике и фундаментостроению. Директор ООО НПО «РемБуд».

Основные направления научной деятельности: исследования в области устройства оснований и фундаментов в сложных геологических условиях.

Автор 13 научных статей.

уДК 624.131

НЕКОТОРЫЕ АСПЕКТЫ ВЫПОЛНЕНИЯ АРМИРОВАНИЯ ГРУНТОВ

Ключевые слова: грунтоцемент, армирование, струйно-смесительная методика, испытание грунтов, трехосное сжатие, просадочные грунты.

Изложены материалы опытно-производственных работ по выполнению работ методом армирования вертикальными жесткими элементами бортов котлована и основания фундаментов по струйносмесительной методике.

Викладено досвід виконання дослідно-виробничих робіт методом армування вертикальними жорсткими елементами укосів котловану та основи фундаментів.

At the facilities in Dnepropetrovsk works on foundation pits sides and base reinforcement have been performed.

Постановка проблемы в общем виде и ее связь с практическими заданиями.

В Бабушкинском районе г. Днепропетровска на пересечении улиц К.Либкнехта и Дарвина проектом предусмотрено возведение пятиэтажного здания с подвалом под частью здания. В здании предполагается разместить торговые залы с комплексом административных и бытовых помещений, а также офисные помещения на третьем, четвертом и пятом этажах.

При инженерно-геологических изысканиях на части площадки обнаружено засыпанные бытовыми отходами и строительными слабо слежавшимися отходами ямы глубиной до $4,5 \mathrm{~m}$, попадающие в пределы вскрываемого котлована.

С северной стороны участок огорожен капитальным кирпичным забором, высотой $3,5 \mathrm{~m}$. С восточной стороны в непосредственной близости от проектируемого котлована проложены водонесущие коммуникации.

Анализ исследований и публикаций по теме работ. Обычно для крепления бортов котлованов предусматривается выполнение ограждения буронабивными сваями с заделкой межсвайного пространства деревянными щитами или крепление шпунтом.

Расчеты таких конструкций защитных сооружений и

Рис. 1. Инженерно-геологический разрез участка.
условия их выполнения рассмотрены в $[1,2,6]$.
В работах [3,4,5,7] изложены основные принципы и некоторые аспекты выполнения работ по армированию оснований фундаментов. По проведенному экономическому анализу и анализу опыта эксплуатации зданий и сооружений, возведенных на армированных грунтах можно говорить о большой перспективности развития методики.

Выделение не решенной части общей проблемы. В имеющихся на сегодняшний день документах мало освещена как методика выполнения работы, так и способы контроля грунтоцемента в процессе выполнения работ, оперативное получение характеристик грунтоцемента.

Изложение основного материала. Площадка проектируемого строительства расположена в Бабушкинском районе г. Днепропетровска на пересечении улиц К.Либкнехта и Дарвина, ограничена с севера и запада красными линиями улиц, с востока и юга - существующей жилой застройкой. Проектом предусматривается возведение пятиэтажного здания с подвалом под частью здания. Здание сложной конфигурации в плане с габаритными размерами в осях $27,6 \times 19,8$ м.

Согласно отчету об инженерно-геологических изысканиях, геологическое строение площадки представлено следующими ИГЭ.

ИГЭ-1 - насыпные грунты: бетон, битый кирпич, бытовой мусор, мощность слоя $0,9-1,8$ м. В отдельных местах имеются засыпанные подвалы и выгребные ямы глубиной до 5 м.

ИГЕ-1а - почвенно-растительные грунты - черноземы обыкновенные на лессовых породах, малогумусные, легкосуглинистые.

ИГЭ-2 - суглинки лессовые, желтые, буровато-желтые, твердые, высокопористые, с корнями растений, просадочные - мощность $1,9-2,8$ м.

Таблица. Расчетные характеристики показателей физико-механических свойств грунтов

Номер иГЭ	$\begin{gathered} \hline \text { Удельный } \\ \text { вес } \\ \gamma_{1} / \gamma_{11}, \\ \mathrm{kH} / \mathrm{m}^{3} \end{gathered}$	Угол внутреннего трения $\varphi_{1} / \varphi_{11}$, град.	Удельное сцепление $\mathrm{c}_{1} / \mathrm{c}_{11}$, кПа	```Модуль деформации E ест/}/\mp@subsup{E}{\mathrm{ вод.}}{ мПа```
3	14,49/14,55	22 / 22	$8 / 10$	6,0 / 2,5
4	15,48/15,55	$24 / 22$	$6 / 7$	11,0 / 3,0
5	16,61/16,67	$21 / 22$	12 / 14	16,0 / 8,0
6	18,67/18,70	$26 / 26$	$3 / 4$	9,0
7	19,71/19,71	$21 / 22$	$26 / 30$	8,0
8	19,86/19,89	$23 / 24$	$23 / 24$	13,0

ИГЭ-3 - супеси лессовые, светло-желтые, желтые, высокопористые, просадочные, мощностью 5,2-6,0 м.

ИГЭ-4 - суглинки лессовые, буровато-желтые, твердые, высокопористые, просадочные, с нитевидными прожилками карбонатов.

ИГЭ-5 - супеси лессовые, желтые, серовато-желтые, пластичные, с редкими включениями гидроокислов марганца - мощностью $16,0-16,7$ м.

ИГЭ-6 - суглинки лессовые, желто-бурые, бурые с красноватым оттенком, полутвердые, с мучнистыми налетами карбонатов, с вкраплениями гидроокислов марганца мощностью $0,7-1,6$ м.

ИГЭ-7 - супеси лессовые, серые, пластичные, карбонатизированные, с точечными включениями гидроокислов марганца - мощностью 8,1-9,5 м.

ИГЭ-8 - суглинки красновато-бурые, твердые, с желваками карбонатов и точечными включениями гидроокислов марганца, пройдены до глубины 44,7 м.

Инженерно-геологический разрез показан на рис.1, расчетные характеристики показателей физикомеханических свойств грунтов в табл.1.

После экономического анализа возможных вариантов выполнения работ по креплению бортов котлована и устройства фундаментов было принято решение закрепить борта котлована методом армирования их вертикальными жесткими элементами, изготовленными по струйно-смесительной методике, при этом выполнялось армирование, как природного грунта, так и насыпных грунтов. Слабые просадочные грунты усиливались верти-

Рис. 2. Вид борта котлована, представленного насыпными и природными грунтами

Рис. 3. Ірафики испытаний природного грунта с глубины $5,0 \mathrm{M}$

Рис. 4. Графики испытаний грунтоцемента при твердении 5 суток.

Рис. 5. Графики испытаний грунтоцемента при твердении 10 суток.

кальными жесткими элементами для последующего устройства по ним фундаментной плиты.

В процессе работ было выполнено дополнительное определение характеристик грунта и грунтоцемента изготовленного из этого грунта в приборе трехосного сжатия. Отбор грунта и изготовление грунтоцемента в процессе производства работ велось из ИГЭ-3. При этом грунты ИГЭ-3 испытывались при природной влажности, а грунтоцемент в процессе набора им прочности.

Работы по испытанию грунтов велись с привлечением специалистов кафедры гидрогеологии и инженерной геологии Национальной Горной академии, использовался прибор трехосного сжатия «TRUSCKAH»,и в работе использованы материалы этих испытаний.

Крепление бортов котлована, проектной высотой 5,0 м от поверхности грунта $с$ нагрузкой от кирпичного забора высотой $3,5 \mathrm{~m}$, на ленточном фундаменте и естественном основании с глубиной заложения $0,9 \mathrm{~m}$, выполнялось вертикальными жесткими элементами, заглубление которых было, в соответствии с расчетом, выполнялось на 2 м ниже проектируемого дна котлована. Расчет подпорной стенки выполнялся по схеме - массивная подпорная стенка на естественном основании.

В процессе выполнения работ было выполнено опыты по определения характеристик грунтов и грунтоцемента, изготовленного из этого грунта в приборе трехосного сжатия.

При отрывке котлована, проектная отметка которого составляла 5,0 м было выполнено отбор природного грунта, определенны его характеристики, приведенные на рис.3.

Затем в процессе изготовления грунтоцементного элемента на интервале глубин $5-5,5$ м из грунтоцемента были отобраны образцы.

Грунтоцемент отбирался в пластиковые контейнеры внутренним диаметром 36 мм, высотой 76 мм. Образцы грунтоцемента твердели в условиях, близких к твердению грунтоцемента в естественных условиях, для чего они были помещены на участке работ в шурф с влажным грунтом. Испытания образцов выполнялось при твердении $5,10,16$ суток. По истечении этого времени образцы испытывались на одноосное сжатие.

Как видно из графиков на рис. $4,5,6$ в процессе твердения изменяются прочностные характеристики.

ВЫВОДЫ:

Грунтоцемент в начальной стадии твердения ведет себя как дисперсная порода, а затем как скальный грунт слабой прочности. В настоящее время нормативных документов на испытание таких грунтов не разработано, что создает определенные трудности для сравнения характеристик грунтоцементов, изготовленных в разных регионах, и испытанных по разным методикам.

За счет того, что в грунт закрепляется составом на основе цемента и он вступает в реакцию с состав-

Рис. 6. Графики испытаний грунтоцемента при твердении 16 суток.

Рис. 7. График зависимости срока твердения и угла внутреннего трения.

ляющими грунта, значительно возрастает удельное сцепление грунтоцемента. На разных стадиях твердения грунтоцемент ведет себя как грунт различной консистенции, а затем как скальный грунт, прочность которого зависит от срока твердения и армируемого грунта.

Перспективность и необходимость улучшения строительных свойств слабых грунтов вызывает необходимость создания нормативной документации по испытаниям грунтоцемента.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. BCH 490 -87. Проектирование и устройство свайных фундаментов и шпунтовых ограждений в условиях реконструкции промышленных предприятий и гордской застройки. - М.: Минмонтажспецстрой СССР, 1988. - 35c.
2. Бойко І.П., Ключка В.М. Вплив розташування паль на напружено-деформований стан захисних підпірних стінок. // Міжвідом. наук. техн. зб. Будівельні конструкції. - К.: НДІБК, 2004. - Вип. 61. - С.283-285.
3. Зоценко М.Л. Прогресивні методи підготовки основ та будівництва фундаментів. // Міжвідом. наук. техн. зб. Будівельні конструкції. К.: НДІБК, 2008. - Вип. 71. - С.23-37.
4. Крысан В.И. Струйное и смесительно-струйное закрепление грунтов. // Инновационные технологи диагностики, ремонта и восстановления объектов строительства и транспорта: Сб. науч. тр. ПГСА, 2004. - Вып. №30. - С. 132-136.
5. Степура И.В. Армирование лассовых грунтов оснований зданий и сооружений. / [И.В. Степура, В.С. Шокарев, А.С. Трегуб и др.] // Международная конференция по проблемам механики грунтов, фундаментостроению и транспортному строительству. - Пермь, Россия: ПГТУ, 2004. - С. 213-215.
6. Слюсаренко Ю.С., Галінский О.М., Садовский В.І. Проблеми будівництва в ущільненій міській забудові. // Міжвідом. наук. техн. зб. Будівельні конструкції - К.: НДІБК, 2008. - Вип. 71. - С.15-22.
7. Токин А.Н. Фундаменті из цементогрунта. - М.: Стройиздат, 1984. - 184c.
