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REFRACTION OF GAUSSIAN WAVE BEAM BY FLAT BORDER OF
MONAXONIC CRISTAL

The results of the study of the wave beam refraction by the flat border of isotropic dielectric and monaxonic
crystal are brought. The refraction of wave beam on the border of monaxonic crystal has a row of the specific
features, related to that direction of distribution of phase (wave normal) and energy (ray) in an unusual wave does
not coincide. In relation to a crystal position of his optical axis and main values of tensor of inductivity are known.
For the decision of task presentation of the field of falling wave beam is used as the Fourier integral on flat waves
with their subsequent analytical displacing in the parabolic approaching. Because of anisotropy there are two
refracted bunches in a monaxonic crystal - usual and unusual

In a usual wave beam the wave normal of axial wave coincides with the ray vector of this wave. In an unusual
beam they do not coincide in this connection, axes are perpendicular to the wave normal and not perpendicular ray.
Passing is therefore done to the oblique-angled wave - ray system that descript position of power center of unusual
bunch is correct.

A case is widely used in appendixes, when an optical axis lies in plane falling, here a ray lies in the same plane
and a corner between a wave normal and ray is determined by a simple formula.

The change of basic parameter of beam, called the variance, is determined by the change of phase, therefore
for an unusual beam it depends on a wave coordinate, but not on the ray. The operator of transformation of
variance is certain on the border of division, that allows to obtain information about the structure of refracted wave
beams without the decision of border task.

Knowledge of operators of transformation for the variances of refracted wave beams easily allows to define
the structure of the field of the last wave beams at falling of wave beam on the arbitrary stratified structure with flat
borders, containing the layers of isotropic dielectric and monaxonic crystal

Key words: wave beam, monaxonic crystal, tensor of dielectric penetration.

Introduction
Refraction wave beam at the boundary of an

isotropic dielectric - uniaxial crystal has a number of
specific features related to the fact that the direction of
phase propagation (wave normal) and energy (the beam)
are not the same in the extraordinary wave. Regarding
the crystal we know the position of its optical axis and
the principal values of the dielectric permittivity tensor.
Changing the default setting of the beam - variance - is
determined by the phase change, so it depends on the
position of the wave instead of radiation for the
extraordinary beam.

Main part

Let a plane boundary z=0 of a uniaxial crystal
that fills the half-space z > 0, is at an angle of Gaussian
wave beam with a transverse component of the electric
field strength:

Ey(x1,21)=Eq(mAg / A4 Hm(\/ kony / Alxl)X

2 : 1 M)
xexp[— KonyX{ /2V1]exp i konlzl_(mjLE)u1

The wave beam (1) is distributed in a
homogeneous isotropic dielectric with a refractive index
n, that fills the half-space z <0 (see Fig.1).

Regarding the crystal the position of its section of
the optical axis is known and the principal makes the
angle j with the normal § to the interface, and the

principal values e, and e, of the dielectric tensor

e=e,+(e,—€,)CC.
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Fig.1 Distribution of wave beam in a homogeneous
isotropic dielectric

The coordinate system (x;,z;) is related to the
beam, the axis z, is directed along the wave beam axis,

its beginning is in the beam opening. The distance of the
axis of the incident beam opening along the axis to the
point of its intersection with the surface of the crystal is

l;. In the formula (1) H,(x) - Hermite polynomial of
the m - order, kg =w/c, c is the speed of light in

vacuum.

All geometric and partly phase parameters of the
Gaussian wave beam are implicitly contained in the
complex parameter

Vi(z1)=n1Ag +izg
called the variance wave beam [2], where
Ag=kv E12:
A =kgnyv 212 = (ReVl)(1+ Df);
Ry = (JmVy )(1+ D;?)
D; =tg u; =(JmVy )/ ReVy,

()

where v  is the radius of the beam spot of the
field in the opening, v 4 is the radius of the spot of the
field, Ryis the radius of curvature of the wave beam
surface, uj is an additional phase shift of the beam due
to its spreading during propagation.

The field (1) is a quasi-optical approximation of
the field

— = kon; %
Eq(xq,21)= Elg_pl [ Fn(xq )

» ()

x exp{ikonl(xlxl + \ll—xf zlﬂ dxq

where
(1) = (29 / ko /! 2(= )" expl ko2 Agx? 1 2)
Hm(“n/ ko onl):

Fr (X, ) - Fourier - transformation of the function
of the field distribution of the incident beam in the
opening when z; =0, Xq =sinby.

The formula (3) represents the expansion of the
field of the incident wave beam (1) in a Fourier integral
in plane waves, b; are the corners that make up the

wave vectors k; = konyfi; of the waves with the beam
axis z,, fi; are single wave normals of plane waves.

The angles of incidence of plane waves on the
surface of the crystal are a; =ajo+b;. Here and

further the first lower indices of the parameters of wave
beams indicate spatial region, and the second lower
index 0 indicates that the value refers to a plane wave
propagating along the axis of the wave beam (axial
wave).

For the quasi-optical approximation in the formula

(3) y1-x{
and minimize the resulting integral analytically. As a
result, we get the formula (1).

Due to the anisotropy in the uniaxial crystal there

must be expanded up to quadratic terms

are two refracted beams - ordinary ES and

extraordinary ES , defined by the formula:

= kony
E (Xz 221) gpl [ EJ(xy )Ly (xq )%

X exp[ikonzj (XZJ x2j +y1- (xzj )2 zzj del
where
Ly (xq ) = expikong/1—X 21y ;

(4)

(eo sin®Q +e, cos Q)]llz;

sz are corners that make up the wave vectors
|221' = k0n2j ﬁzj of the plane waves in the expansion (4)
field of refracted beams in plane waves with axes 22j
coinciding with the axes of refracted beams; Q is the
angle between the wave vector k}e and the optical axis

it is a function of the variable of
The factor Ly(x;) describes the

spreading of the beam path 1, .

of the crystal,
integration X, .

o
v
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The angles of refraction a2J of plane waves in the
expansion (4) defined by the formula a2j =a2jo +bJ ,
where azjO are the angles of refraction of plane waves

with wave vectors |221'0 coinciding with the axes of

wave beams.
Using the laws of refraction

nysinag =nJsina,,

npsinagg = n2j sinazj’O (5)
it is easy to get
xzj =(n1/nzj )fle +o(><12), (6)
where
tlj2 =cosag/ cosaZj’O (7

ns =n5(Q,); Q, is the angle between the optical

axis and the wave vector E;YO of the extraordinary beam

coinciding with its axis. Changing places at the lower
indices of t:jb in the future will mean replacing the

numerator and denominator in the formula (7).

The amplitudes of the reflected and refracted wave
beams are identical to those for plane waves, their
definition is given in [3].

In an ordinary wave beam the wave normal fi3,

of axial wave coincides with the axial wave vector §§0

of this wave beam. In an extraordinary beam the wave
normal fi5, of the axial wave and the radial vector §5,

does not coincide in direction. In general, when the
optical axis does not lie in the plane of incidence, the

ray vector §§,0 along which the energy transfers in the

beam does not lie in the plane of incidence either. In
applications, the case when the optical axis lies in the
plane of incidence (the main plane of incidence) is
commonly used. In the main plane of incidence, the
refractive index for extraordinary waves varies with the
direction of the maximum. At the same time the beam
lies in the same plane and the angle d between the

wave normal fi3o and the line §5q is defined by the

formula

tgd = . Jee—€oftgm , ®)

e +eotg2m

where m is the angle between the vectors fi® and

In the formula (8) + sign is taken if the vector is
between the normal to the surface.

In the formula (4) two coordinate systems (le ,Z j)

are introduced whith the axes 22J directed along the
wave vectors Ezio (along the axis of wave beams), and

the origin of coordinates 02j is at the interface. In the

future, the coordinate system whith the axis z directed
along the wave vector, we will call wave, and the

system with the axis z along the beam we will call §§'0

- beam.
The direction of the wave beam axis must coincide
with the direction of the energy flow. The coordinate

value xzj =0 in the formula (4) defines the position of
the energy center of the beam. For the ordinary wave
beam the axis x3 L 87 and the value x3 =0 correctly
describes the position of the energy center of an
ordinary beam at any coordinate z39 (t. E. energy
transfers along z9). For the extraordinary wave beam
the axis x5 is not perpendicular to 55‘0 and therefore
the co-ordinate axis x5 needs to move to the
axis XS(S)L§§‘O, i.e. the wave from the rectangular
coordinate system (xgzg) should move in oblique
wave-beam (xg(s),zg), which is

©)

For beams with poor divergence the function
Frm (X1 ) has sharp local maximum in the vicinityx; =0,

e(s e € i
x2( )= X3 cosd —z3 sind

and therefore, by substituting (9) into (4), x5tgd can

be neglected in comparison with 1—(x2’3)2 (for all of

crystalstgd <<1). As a result, for the extraordinary
beam we receive

Es (x5 25 )= kz—p TES (0 )Pk o)
- (10)

x exp{ikOnS(Q {xfxg(s) / cosd +4/1- &5)2 ZS:I Jdx,

Displacing the integrals (4) for the ordinary beam
and (10) for the extraordinary in the quasi-optical
approximation we finally get

v
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xex;{—konzj ()‘(2J )2 / 2V2j }exp{i{konzj zg —(m+%)u J }}

(11)
where

1 1

%9 —x8, % =g - 2tgdl ., (&) ] = el )
2 (zzj):vzj (0)+iz)

v, (0)= r‘szo(tzjl)2 +i(”2J /”lltzjl)zll'

Thus, in the extraordinary wave beam the phase of
the wave propagates along the normal direction (along

(12)

the axisz5), and energy - along the straight

line x5 = z5tgd , i.e. along the beam. Changes in the

variance beam (12) are determined by the phase change,
so it depends on the wave coordinates but not from ray
coordinates.

Formula (11) for the extraordinary wave beam
coincides with the similar formula for work, which it
obtained from the solution of parabolic differential
equations. However, this formula is obtained for the
space which is completely filled with a crystal but in
this work it is obtained for the boundary value problem,
for half-space filled with a crystal in the breaking of
them falling on the boundary of the wave beam. This
allows obtaining a conversion algorithm variance beam
V when crossing the boundary. Comparing formulas (2)

for V4 (I;) and (12) for V,J(0) we can record
V7 (0)=BV(ly),

where BlJ is the conversion operators of variances

(13)

of the beams when crossing the border line from the 1st
circumference in the 2nd circumference determined by

the formula
8 = rm b, f

If the crystal occupies not all the half-space z >0,
but only part of it and is restricted by a flat surface (2nd
border line), which has isotropic circumference outside
with the refractive index ngz, the last wave beams in

(14)

area 3 is defined by the formula

e1od ad )52 TEbd Pt aeu)bed

xexp{ikong)( x4xJ +w}1—(x3j)zzef} dxq

» (15)

where the factor Lé(xzJ ): exp|:ik0n2j V1- (><21 )2 |21}

describes the blurring (diffraction) beams on the path
1
2 )

I2j - the distance along the wave normals ﬁzj,o
(along the axes of the beams 22j from the first border
line to the second), x3j =sin bsj ; b3j - the angles that
make up the wave vectors IZSj = kon3ﬁ3j of plane waves
in (15) with the axes 231; . The direction of the axis z?f of
the wave coordinate system coincides with the direction

of the wave vectors E,;'O and is determined from the

laws of refraction on the second border line

5 J

JeinaJ _ ina J
n2 sma2 —n3sma3

from which

J I iy, = j 1 2
X3 = (”2 /g }23X2 =(ny /g ttdxa +°(X1 )
I —eosa I

wheret,; =cosa, / cosag,; @z, - the angle of
incidence of the axial wave at the second border line. If
the boundaries are parallel

il 4] _ j

totyy =tjz =cosa,, /cosa3,0 .

In an isotropic medium over a layer of the
crystal figg =550, figyll S5, , and therefore the axis

25 is parallel to the axis zg(s).

Laws of refraction (16) provide that the
extraordinary axis of the last extraordinary wave beam

in an area 3 matches z5 but they do not take into

account the direction of the flow of energy, and the
energy center of this beam extends along the

axis zg(s)ll z§ (see Fig.1). Therefore, due to the
parallelism of these axes, in the formula (15) for the
extraordinary wave beam ( j=e) it is necessary to do
the replacement z§ — zg(s) nx§ — xg(s), i.e. go from

a wave into the ray coordinate system. Phases in this
transition have no effect, but it gives the correct position
of the energy center of the beam.

The result is

elled 2d el A1) o fhond )
><exr{—k0n3 ()?3! )2 / 2V3j }exp{i{kongej —(m+%)u?‘; }} |

v

o e _ inag
;ny sina;y =ngsinag, (16)
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v3j (73{ )=v3j )+ i—g :
V4 (0)=nd Ao ftdyth; f +

S \2 SV N2
il (g 1 fedytdy Fra o 0d e F1d ]

If the boundaries are parallel tot?fztzjl:t:jl.

(18)

Comparing formula (18) for V,!(0) with formula (12)
for V2j (I 2’) we can record
oY= privi(
V4(0)=BJv, ('2 )
where the conversion operator of the variance of

the wave beam on the second interface, is defined by the
formula

(19)

o) = o /nf . f

This passage makes it easy to determine the field
structure of the wave beam while passing them an
arbitrary layered structure with flat interfaces composed
of isotropic dielectric layers and layers of uniaxial
crystals. On thek - interface the conversion of the
variance of the beam is carried out according to the rule

VkJ+1(0): BkJVkJ (ij )’ Bk] = (nlg+1 / nkJ thJJrl,k)2 !

ij+l(|kj+1)zvkj+1(o)+ iIkj+1 )

Wherelkj is the distance between the k-1 and k-

(20)

boundaries measured along of the wave coordinate zg
Knowledge of the structure of the field of wave
beams that have passed the layer of anisotropic

dielectric is necessary for the description of fields in
open resonators with anisotropic dielectrics.

Conclusion

Conversion operators for variance beam while
passing through the anisotropic layer are defined which
makes it easy to determine the structure of the field of
the refracted wave beams when the beam wave passes
through a random layer structure with flat boundaries.
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SAJTIOMJTIEHHA TAYCOBOI'O XBWJ/IbOBOTI O NMYYKA INM/TACKOKO MEXXEHRO
OAHOOCHOIo KPUCTANY
A.C. Cncoes, J1.A. HazapeHKoO

HaBegeHo pesynbTaTu AOCNIOXKEHHA 3aNOMIEHHS XBWILOBOTO My4ykKa MAACKOK  Me>Keto
i30TPONHOro AienekTprka Ta 0f4HOOCHOTO KpucTany. BusHaueHnii onepaTop nepeTBOPEHHS OCHOBHOIO
napaMeTpy XBWIbOBOIO MyyKa, SAKUMA Mae Has3By BapuaHca, Npu MNPOXOA>KEHHI MedKi posnoginy
iI30TPONHWIA AieNneKTPUK — OAHOOCHUIA KpucTan. Lle [03BOASE, He PO3B’A3yHOUM FpaHuyHOl 3afavi,
oTpUMaTM iHGhopMaLito NPO CTPYKTYPY 3a/10MIEHNX XBUNbOBUX MyYKiB.

Knouosi CnoBa: XBWMbOBUWA MYy4YOK, OAHOOCHWIA KpUCTal, TEH30p AieNeKTPUYHOI

MPOHWUKHOCTI.

MNPENOMJ/IEHVE TAYCCOBOIMO BOJTHOBOI O MYYKA M/IOCKOW MrPAHULIEN
O4HOOCHOI'O KPUCTAJA
A.C. Cucoes, J1.A. Ha3apeHKo

MpuBefeHbl pesyNbTaTbl UCCNEAOBAHUS MPENOMIEHWs BOMHOBOFO Myyka MIOCKOW FpaHuLeit
N30 TPOMNHOIO AMANEKTPMKA W CNIOEM OHOOCHOTO KpucTanna. OnpeeneH OCHOBHOM napamMeTp BOHOBbIX
NYYKOB, Ha3bIBAEMbIA BAPUAHCOM, MPK NPOXOXKAEHWN CNOS OAHOOCHOrO KpUCTanNa, YTO No3BONseT He
peLuas rpaHnyHoN 3adaum NonyuMThb MHKOPMALMIO O CTPYKTYPE NPENOMEHHbIX BOMHOBBIX MYy4YKOB.

KntoueBble €noBa: BOMHOBOM My4OK, OAHOOCHbIN KPUCTa&N1, TEH30p AWN3NEKTPUYECKOi
NPOHULLaEMOCT L.

v

L 4

L 4

© A.S. Sysoyev, L.A. Nazarenko 9



