ШАПОВАЛ АНДРЕЙ ВЛАДИМИРОВИЧ
Кандидат технических наук. Доцент кафедры "Теоретической механики" Приднепровской государственной академии строительства и архитектуры.

Основные направления научной деятельности: численное моделирование совместной работы системы «основания - фундаменты - здания».

Автор 30 опубликованных работ.
E-mail: shapoval@creator.dp.ua

ШОКАРЕВ ЕВГЕНИЙ АЛЕКСАНДРОВИЧ

Аспирант кафедры основания и фундаменты Приднепровской государственной академии строительства и архитектуры.

Основные направления научной деятельности: искусственное улучшение характеристик грунтов оснований зданий и сооружений, возводимых на лессовых просадочных грунтах.

Автор 3 научныхх работ.
E-mail: eshokarev@mail.ru

ШОКАРЕВ АНДРЕЙ ВИКТОРОВИЧ

ООО "Геоинжиниринг", инженер, член украинского общества механики грунтов, геотехники и фундаментостроения.

Основные направления научной деятельности: мониторинг зданий и сооружений, интерактивные технологии компенсации неравномерный осадок зданий.

Автор 7 научных работ.
E-mail: shokarev_andrii@mail.ru

К ВОПРОСУ ОПРЕДЕЛЕНИЯ ПРИВЕДЕННЫХ ХАРАКТЕРИСТИК ГРУНТОВЫХ ОСНОВАНИЙ, АРМИРОВАННЫХ ЖЕСТКИМИ ВЕРТИКАЛЬНЫМИ ЭЛЕМЕНТАМИ

Ключевые слова: .усиление оснований, армированый эленент, расчетное сопротивление грунта

Зроблено аналіз чинників, що впливають на розрахунковий опір лрунтових основ, армованих вертикальними жорсткими елементами. Показано, що немає сенсу для виготовлення армуючих елементів використовувати бетон підвищеної міцності.

Проанализированы факторы, влияющие на расчетное сопротивление грунтовых оснований, армированных вертикальными жесткими элементами. Показано, что для изготовления армируюших элементов нет смысла использовать бетон повыиенной прочности.

Analyzes factors which can affect to the resistance of soil foundations reinforced with rigid vertical elements. It is shown that for the manufacture of reinforcing elements does not make sense to use high-strength concrete.

Постановка проблемы в общем виде и ее связь с важными практическими задачами. Метод усиления грунтовых оснований с использованием вертикальных армирующих элементов получил широкое распространение в практике строительства как при статическом, так и при динамическом воздействии на грунтовый массив $[1,2,3,4,5$, $6,7]$. При этом имеет место проблема расчета (а следовательно, и проектирования) армированных оснований.

Анализ последних исследований и публикаций, в которых положено начало решению данной проблемы. В настоящее время при расчете напряженно - деформированного состояния армированных оснований используется подход, основанный на использовании осредненных характеристик армированного грунта [7]. При этом для того, чтобы была обеспечена работа армированного грунта в массиве, расстояние между армирующими элементами в свету не должна превышать (3...5) $\cdot d$, где d - диаметр армирующего элемента с круглой формой поперечного сечения.

Выделение ранее не решенных частей общей проблемы, которым посвящена данная статья. В этой связи жесткость армирующих элементов также должна быть ограниченной.

При написании настоящей работы преследовалась цель выявить диапазон изменения жесткостных характеристик армированного грунтового основания в зависимости от величины приложенной к армированному основанию внешней нагрузки и свойств слагающего основание грунта (рис. 1).

Изложение основного материала исследования. Согласно [7], между расчетным сопротивлением армированного основания и действующей на грунт нагрузкой должно выполняться неравенство:

$$
\begin{equation*}
R^{*} \leq P \tag{1}
\end{equation*}
$$

где R^{*} - расчетное сопротивление армированного основания, P - величина приложенного к армированному основанию давления (рис. 1).

При этом расчетное сопротивление армированного осно-

вания следует определять по формуле:

$$
\begin{equation*}
R^{*}=\alpha \cdot R_{2}+(1-\alpha) \cdot R_{1}, \tag{2}
\end{equation*}
$$

где α - коэффициент армирования основания; R_{I} - расчетное сопротивление основания без учета влияния не его свойства свойств армирующих элементов; R_{2} - расчетное сопротивление основания, свойства которого полностью идентичны свойствам материалу, из которого изготовлены армирующие элементы. При этом коэффициент армирования α следует определять по формуле

$$
\begin{equation*}
\alpha=\frac{F_{a}}{F_{0}}, \tag{3}
\end{equation*}
$$

а расчетные сопротивления - по формулам:

$$
\begin{align*}
& R_{1}=\frac{\gamma_{c 1} \cdot \gamma_{c 2}}{k} \cdot\left(M_{\gamma, 1} \cdot b \cdot \gamma_{1}+M_{q, 1} \cdot d \cdot \gamma^{\prime}+M_{c, 1} \cdot c_{1}\right), \tag{4}\\
& R_{2}=\frac{\gamma_{c 1} \cdot \gamma_{c 2}}{k} \cdot\left(M_{\gamma, 2} \cdot b \cdot \gamma_{2}+M_{q, 2} \cdot d \cdot \gamma^{\prime}+M_{c, 2} \cdot c_{2}\right), \tag{5}
\end{align*}
$$

где F_{a} - доля расчетной площади основания, заполненной материалом армирующих элементов; $F_{0}=b_{0} \cdot L_{0^{-}}$общая расчетная площадь армированного основания; b_{0} и L_{0} - размеры армированного основания в плане (рис. 1); $\gamma_{c 1}$ и $\gamma_{c 2}$ - коэффициенты, зависящие от свойств слагающего основание грунта и геометрических размеров проектируемого сооружения; k - коэффициент, зависящий от способа определения свойств грунта (или материала, из которого изготовлены армирующие элементы); $M_{y, 1} M_{q, I}$ и $M_{c, I}$ - табличные коэффициенты, зависящие от значения угла внутреннего трения слагающего основание грунта (без учета армирования); $M_{p, 2}, M_{q, 2}$ и $M_{c, 2}$ - табличные коэффициенты, зависящие от значения угла внутреннего трения материала, из которого изготовлены армирующие элементы; b - ширина приложенной к основанию нагрузки; d - глубина заложения подошвы фундамента; γ^{\prime} - удельный вес грунта выше подошвы фундамента; γ_{I} - то же, ниже подошвы фундамента; γ_{2} - удельный вес материала, из которого изготовлены армирующие элементы; c_{l} - удельное сцепление грунта; c_{2} - то же, материала, из которого изготовлены армирующие элементы.

Далее найдем коэффициент армирования основания. Из (3) имеем:

$$
\begin{equation*}
\alpha=\frac{F_{a}}{F_{0}}=\frac{\frac{\pi \cdot D^{2}}{4}}{a^{2}}=\frac{\pi \cdot D^{2}}{4 \cdot a^{2}} . \tag{6}
\end{equation*}
$$

Здесь D - диаметр армирующего элемента, a - расстояние между соседними элементами в осях.

Задача дальнейших исследований была сформулирована так. Известен диаметр армирующего элемента D. Известно

Рис. 3. К определению расстояния между армирующими элементами. 1...9кривые, рассчитанные по формуле (9); 10 -то же, а*=6. 1 - кривая, рассчитанная по формуле (9) при $\mathrm{R}_{1}^{*}=0,1 ; 2$ - то же, при $\mathrm{R}_{1}^{*}=0,2 ; 3$ - то же, при $\mathrm{R}_{1}=0,3 ; 4$ - то же, при $\mathrm{R}_{1}^{*}=0,4 ; 5$ - то же, при $\mathrm{R}_{1}^{*}=0,5 ; 6$ - то же, при $\mathrm{R}_{1}^{*}=0,6 ; 7$ - то же, при R_{1}^{*} $=0,7 ; 8$ - то же, при $\mathrm{R}_{1}^{*}=0,8 ; 9$ - то же, при $\mathrm{R}^{*}=0,9$.

Рис. 1 К расчету армированного основания. 1 - основание; 2 - грунт выше подошвы фундамента; 3 - армирующие элементы; 4 - нагрузка.

Рис. 2. К определению расстояния между армирующими элементами. 1 поверхность, рассчитанная по формуле (9); 2 - плоскость а* $=5$
расчетное сопротивление основания R_{l}. Известно, что для обеспечения совместной работы массива заармированного грунта расстояние между армирующими элементами в свету не должно превышать 5•D. Требуется определить диапазон изменения расчетного сопротивления армирующих элементов R_{2} в зависимости от величины приложенного к основанию давления P (рис. 1).

С учетом изложенного подставим (6) и (2) в (1). Имеем:

$$
\begin{equation*}
\frac{\pi \cdot D^{2}}{4 \cdot a^{2}} \cdot R_{2}+\left(1-\frac{\pi \cdot D^{2}}{4 \cdot a^{2}}\right) \cdot R_{1} \leq P \tag{7}
\end{equation*}
$$

Далее найдем расстояние между соседними армирующими элементами a. Имеем:

$$
\begin{equation*}
a \leq \frac{D \cdot \sqrt{\pi \cdot\left(P-R_{1}\right) \cdot\left(R_{2}-R_{1}\right)}}{2 \cdot\left(P-R_{1}\right)} . \tag{8}
\end{equation*}
$$

Далее положим в (8) $R_{1}^{*}=\frac{R_{1}}{P}, R_{2}^{*}=\frac{R_{2}}{P}$ и $a^{*}=\frac{a}{D}$. Имеем:

$$
\begin{equation*}
a^{*} \leq \frac{\sqrt{\pi \cdot\left(1-R_{1}^{*}\right) \cdot\left(R_{2}^{*}-R_{1}^{*}\right)}}{2 \cdot\left(1-R_{1}^{*}\right)} \tag{12}
\end{equation*}
$$

В графической форме формула (9) представлена на рисунке 2 , где плоскость 2 соответствует расстоянию в свету между армирующими элементами, равном $4 \cdot D$.

Поскольку представленные на рисунке 2 не удобны для чтения, на рисунке 3 представлены рассчитанные для ряда

значений переменной $R^{*}{ }_{1}$ кривые. ВЫВОД
Расчетное сопротивление материала, из которого выполнены армирующие элементы, не должно превышать (11...12) P, где P - среднее давление под подошвой фундамента, опирающегося на армированное вертикальными элементами основание. Уместно отметить, что этот вывод полностью совпадает с предложением проф. Н. Л. Зоценко о целесообразности ограничения прочности армирующих основание элементов.

СГИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРИ

1. Мирсаяпов И.Т. Экспериментально-теоретические исследования работы армированных грунтовых массивов / Мирсаяпов И.Т., Попов А.О. //Известия Казанского ГАСУ. - 2008. - №2. - С. 75-80.
2. Нуждин Л.В. Исследование динамического напряженно-деформированного состояния жестких вертикальных армоэлементов /Л.В. Нуждин, Е.П. Скворцов // Научное издание / Вестник ТГАСУ. - Томск: ТГАСУ, 2003. - №1. - С. 225-230.
3. Скворцов Е.П. Колебания фундаментов мелкого заложения с контурным армированием грунтового основания // Сейсмостойкое строительство. - М: ВНИИТПИ, 2005. - № 1. - С. 53-56.
4. Мустакимов В.Р. Прочность и деформативность просадочных грунтов оснований, армированных вертикальными армоэлементами. Автореферат диссертации на соискание ученой степени кандидата технических наук. - М.: МГСУ, 2004. - 24 с.
5. Зоценко М.Л. Досвід і перспективи підсилення основ вертикальними грунтоцементними елементами у міському будівництві/ М.Л. Зоценко, Ж.М. Бовкун, B.I. Маляренко // Бетон и железобетон в Украине. - 2006. - №6. - С. 24 - 28.
6. Армирование лессовых грунтов оснований зданий и сооружений /И.В. Степура, В.С. Шокарев, А.С. Трегуб, А.В. Павлов, В.П. Павленко // Международная конференция по проблемам механики грунтов, фундаментостроению и транспортному строительству. - Пермь: ПГТУ, 2004. - C. 213-221.
7. Проектирование и устройство оснований и сооруженией из армированного грунта. Строительные нормы республики Беларусь. Приложение П10-01 к СНБ 5.01.01-99.
8. Ухов С.Б. и др. Механика грунтов, основания и фундаменты: Учебник . - М.: Изд. АСВ, 1994-527 с.

ABSTRACT

Mirzabeg V., Zocenko N.L. A, The gruntotsementnye bases and foundation //The world of geotehnik.- 2012.- №2.- P.4-9.
In article the progressive method of the device of the bases and the bases from soil cement with the help буросмесительной technologies is considered. The complete set of the equipment for the device of such bases is offered. Conditions of formation of physicomechanical characteristics soil cement are analysed. Examples of constructive decisions of the bases and the bases from soil cement are resulted. Economic aspects of use soil cement are considered.

Kuzlo N.T. Research of influence of concentration of salt solutions on bonding strengths in clayey grounds //The world of geotehnik.-2012.- №2.- P.10-12.

The experimental dependence of the specific adhesion of soil on the concentration of salt solution has been obtained. Mathematical model for evaluating stress-strain state of soil to the changing forces of adhesion about filtering salt solutions has been showed.

Harchenko M. A. Research of properties of the condensed priming coats of artificial bases and the likelihood analysis of this data //The world of geotehnik.- 2012.- №2.- P13-20.
It is presented the results of comprehensive field and laboratory experimental studies the properties of compacted soils and soil mixtures of artificial bases. It is determined the necessary parameters to ensure long-term strength of artificial missives. The typical examples of mathematical models of probability distributions of random variables of the properties of compacted soils are presented. The results of probabilistic design of foundations on artificial bases, taking into account the parameters of soil heterogeneity. By numerical simulation of the cushions stress-strain state by finite element method using Monte Carlo simulation it is determined the statistical parameters and distribution law of foundations settlements.

Duvanskiy A.V. The concept of formation of the tectonic pressure influencing extended underground constructions of a shut way of
works //The world of geotehnik.- 2012.- №2.- P.21-24.
The topical problematic of extended underground structures' construction by the trenchless method, concerning geomechanics, mechanics of underground structures and building structure is considered. The mechanism of influence of tectonic disturbance on the underground structures is reflected.

Skoda V.V., Syomchina M.V., Shkoda A.V. Technique of a choice of a type of the bases of frame buildings which are reduced in a difficult ground conditions of the Zaporozhye region //The world of geotehnik.- 2012.- №2.- P.25-27.
In the article the use of methodology of calculation of the system is offered "building-founding" taking into account possible soil deformations. On the example of building of the shopping center designed in the district of house of "Clothes" in Zaporizhzhya a calculation and analysis of the got results are executed. Other structural solution of foundations of building which in data the difficult ground terms is more optimal.

Shapoval A.V., Shokarev Yu.A, Shapoval V.G., ShokarevA.V., To a question of definition of the resulted characteristics of the earth foundations reinforced by rigid vertical elements //The world of geotehnik.- 2012.- №2.- P.28-30.
Analyzes factors which can affect to the resistance of soil foundations reinforced with rigid vertical elements. It is shown that for the manufacture of reinforcing elements does not make sense to use highstrength concrete.

Borisenko A.B. Estimation of a functional performance of designs of a front thermal protection with тонкослойной facing plaster // The world of geotehnik.- 2012.- №2.- P.31-33.
The results of field research facade insulation with thin-layer plaster, criteria for evaluating the performance of structural insulation facade, set specific destructive factors finishing plaster layer and causes thermal failure.

