

КИРИЧЕК ЮРИЙ АЛЕКСАНДРОВИЧ

Доктор технических наук, профессор, заведующий кафедрой землеустройства, строительства автодорог и геодезии Приднепровской государственной академии строительства и архитектуры, действительный член Академии строительства Украины, член-корреспондент Международной инженерной академии, член ISSMGE.

Основные направления деятельности: экспериментальные и теоретические исследования работы фундаментов и оснований под действием динамических и статических нагрузок. Разработка новых конструкций фундаментов под машины с динамическими нагрузками. Разработка и совершенствование методов динамического и статического расчета оснований и фундаментов. Исследование динамических характеристик грунтов. Натурные испытания фундаментов турбоагрегатов, изучение влияния их температурных деформаций на динамику фундаментов. Конструктивные методы снижения вибрации строительных конструкци

Автор более 150 научных работ.
E-mail: yakirichek@gmail.com

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК МАССИВНО-ПЛИТНЫХ ФУНДАМЕНТОВ НА ВЯЗКОУПРУГОМ ОСНОВАНИИ

Ключевые слова: комбинированные массивно-плитные фундаменты, вязко-упругое основание, вибрации фундаментов, конечно-элементный анализ, аналитические методы расчета

Предложены новые конструкиии фундаментов под машины с динамическими нагрузками. Комбинированные массивно-плитные фундаменты состоят из заглубленных небольиих массивньх жестких тел или жестких рам, к которым на нескольких уровнях прикреплены горизонтальные тонкие плиты. Выполнен конечноэлементный динамический анализ с использованием программы SAP4. Приведены результать экспериментальных исследований новых фундаментов в условиях опытного полигона. Разработаны методы расчета комбинированных массивно-плитных фундаментов. Оценена эффективность применения таких фундаментов.

Запропоновано нові конструкціі фундаментів під машин із динамічними навантаженнями. Комбіновані масивно-плитні фундаменти включають заглиблені невеликі масивні жорсткі тіла або жорсткі рами, до яких на декількох рівнях приєднані горизонтальні тонкі плити. Виконано скінченно елементний аналіз таких фундаментів з використанням програми SAP4. Викладено результати експериментальних досліджень нових фундаментів в умовах дослідного полігону. Розроблено методи розрахунків комбінованих масивно-плитних фундаментів. Проведено оцінку застосування таких фундаментів.

New constructions of foundations for rotating and reciprocal machines are offered. These constructions are called the combined massive plate foundations. They consist of deepened massive rigid blocks or rigid frames with attached thin horizontal plates at various levels. The finite element dynamic analysis is conducted using the SAP4 package. New calculation methods for combined massive plate foundations are developed. Experimental investigation of the foundations is provided to verify the obtained solution.

1.ВВЕДЕНИЕ

Широко распространенные в промышленности машины большой мощности с возвратнопоступательными и вращающимися частями требуют устройства сложных материалоемких фундаментов массивного, рамного или стенчатого типа, способных воспринимать динамические нагрузки и гасить возникающие в результате вибрации. Динамический расчет сложных конструкций на упругом полупространстве встречает, как правило, значительные трудности. Универсальные численные методы расчета в этом случае не гарантируют получение достаточно точных результатов и требуют тестирования. Аналитические же решения получены пока только для достаточно простых расчетных моделей. Так для динамического расчета массивных фундаментов применяются проверенные практикой методы расчета [1]. Такие расчеты основаны на существенных упрощениях. Рассматриваются сосредоточенные массы на упругом или вязкоупругом основании. Главная проблема для практического применения таких методов расчета заключается в определении значений динамических характеристик основания. Однако такие фундаменты должны иметь значительную массу, что бы гасить большие динамические нагрузки, в результате чего их собственная частота мала, что приводит к низкой эффективности массивных фундаментов под машины при низкочастотных нагрузках из-за малого значения отношения вынужденной частоты к собственной частоте системы «машина-фундамент». Это приводит к излучению вибрации высокой интенсивности. Известно, что плитные фундаменты более эффективны для восприятия динамических нагрузок, чем массивные фундаменты [2]. Однако они отличаются более сложными методами расчета, как системы с распределенными параметрами. Поэтому исследование и разработка динамических методов расчета плит на упругом полупространстве все еще является актуальной задачей. Широкому распространению плитных фундаментов под машины с динамическими нагрузками препятствует и их довольно высокая гибкость. Разработанные недавно массивно-плитные фундаменты под машины с динамическими нагрузками свободны от недостатков плитных фундаментов и много эффективнее чем массивные фундаменты [3]. Массивноплитные фундаменты под машины с динамическими нагрузками представлены на рис.1. Эти фундаменты обеспечивают меньший уровень вибрации по сравнению с массивными фундаментами, так как их амплитудночастотная характеристика формируется не за счет

массы фундамента, а за счет рационального выбора конструктивных характеристик фундамента. Такой фундамент представляет собой заглублённое в грунт небольшое массивное тело или жесткую раму, к которым прикреплены на несколько уровнях горизонтальные тонкие плиты. Необходимые динамические характеристики фундамента обеспечиваются за счет размеров, количества и места расположения плит.

2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ

Для изучения взаимодействия массивно-плитного фундамента с грунтовым основанием, разработки методов динамического расчета выполнены аналитические исследования. Рассмотрена заглубленная в грунт пространственная конструкция, состоящая из жесткого массива и гибких плит, покоящихся на вязко-упругом основании. В общей постановке в таких случаях необходимо решать динамическую контактную задачу для пространственной вязкоупругой системы с распределенными параметрами. Для успешного решения такой задачи приняты некоторые корректные упрощения. Так плиты рассмотрены как плиты или балки на упругом и вязкоупругом основании. Использовано резкое различие массы массивов и тонких плит для применения асимптотического метода. Применен метод возмущений, когда вначале рассматривалась более простая задача, а затем были учтеныдругиефакторы. Модель для расчетавертикальных колебаний массивно-плитного фундамента рассмотрена как сосредоточенная масса с плитами или балками на упруго-вязком основании. Проведены интегральные преобразования для урвненийгоризонтальных колебаний массива и плит как для балок и плит на вязкоупругом полупространстве с использованием асимптотического метода. Использованные математические модели и методы позволяют рассчитывать амплитуды свободных и вынужденных колебаний и значения собственных частот массивно-плитных фундаментов. Аналитические методы расчета динамических характеристик массивноплитных фундаментов [4-7] были разработаны для:

- вертикальных и горизонтальных вынужденных колебаний массивно-плитных фундаментов на вязкоупругом основании;
- вертикальных свободных колебаний массивноплитных фундаментов на вязкоупругом основании;
- вертикальных и горизонтальных вынужденных колебаний группы массивов, объединенных плитой на вязкоупругом основании;
- вертикальных и горизонтальных вынужденных колебаний массив, объединенных неограниченных размеров плитой на вязкоупругом основании;
- вертикальных вынужденных колебаний массивно-плитных фундаментов на вязкоупругом инерционном основании.

Исследование вертикальных u горизонтальных колебаний массивноплитных фундаментов на вязкоупругом основании методом конечноэлементного анализа

2D конечно-элементный анализ массивно-плитных фундаментов под машины с периодически-

Рис. 2 Напряженно-деформированное состояние комбинированного массивно-плитного фундамента с двумя плитами под действием вертикальной динамической силы.

Рис. 3 Напряженно-деформированное состояние комбинированного массивно-плитного фундамента с одной плитой под действием вертикальной динамической силы.

Рис. 4 Напряженно-деформированное состояние комбинированного массивно-плитного фундамента с пятью плитами под действием вертикальной динамической силы

ми нагрузками выполнен при помощи программы SAP-IV. В плоском напряженном состоянии фундамент смоделирован с разными размерами плит и массива. Рассматривались колебания фундаментов под воздействием вертикальной и горизонтальной периодической силы. Изучены динамические характеристики массивно-плитных фундаментов: частоты собственных колебаний и амплитуды вынужденных колебаний. Конечно-элементный анализ позволил определить динамические характеристики фундаментов в широком диапазоне варьирования размеров массива, а так же размеров и количества плит от одной до пяти. На рис.2-5 представлены изменения динамических вертикальных перемещений и соответствующих напряжений (нормальных для вертикальных колебаний и касательных напряжений для горизонтальных колебаний).

В результате проведения спланированного множества расчетов с использованием конечно-элементного анализа установлено следующее.

- тонкиегоризонтальныезаглубленные плиты оказывают большое влияние на собственную частоту и интенсивность колебаний массивно-плитных фундаментов.
- для низкочастотных машин снижение интенсивности вибраций массивно-плитных фундаментов обеспечивается путем уменьшения массы и размеров массива.
- под машины с вертикальными и горизонтальными динамическими нагрузками следует применять массивно-плитные фундаменты с двумя тонкими плитами - одна на уровне обреза и одна на уровне подошвы фундамента, причем расстояние между ними для достижения максимального эффекта должно быть равным от одного до двух значений ширины плит. Большее количество плит и меньшее расстояние между плитами не обеспечивает необходимого снижения уровня вибрации фундамента.
- для фундаментов с вертикальной нагрузкой одной плиты на уровне подошвы фундамента может быть достаточно.

Рис. 5 Напряженно-деформированное состояние комбинированного массивно-плитного фундамента с двумя плитами под действием горизонтальной динамической силы.

- уровни горизонтальных вибраций массивноплитных фундаментов сверху много выше, чем снизу. Для машин с горизонтальной динамической нагрузкой эффективными являются фундаменты с расположением плиты на уровне обреза фундамента.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВЗАИМОДЕЙСТВИЯ МАССИВНОПЛИТНЫХ ФУНДАМЕНТОВ С ОСНОВАНИЕМ

Для проверки адекватности полученных аналитических и численных решений на опытном полигоне проведены испытания крупномасштабных моделей массивно-плитных фундаментов. Экспериментальные исследования взаимодействия массивно-плитных фундаментов с грунтовым основанием было выполнено на крупномасштабных моделях в открытом грунте. Экспериментальные фундаменты (модели) состояли из горизонтальных заглубленных плит, объединенных массивом или стержнями, одна из схем представлена на рис.6. Часть опытов была посвящена исследованию влияния тонких плит на колебания массива. Вертикальные и горизонтальные нагрузки создавались вибратором (1). Регулятор постоянного тока (4) варьировал частоту вращения двигателя постоянного тока, а следовательно и частоту прило-

Рис. 7 Экспериментальные аплитудно-частотные характеристики массивного (1) и массивно-плитного фундамента (2) под действием горизонтальной периодической силы

Рис. 8 Экспериментальные аплитудно-частотные характеристики массивного (1) и массивно-плитного фундамента (2) под действием вертикальной периодической силы.

Рис. 6 Структурная схема экспериментальной модели:
1 - вибратор двухвальный; 2 - электродвигатель; 3 - выпрямитель; 4 - регулятор напряжения;
5 - тахогенератор; 6 - регистрирующий прибор; 7,11,12 - вибродатчики, V - вертикальные, Н - горизонтальные; 8 - регуляторы увеличения; 9 - осциллограф; 10 - блок питания.

ной периодической силы. Амплитуда горизонтальных колебаний массивно-плитного фундамента в зоне низких частот в два раза меньше, чем массивного.

Зависимость параметров колебаний массивноплитных фундаментов от их конструктивных особенностей, таких, как количество плит, их площадь, расстояние

Таблица 1 Исходные данные регрессионного анализа.

Параметры фундаментов	Max.	Min.		
Количество плит	$\mathrm{N}=3$	$\mathrm{~N}=2$		
Площадь плит $(\mathrm{m} 2)$ Расстояния между плитами (m)	$\mathrm{S}=2$	$\mathrm{H}=1$	$\mathrm{H=1}$	
:---				

между плитами было оценено при помощи регрессионного анализа, который был выполнен при исходных данных, указанных в таблице 1 . Ширина плит назначалась равной ширине фундамента.

Уравнения регрессии имеют следующий вид:

$$
\begin{aligned}
& A_{20}^{v}\left(P_{\text {min }}\right)=17.4-2.6 s-2.1 h s \\
& A_{20}^{v}\left(P_{\text {med }}\right)=21.4-2.4 s-2.6 h s \\
& A_{20}^{h}\left(P_{\text {min }}\right)=26.6+3.6 h \\
& A_{20}^{h}\left(P_{\text {med }}\right)=39+8 h \\
& A_{r e z}^{v}\left(P_{\text {min }}\right)=110-26.4 h-18.6 s \\
& A_{r e a}^{h}\left(P_{\text {min }}\right)=241.5-50.8 h-62.25 h s+55 s n-33 h s n \\
& A_{r e z}^{h}\left(P_{\text {med }}\right)=285-45.5 h-40 h s-47.5 h s n \\
& f_{1}^{v}\left(P_{\min }\right)=41.9+4.6 h s+3.1 h n+2.9 s n-2.6 h s n \\
& f_{1}^{v}\left(P_{\text {med }}\right)=41.1+4.4 h s+2.9 h n+1.6 s n-1.9 h s n \\
& f_{1}^{h}\left(P_{\text {min }}\right)=36.1-2.6 n+3.6 h s+2.6 h n-1.6 s n \\
& f_{1}^{h}\left(P_{\text {med }}\right)=32+1.8 h-3.75 n+3.75 h s+1.5 h n-3.25 s n
\end{aligned}
$$

Рис. 9 Экспериментальные аплитудно-частотные характеристики массивно-плитного фундамента под действием вертикальной периодической силы: 1 - Pmin ; 2 - Pmed; 3 - Pmax.

Рис. 10 Экспериментальные аплитудно-частотные характеристики массивно-плитного фундамента под действием горизонтальной периодической силы: 1 - Pmin; 2 - Pmed; 3 - Pmax.

Уравнения регрессии демонстрируют влияние параметров фундаментов: количества плит, площади плит и расстояния между плитами на амплитуды горизонтальных и вертикальных перемещений и собственную частоту горизонтальных и вертикальных колебаний. Они соответствуют минимальной, средней и максимальной величине периодичесLТи кой силе.

Амплитудно-частотные характеристики массивно-плитных фундаментов при разных значениях нагрузок приведены на рис. 9,10 . Экспериментальные амплитудночастотные характеристики массивноплитных фундаментов при различных уровнях динамических нагрузок свидетельствуют о линейной зависимости перемещений от нагрузок.

Зависимость динамических характеристик массивно-плитных фундаментов от расстояния между плитами приведена на рис. 11,12 . Такая зависимость довольно существенна даже в небольшом диапазоне изменения этого параметра.

Выполненные экспериментальные исследования на крупномасштабных моделях позволили определить влияние размеров плит и расположения их по высоте фундамента, упругих и демпфирующих характеристик грунта на динамические характеристики фундамента, как и влияние инерционности основания.

Рис. 11 Экспериментальные аплитудно-частотные характеристики массивно-плитного фундамента под действием горизонтальной периодической силы: 1 - расстояние между плитами 0,5 м; 2 - расстояние между плитами 1 m .

Рис. 12 Экспериментальные аплитудно-частотные характеристики массивно-плитного фундамента под действием вертикальной периодической силы: 1 - расстояние между плитами 0,5 м; 2 - расстояние между плитами 1 м.

ВЫВОДЫ

Выполненные экспериментальные и теоретические исследования показали, что разработанный новый вид фундаментов под машины с динамическими нагрузками - комбинированный массивно-плитный фундамент позволяет за счет подбора параметров плит изменять в значительно более широких пределах динамические характеристики в соответствии с действующей динамической нагрузкой и обеспечивать более высокие технико-экономические показатели по сравнению с традиционными фундаментами.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Barkan D.D., Dynamics of Bases and Foundations, MCGraw-Hill, Inc., New York-1962. 434 p.
2. Швец Н.С.,Седин В.Л., Киричек Ю.А. Конструктивные способы снижения вибраций фундаментов машин с динамическими нагрузками. Москва, Стройиздат. -1987. -150с.
3. Киричек Ю.А. Комбинированные массивно-плитные фундаменты.Днепропетровск.-ПГАСА-2001.- 206c.
4. Киричек Ю.А. Комбинированные массивно-плитные фундаменты под машины с динамическими нагрузками.- Основания, фундаменты и механика грунтов. №5 2000.- С.10-14.
5. Andrianov I. , Awrrejcewich J., Kirichek Y., Koblik G., Asymptotyc Study of Half-plane with Embedded Punch, Journal of Theoretical and Applied Mechanics 45 (2007), 5-14.
6. Kirichek Y., Bolshakov V., About oscillations of deepened combined massive and plate bodies on visco-elastic basement, Proceedings for 4 -th Euromech Solid Mechanics Conference in Metz (2000), 632-640.
7. Kirichek Y. Analysis of the behavior of massive plate foundation on viscoelastic base. - Proc. of the 15-th Europ. Conf. on Soil Mech. and Geotech. Eng. in Athens.- 2011,- Part 1.- p.p.557-562.
