УДК 539.3

Чернушенко И.И., Семенюк Н.П.

УСТОЙЧИВОСТЬ ГОФРИРОВАННЫХ АРОК ПРИ ВНЕШНЕМ ДАВЛЕНИИ

Предложена методика расчета устойчивости и закритического поведения гофрированных арок, основанная на решении нелинейной системы дифференциальных уравнений первого порядка с использованием метода последовательных нагружений. Краевая задача в приращениях решается методом дискретной ортогонализации. Решение конкретных задач по устойчивости гофрированных арок показало, что поведение таких конструкций при нагружении существенно отличается от поведения круговых арок.

Ключевые слова: нелинейная система, устойчивость, деформация, метод дискретной ортогонализации.

Введение. Исследование устойчивости оболочек является одной из важнейших задач механики тонкостенных конструкций. В первых работах по устойчивости труб при внешнем давлении и устойчивости круговых колец и арок [1, 4] было замечено, что как по постановке, так и по методам решения эти задачи весьма близки между собой. Оказалось, что длинные панели ведут себя также как арки единичной ширины. Это дает возможность использовать результаты по устойчивости арок и длинных оболочек как дополняющие друг друга. В работах [4, 7] рассматривалась устойчивость при внешнем давлении цилиндрических оболочек, поперечное сечение которых имело волнообразный характер. В случае, когда профиль волн образован дугами окружностей возможно повышение критического значения интенсивности внешнего давления по сравнению с круговыми оболочками. Этот факт был обнаружен при расчете коротких оболочек. Что касается длинных оболочек или гофрированных арок, то до настоящего времени, судя по известным нам источникам, их устойчивость не изучалась. В работе [4, 7] рассмотрено деформирование арок, состоящих из сегментов прямых стержней. Решению задачи устойчивости и закритического поведения волнообразных арок посвящена настоящая работа.

Постановка задачи. Для задания геометрических параметров арки воспользуемся полярной системой координат *R*, φ . Кривую, являющуюся осевой линией арки, можно задать в виде

$$R = R_0 \rho(\varphi), \quad 0 \le \varphi \le \varphi_N, \tag{1}$$

где R_0 - радиус исходной окружности, которой придается волнистость в виде, описываемом периодической функцией $\rho(\varphi)$, заданной на всем интервале $(0, \varphi_N)$ одним выражением или только на подинтервале $\varphi_{i-1} \leq \varphi \leq \varphi_i$, повторяющемся N раз. При этом периодичность можно обеспечить с помощью рядов Фурье, как это сделано в работах [4, 7], или же путем соответствующего алгоритма при численном решении [7].

Полагаем, что на отрезке $[0, \varphi_1]$ функция $\rho(\varphi)$ состоит из двух дуг $\frac{r\gamma_0}{2}$ выпуклой окружности, сопряженных дугой $r_1\beta_0$ вогнутой окружности (рис. 1).

Рис. 1. Вид функции $\rho(\varphi)$ на отрезке $[0, \varphi_1]$

Сопряжение выполняется так, что производная $\rho'(\phi)$ является непрерывной функцией. Вследствие этого радиусы малых окружностей *r* и r_1 в точке сопряжения лежат на одной прямой.

На участке
$$\left(0, \frac{\varphi_0}{2}\right)$$
 функция
 $\rho(\varphi) = \omega_1 \cos \varphi + E_2(\varphi);$
(2)

где $\omega_1 = \cos \frac{\varphi_0}{2} - p \cos \frac{\gamma_0}{2}$, $E_2(\varphi) = \sqrt{p^2 - \omega^2 \sin^2 \varphi}$, $p = \frac{r}{R_0}$.

Уравнение вогнутой дуги при $\varphi \in \left(\frac{\varphi_0}{2}, \frac{\varphi_0}{2} + \alpha_0\right)$ задается в виде

$$\rho(\varphi) = \omega_2 \quad \cos\varphi_1 - E_2(\varphi_1); \tag{3}$$

где $\omega_2 = \cos \frac{\alpha_0}{2} + p \quad \cos \frac{\beta_0}{2}, \ \varphi_1 = \varphi - \frac{\varphi_0}{2} - \frac{\alpha_0}{2}, \ p_1 = \frac{r_1}{R_0}.$

На участке $\varphi \in \left(\frac{\varphi_0}{2} + \alpha_0, \varphi_0 + \alpha_0\right)$ уравнение кривой $\rho(\varphi)$ совпадает с уравнением (2), но вместо φ надо писать $\varphi_2 = \varphi - \varphi_0 - \alpha_0$. При заданных углах φ_0 , γ_0 радиус окружности rвычисляется согласно формуле

$$r = R_0 \quad \frac{\sin\frac{\varphi_0}{2}}{\sin\frac{\gamma_0}{2}} \quad . \tag{4}$$

Аналогично, при известных α_0 и β_0 имеем

$$r_1 = R_0 \frac{\sin\frac{\alpha_0}{2}}{\sin\frac{\beta_0}{2}}.$$
(5)

Между углами $\varphi_0, \gamma_0, \alpha_0, \beta_0$ существует зависимость (рис. 1)

$$\gamma_0 = \varphi_0 + \alpha_0 + \beta_0. \tag{6}$$

Отсюда следует, что при задании угла γ_0 надо учитывать, что

$$\varphi_0 + \alpha_0 < \gamma_0 < \pi . \tag{7}$$

Параметр Ляме A_2 и радиус кривизны R_2 кривой (1) найдем, воспользовавшись формулами

$$R_{2} = R_{0} \frac{\left(\rho^{2} + {\rho'}^{2}\right)^{\frac{3}{2}}}{\rho^{2} + 2{\rho'}^{2} - \rho\rho''}; \ A_{2} = R_{0} \left(\rho^{2} + {\rho'}^{2}\right)^{\frac{1}{2}}, \tag{8}$$

или

$$R_2 = R_0 \rho_2, \qquad A_2 = R_0 a_2$$

Для первого и третьего участков получим

$$\rho_2 = p, \quad a_2 = p_1 \frac{\rho(\varphi)}{E_2(\varphi)},\tag{9}$$

для второго

$$\rho_2 = -p_1, \quad a_2 = p_1 \frac{\rho(\varphi_1)}{E_2(\varphi)}.$$
(10)

Так как функции ρ и ρ' непрерывны, то параметр A_2 также непрерывная функция. Радиус кривизны в точках сопряжения меняет знак и величину, если $r \neq r_1$.

Пусть гофрированная арка, имеющая единичную ширину и толщину t, нагружена равномерным внешним давлением интенсивностью q. Для исследования нелинейного деформирования и устойчивости арки воспользуемся вариантом уравнений теории оболочек, предложенном в работе [6]. Так как рассматривается плоская деформация арки, то в [6] учитываются только перемещения v и w, деформации растяжения ε_{22} и изменения кривизны κ_{22} , усилия T_{22} , T_{23} и момент M_{22} . Деформации выражаются через перемещения

$$\varepsilon_{22} = \varepsilon_2 + \frac{1}{2}\theta_2^2; \quad \kappa_{22} = \frac{1}{A_2}\frac{\partial\psi}{\partial\varphi}, \tag{11}$$

где $\varepsilon_2 = \frac{1}{A_2} \frac{\partial v}{\partial \varphi} - \frac{w}{R_2}, \ \theta_2 = \frac{1}{A_2} \frac{\partial w}{\partial \varphi} + \frac{v}{R_2}, \ \psi = -\theta_2.$

Соотношения закона Гука имеют вид

$$T_{22} = C_{22}^* \varepsilon_{22} + B_{22}^* \kappa_{22}; \quad M_{22} = B_{22}^* \varepsilon_{22} + D_{22} \kappa_{22}, \tag{12}$$

где для обобщенных жесткостей принятые в [8] обозначения имеют в данном варианте такой смысл:

$$C_{22}^* = C_{22} + \frac{1}{R_2^2} D_{22}; \quad B_{22}^* = \frac{1}{R_2} D_{22}; \quad C_{22} = \frac{Et}{1 - v^2}; \quad D_{22} = \frac{t^2}{12} C_{22}.$$
 (13)

Соотношения (12) можно записать также в виде

$$T_{22} = C_{22}\varepsilon_{22} + \frac{1}{R_2}D_{22}\left(\kappa_{22} + \frac{1}{R_2}\varepsilon_{22}\right); \quad M_{22} = D_{22}\left(\kappa_{22} + \frac{1}{R_2}\varepsilon_{22}\right).$$
(14)

Для длинных цилиндрических оболочек запись приращения кривизны в виде суммы $\kappa_{22} + \frac{1}{R_2} \varepsilon_{22}$ играет, как известно, существенную роль. Поэтому уточненные выражения (12)

могут применяться к оболочкам любой длины и, следовательно, к расчету арок.

Дифференциальные уравнения равновесия запишем в проекциях на направления осей недеформированного криволинейного стержня

$$\frac{1}{A_2}\frac{dT_{22}}{d\varphi} - \frac{1}{R_2}T_{23}^* = 0; \quad \frac{1}{A_2}\frac{dT_{23}^*}{d\varphi} + \frac{1}{R_2}T_{22} + q = 0; \quad \frac{1}{A_2}\frac{dM_{22}}{d\varphi} - T_{23} = 0, \tag{15}$$

где $T_{23}^* = T_{23} + T_{22}\theta_2$.

Представленные зависимости позволяют получить разрешающую систему нелинейных уравнений в таком виде

$$\frac{1}{A_2} \frac{dv}{d\varphi} = \frac{1}{R_2} w - \frac{1}{2} \theta_2^2 + \frac{1}{C_{22}} T_{22} - \frac{1}{R_2 C_{22}} M_{22};$$

$$\frac{1}{A_2} \frac{dw}{d\varphi} = -\frac{v}{R_2} - \psi;$$

$$\frac{1}{A_2} \frac{d\psi}{d\varphi} = -\frac{1}{R_2 C_{22}} T_{22} + \frac{1}{D_{22}} \left(1 + \frac{t_2}{12R_2^2}\right) M_{22};$$

$$\frac{1}{A_2} \frac{dT_{22}}{d\varphi} = \frac{1}{R_2} T_{23}^*;$$

$$\frac{1}{A_2} \frac{dT_{23}^*}{d\varphi} = -\frac{1}{R_2} T_{22} - q;$$

$$\frac{1}{A_2} \frac{dM_{22}}{d\varphi} = T_{23} \,. \tag{16}$$

К этим уравнениям следует присоединить граничные условия, которые формулируются относительно трех величин, взятых по одной из таких пар

$$(v, T_{22}), (w, T_{23}^*), (\psi, M_{22}),$$
 (17)

при $\varphi = 0$ и $\varphi = \varphi_N$.

Решение системы уравнений (16) при соответствующих граничных условиях позволяет исследовать докритическое состояние арки, определить критические точки и дать приближенное представление о характере закритического поведения, так как уравнения (16) для больших прогибов не применимы.

Решение задачи. Приведем систему уравнений (16) к безразмерному виду, используя при этом такие обозначения разрешающих функций

$$y_1 = \frac{T_{22}R_0^2}{C_{22}t^2}, \quad y_2 = \frac{T_{23}R_0^2}{C_{22}t^2}, \quad y_3 = \frac{M_{22}R_0^2}{C_{22}t^3}, \quad y_4 = \frac{vR_0}{t^2}, \quad y_5 = \frac{w}{t}, \quad y_6 = \frac{R}{t}\psi$$

Получим

$$\frac{1}{a_2}\frac{dy_1}{d\varphi} = \frac{1}{\rho_2}y_2; \quad \frac{1}{a_2}\frac{dy_2}{d\varphi} = -\frac{1}{\rho_2}y_1 - m_q; \quad \frac{1}{a_2}\frac{dy_3}{d\varphi} = \frac{1}{h}y_2 + y_1y_6;$$

$$\frac{1}{a_2}\frac{dy_4}{d\varphi} = \frac{1}{h\rho_2}y_5 - \frac{1}{2}y_6^2 + y_1 - \frac{h}{\rho_2}y;$$

$$\frac{1}{a_2}\frac{dy_5}{d\varphi} = -\frac{1}{\rho_2}y_4 - y_6;$$

$$\frac{1}{a_2}\frac{dy_6}{d\varphi} = -\frac{1}{\rho_2}y_1 + (12 + h^2)y_3, \quad (18)$$

где $h = \frac{t}{R_0}$, $m_q = \frac{qR_0^3}{C_{22}t^2}$.

,

1

Граничные условия также формулируются относительно функций y_i . Их удобно записать в матричном виде. При $\varphi = 0$ и $\varphi = \varphi_N$ будем соответственно иметь

$$A_1 Y = 0 \quad \text{i} \quad A_2 Y = 0, \tag{19}$$

матрицы A_1 и A_2 имеют размеры 3х6 с компонентами a_{ij} равными единице, на тех местах, которые умножаются на компоненты вектора $Y(y_1,...,y_6)$, y_j или y_{j+3} последовательно (j=1,2,3) при i=1,2,3.

Для решения задач (18), (19) на всей траектории деформирования воспользуемся методом непрерывного продолжения по параметру [3]. Продифференцируем уравнения (18) по параметру λ , который представляет собой длину дуги множества решений нелинейной системы. Так как в системе (18) четыре уравнения линейные, то при дифференцировании они сохраняют свой вид, но вместо функций y_i надо подставить производные

$$\dot{y}_{i} = \frac{dy_{i}}{d\lambda}, \quad \dot{m}_{q} = \frac{dm_{q}}{d\lambda}.$$
 Два уравнения (3-е и 4-е) приобретут вид

$$\frac{1}{a_{2}}\frac{d\dot{y}_{3}}{d\varphi} = \frac{1}{h}\dot{y}_{2} + \dot{y}_{1}y_{6} + y_{1}\dot{y}_{6};$$

$$\frac{1}{a_{2}}\frac{d\dot{y}_{4}}{d\varphi} = \frac{1}{h\rho_{2}}\dot{y}_{5} - \dot{y}_{6}y_{6} + \dot{y}_{1} - \frac{h}{\rho_{2}}\dot{y}_{3}.$$
(20)

Граничные условия (19) также записываются относительно производных

$$A_{1}Y = 0 \quad \text{i} \quad A_{2}Y = 0 \tag{21}$$

при $\varphi = 0$ и $\varphi = \varphi_N$.

Полученная система уравнений, кроме производных \dot{y}_i , содержит производную от нагрузки \dot{m}_q , которая также подлежит определению. Дополнительное уравнение, позволяющее решить задачу

$$\sum_{i=1}^{6} (\dot{y}_i)^2 + (m_q)^2 = 1, \qquad (22)$$

обеспечивает движение по кривой нагружения [3]. Оно соответствует требованию, чтобы полученное решение обладало единичной нормой.

Если найдено решение задачи (20)-(22), то для определения функций y_i и нагрузки m_q формулируется задача Коши по параметру λ . Методика и алгоритм решения задачи в такой постановке изложены в [3].

Одним из методов решения задачи Коши является метод Эйлера. При использовании этого метода можно несколько видоизменить алгоритм решения, перейдя непосредственно к методу последовательных нагружений, модифицированному таким образом, чтобы он был применим не только в регулярных, но и в особых точках траектории нагружения [10]. Домножим уравнения (20), (21) на $d\lambda$ и заменим дифференциалы функций конечными приращениями. Приращение нагрузки представим как

$$\Delta m_1 = \dot{m}_q \Delta \lambda \,. \tag{23}$$

Уравнение (22) заменяется приближенным

$$\sum_{i=1}^{6} \left(\frac{\dot{y}_i}{\Delta\lambda}\right)^2 + \left(\dot{m}_q\right)^2 = 1.$$
(24)

Разрешающая система уравнений в приращениях имеет вид

$$\frac{dz_{1}}{d\varphi} = \frac{a_{2}}{\rho_{2}} z_{2};$$

$$\frac{dz_{2}}{d\varphi} = -\frac{a_{2}}{\rho_{2}} z_{1} - a_{2} z_{7} \Delta \lambda;$$

$$\frac{dz_{3}}{d\varphi} = \frac{a_{2}}{h} z_{2} + a_{2} y_{6} z_{1} + a_{2} y_{1} z_{6};$$

$$\frac{dz_{4}}{d\varphi} = \frac{a_{2}}{h\rho_{2}} z_{5} - a_{2} y_{6} z_{6} + a_{2} z_{1} - h \frac{a_{2}}{\rho_{2}} z_{3};$$

$$\frac{dz_{5}}{d\varphi} = -h \frac{a_{2}}{\rho_{2}} z_{4} - a_{2} z_{6};$$

$$\frac{dz_{61}}{d\varphi} = -h \frac{a_{2}}{\rho_{2}} z_{7} + a_{2} (12 + h^{2}) z_{3},$$
(25)

где $z_i = \Delta y_i$, i = 1, ..., 6, $z_7 = \dot{m}_q$.

Граничные условия запишутся как

$$A_i z_i = 0; \quad A_2 z_i = 0.$$
 (26)

Задавая приращения параметра λ , находим значения функций z_i , i = 1,...,7. При начальном значении параметра λ решается линейная система (18),поэтому коэффициенты y_1 , y_6 в системе (25) на следующем шаге нагружения известны.

Решение системы (25) находится методом дискретной ортогонализации Годунова [2], хорошо зарекомендовавшем себя при решении задач теории оболочек [4]. Весь интервал $0 \le \varphi \le \varphi_N$ делится на *k* участков. На *j*-м участке полное решение записывается в виде

$$z^{(j)} = \overline{z}^{(j)} C^{(j)}, \tag{26}$$

где $\overline{z}^{(j)}$ - матрица, состоящая из четырех векторов-решений системы (26). Решение удовлетворяет граничным условиям при $\varphi = 0$ независимо от значения констант $C^{(j)}$. Для определения этих констант используются граничные условия при $\varphi = \varphi_N$. Подставив (26) в уравнения $A_2 z_i = 0$, получим

$$A_{2}\overline{z}^{(k)}C^{(k)} = 0.$$
(27)

Эта система состоит из трех уравнений относительно четырех неизвестных. Дополнительное уравнение вытекает из условия нормирования (24). В данной задаче этому условию соответствует требование, чтобы вектор $C^{(k)}$ был единичным:

$$\sum_{i=1}^{4} C_i^2 = 1.$$
 (28)

Так как система (27) имеет небольшой порядок, то ее решение при условии (28) можно представить в явном виде

$$C_{i}^{(k)} = \frac{\Delta_{i}}{\sqrt{\Delta_{1}^{2} + \Delta_{2}^{2} + \Delta_{3}^{2} + \Delta}}, \quad i = 1, 2, 3; \quad C_{4}^{(k)} = \frac{\Delta}{\sqrt{\Delta_{1}^{2} + \Delta_{2}^{2} + \Delta_{3}^{2} + \Delta}},$$
(29)

где Δ - определитель матрицы коэффициентов при неизвестных $C_1^{(k)}, C_2^{(k)}, C_3^{(k)}, ..., \Delta_i$ определители, которые образуются из основного определителя Δ путем замены *i*- столбца столбцом коэффициентов при неизвестном $C_4^{(k)}$ с обратным знаком. Если ранг расширенной матрицы равен трем, то решение в виде (29) существует независимо от того, равен определитель Δ нулю или нет. При критической нагрузке $\Delta = 0$, поэтому

$$C_i^{(k)} = \frac{\Delta_i}{\sqrt{\Delta_1^2 + \Delta_2^2 + \Delta_3^2 + \Delta}}; \quad C_4^{(k)} = 0.$$
(30)

Является ли эта точка на траектории нагружения предельной или точкой бифуркации можно судить по моде выпучивания. Если эта мода ортогональна к исходной форме деформирования, то будем иметь точку бифуркации. При вырождении расширенной матрицы системы (27) необходимо использовать другую процедуру продолжения решения [3].

Изложенная методика решения нелинейной краевой задачи использовалась при расчете нелинейного деформирования торосферических оболочек [10]. Полученные результаты хорошо совпадают с результатами, полученными другими авторами более сложным путем [5].

Результаты расчета и их обсуждение. Для проверки достоверности разработанной методики рассмотрим расчет нелинейного деформирования с прохождением особых точек круговых изотропных длинных цилиндрических панелей (арок) при внешнем давлении. Эта задача рассматривалась многими авторами [3] и в настоящее время ее можно использовать как тестовую.

При действии на арку внешнего давления интенсивностью *q*, в работах [6] получена формула для критического значения этого давления:

$$q_{kp} = \frac{D_{22}^2}{R_0^3} \left(\frac{4\pi^2}{\varphi_N^2} - 1 \right), \tag{31}$$

где D_{22} - принятое выше обозначение окружной изгибной жесткости, φ_N - центральный угол арки.

Безразмерное значение $m_{q,kp} = \frac{q_{kp}R_0^3}{C_{22}t^2}$ при подстановке значения (31) будет:

$$m_{q,kp} = \frac{D_{22}^2}{C_{22}t^2} \left(\frac{4\pi^2}{\varphi_N^2} - 1\right).$$
(32)

Формула (32) справедлива при шарнирно-опертых концах арки. При жестком защемлении концов в [6] получено приближенное решение, которое также можно использовать для оценки достоверности результатов, получаемых с помощью предложенной

методики. Так как для однослойной арки $D_{22} = \frac{1}{12}C_{22}t^2$, то

$$m_{q,kp} = \frac{1}{12} \left(\frac{4\pi^2}{\varphi_N^2} - 1 \right).$$
(33)

Эта величина не зависит ни от механических, ни от геометрических параметров арки, кроме угла φ_N . Однако при расчете закритического состояния арки имеет также значение отношение t/R_0 , поэтому нельзя ограничиваться только заданием угла φ_N . Ниже будем полагать в большинстве рассматриваемых примеров отношение $t/R_0 = 0,01$.

В таблице 1 приведены данные о критических нагрузках для арок с различными углами φ_N при шарнирном (ш.з.) и жестком (ж.з.) закреплении концов, полученные по представленной выше методике и по формулам Тимошенко [6]. Критические нагрузки в каждом случае отнесены к q_{kp} , определяемому по формуле (33) при $\varphi_N = \pi$.

Критические нагрузки для арок с различными углами ϕ_N Таблиця 1 при шарнирном (ш.з.) и жестком (ж.з.) закреплении концов

<i>Ф_N</i> Вариант		$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
Ш.3.	Работа [6]	11,67	2,67	1,00	0,42	0,15	0
	Настоящая работа	11,95	2,90	1,09	0,328	0,042	0
ж.з.	Работа [6]	24,44	6,04	2,67	1,53	1,09	1
	Настоящая работа	24,81	6,25	3,0	1,54	0,661	0,24

Сравнение показывает, что при $\varphi_N \leq \frac{4\pi}{3}$ результаты расчета по обеим методикам

хорошо согласуются как при шарнирном, так и при жестком закреплении. Если же $\varphi_N = 2\pi$, то расчет по [6] дает завышенное значение критической нагрузки при жестком закреплении. Форма потери устойчивости, которая предполагается в решении [6], весьма далека от той, что дает решение по предлагаемой методике.

На рис. 2 приведена диаграмма деформирования (*a*) и форма потери устойчивости (б) круговой арки при $\varphi_N = \pi$ с шарнирным опиранием концов.

Такие же арки рассматривались в работе [3]. Критические нагрузки, полученные в [3] и по методике, изложенной выше, совпадают. Формы потери устойчивости при $\varphi_N = \pi$ также совпадают, но различаются при $\varphi = \pi/4$ и $\varphi = \pi/2$. В работе [3] они не симметричны относительно середины дуги, а в настоящей работе - симметричны. Диаграммы деформирования, полученные авторами [3] и по предлагаемой методике, хорошо согласуются при $\varphi_N = \pi$ и не совпадают при $\varphi_N = \pi/2$ и $\varphi_N = \pi/4$. Объясняется это тем, что в работе [3] для перехода на закритическую траекторию задавалось возмущение нагрузки, вид которого предопределял направление этой траектории. В данном варианте

расчета такая процедура не используется. При этом перемещение точки $\varphi = \frac{\varphi_N}{2}$ в окрестности критической точки может изменять направление вследствие перестройки докритической формы деформирования в ортогональную ей закритическую. На диаграммах деформирования по оси абсцисс отложены значения отношения прогиба к толщине (w' = w/t), по оси ординат - (q')- отношение критического давления, определяемого в настоящей работе, к значению q_{kp} вычисляемому по формуле (33). Аналогичные оси используются при построении диаграммы деформирования гофрированных арок на рис. 3 - 6. Круговой арке с углом раствора $\varphi_N = \pi$ придана волнистость описанного выше типа с количеством волн *N* по периметру равным 2, 4, 8, 16.

Рис. 2. Диаграмма деформирования (*a*) и форма потери устойчивости (б) круговой арки при $\varphi_N = \pi$ с шарнирным опиранием концов

На рис. 3, a представлены диаграммы деформирования с двумя волнами по периметру (N = 2).

Рис. 3. Диаграмма деформирования с двумя волнами по периметру (*N* = 2) (а), и формы деформирования арок в закритическом состоянии (б)

Кривая (1) получена для арки с шарнирным опиранием концов, кривая (2) - с жестким при $\varphi = 60^{\circ}$. На этих кривых имеются предельные точки (20; 0,78) на кривой (1) и (25; 1,71) - на кривой (2). При прогибах, больших 20 толщин равновесие арки будет возможным при нагрузке, меньшей предельного значения. Как следует из вида кривых (1) и (2) на рис. 3 б, где представлены формы деформирования арок в закритическом состоянии при тех же граничных условиях, определяющую роль в распределении прогибов играет исходная геометрия арки. Судя по значению предельных нагрузок и величин прогибов, арки, имеющие форму, показанную на рис. 3, б толстой кривой, имеют существенно меньшую жесткость, чем круговые. Увеличение количества волн по периметру исходной арки приводит к

изменению ее жесткостных параметров в целом и в пределах каждой волны. Результаты расчета деформирования арок с N = 4,8,16 представлены на рис. 4, *a*; *б*, *в*, а соответствующие исходные арки и их вид в закритическом состоянии на тех же рисунках, но обозначенных буквой «*б*».

Рис. 4. Результаты расчета деформирования арок с N = 4,8,16

Нумерация кривых цифрами 1 и 2 имеет тот же смысл, что и на рис. 3. Нагрузки, после достижения которых начинается бурное развитие прогибов, равны 1,09 (N = 4), 1,12 (N = 8), 1,20 (N = 16) при шарнирном опирании концов и 2,65 (N = 4), 2,81 (N = 8), 3,17 (N = 16) при жестком защемлении. Как видно, при $N \ge 4$ критические нагрузки гофрированных арок близки к тем, что имеют круговые арки. Формы потери устойчивости также не симметричны относительно середины арки, но их вид существенно различается в зависимости от количества волн и граничных условий. Выпучивание сопровождается локальным деформированием дуг малых окружностей. Шарнирно опертые арки испытывают в закритическом состоянии значительно больший поворот относительно центральной оси, чем жестко опертые.

Отметим, что для гофрированных арок в предложенной методике среди исходных данных должны быть известны углы $\varphi_0, \alpha_0, \gamma_0$. В рассмотренных примерах

$$\alpha_0 = \varphi_0 = \frac{\varphi_N}{2N}, \quad \gamma_0 = \alpha_0 + \varphi_0 + \frac{\pi}{4}.$$

Выводы.

1. Предложена методика расчета устойчивости и закритического поведения гофрированных арок, основанная на решении нелинейной системы дифференциальных уравнений первого порядка с использованием метода последовательных нагружений при решении алгебраических уравнений. При этом обеспечивается прохождение особых точек на траектории деформирования. Краевая задача в приращениях решается методом дискретной

ортогонализации. Методики расчета обладают возможностями, позволяющими проводить многочисленные исследования.

2. Решение конкретных задач по устойчивости гофрированных арок показало, что формирование профиля арок с помощью выпуклых и вогнутых дуг окружностей позволяет создавать конструкции, поведение которых при нагружении существенно отличается от поведения круговых арок. В то же время критические нагрузки гофрированных арок могут быть как значительно меньшими, так и близкими к критическим нагрузкам идеальных круговых арок.

3. Так как устойчивость арок единичной ширины определяется с помощью таких же уравнений, что и длинных цилиндрических оболочек, то полученные в работе данные показывают, что, в отличие от коротких оболочек [4], длинные продольно гофрированные оболочки не обладают большей жесткостью, чем круговые цилиндрические оболочки.

ЛИТЕРАТУРА

1. Динник А.Н. Устойчивость арок / А.Н. Динник. – М.-Л.: ОГИЗ Гостехиздат, 1946. - 128 с.

2. Годунов С.К. О численном решении краевых задач для систем обыкновенных дифференциальных уравнений / С.К. Годунов //Успехи мат. наук - 1961. - Т. XVI, Вып. 3. - С. 171-174.

3. Григолюк Э.И. Проблемы нелинейного деформирования: Метод продолжения решения по параметру в нелинейных задачах механики твердого тела / Э.И. Григолюк, В.И. Шалашилиню - М.: Наука, 1988. - 232 с.

4. Семенюк Н.П. Устойчивость волнообразных некруговых цилиндрических оболочек из композитов при внешнем давлении / Н.П. Семенюк, Н.Б. Жукова, В.В. Остапчук //Прикл. механика. - 2007. - 43, № 12. - С. 91 - 102.

5. Семенюк Н.П. Об исследовании нелинейного поведения тонких оболочек шаговым методом / Н.П. Семенюк, В.М. Трач, Н.Б. Жукова // Прикл. механика. - 2007. - 44, № 9. - С. 85-93.

6. Тимошенко С.П. Устойчивость упругих систем / С.П. Тимошенко. - М.: Гостехиздат, 1955. - 567 с.

7. Семенюк Н.П. Устойчивость гофрированных по окружности оболочек при гидростатическом давлении / Н.П. Семенюк, В.М. Трач, Н.Б. Жукова. - 2010. - №9.

8. Борисейко А.В. О канонических уравнениях геометрически нелинейной теории тонких анизотропных оболочек / А.В. Борисенко, Н.П. Семенюк, В.М. Трач. - 2010. - №2

9. Wang C.J. Buckling and Postbuckling of segmented tubes under external pressure //Int. J. of Non-Linear Mechanics – 2005. – P.551-556.

Надійшла:12.12.2012

Рецензент: д.т.н., проф. Єрохін В.Ф.