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THE EXAMINATION OF NAND FLASH MEMORIES AND LOW-LEVEL 

DATA RECOVERY FROM IT 

 
This paper suggests a low level approach for the examination of flash memories and describes low-level data 

acquisition methods for making full memory copies of flash memory devices. Artifacts, caused by flash specific 

operations like block erasing and wear leveling, are discussed and directions are given for enhanced data recovery and 

analysis on data originating from flash memory. 
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1. INTRODUCTION 

Over recent years, corporate end-users have increasingly needed to be fully mobile and 

connected, taking work home or out of the office to keep up their productivity. Staff needs to be 

able to synchronize files between a computer and the drive to allow key data to be backed up and 

available for use on the road or on other computers. Thus, the use of mobile devices such as laptops, 

notebooks, universal serial bus (USB) flash drives, personal digital assistants, advanced mobile 

phones and other mobile devices have proliferated in recent years [1,2]. Flash memory is currently 

the most dominant non-volatile solid-state storage technology in consumer electronic products. An 

increasing number of embedded systems use high level file systems comparable to the file systems 

used on personal computers.  

Using of different types of devices (modules) of flashmemory for the electronic engineering 

requires the detailed acquaintance with processes which take a place at a recording and reproducing 

of information in such devices. 

At the same time, for manufacturers of memory devices, some parts, such as, the wear 

levelling algorithm can be very sensitive intellectual property, so any inquiries that look like 

questions about the wear leveling algorithm will often be left unanswered [3]. 

 

2. FLASH TECHNOLOGY 

Flash memory is a type of non-volatile memory that can be electrically erased and 

reprogrammed. Flash memories come in two flavors, NOR flash and NAND flash, named after the 

basic logical structures of these chips. Contrary to NAND flash, NOR flash can be read byte by byte 

in constant time which is the reason why it is often used when the primary goal of the flash memory 

is not to hold and execute firmware, while parts of NOR flash that are not occupied by firmware can 

be used for user data storage. Most mobile media, like USB flash disks, or multimedia centered 

devices like digital cameras and camera phones, use NAND flash memory to create compact mobile 

data storage. 

2.1.Physical Characteristics 

The physical mechanism to store data in flash memory is based on storing electrical charge 

into a floating gate of a transistor. This charge can be stored for extended periods of time without 

using an external power supply but gradually it will leak away caused by physical effects. Data 

retention specifications for current flash memory are between 10 and 100 years. 

Flash memory can be written byte for byte, like EEPROM, but it has to be erased in blocks at 

a time before it can be re-written. Erasing results in a memory block that is filled completely with 

1’s. In NAND flash, erase blocks are divided further into pages, for example 32 or 64 per erase 

block [4]. A page is usually a multiple of 512 bytes in size, to emulate 512 byte sector size 

commonly found in file systems on magnetic media. Additionally, a page has a number of so called 

“spare area” bytes, generally used for storing meta data. Some flash disk drivers use the concept of 

zones. A zone is a group of blocks, usually 256 to 1024. Contrary to blocks and pages, a zone is just 

a logical concept, there is no physical representation. See Fig. 1 for a dissection of NAND flash 

memory. 
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Fig. 1. Dissection of NAND flash memory 

 

Each page has an area of bytes, often referred to as the redundant area or spare area. Table I 

shows spare area sizes for different page sizes. 

Table 1 

Example spare area sizes for different page sizes (in bytes) 

Page Size 
Size 

Spare area size Total page size Block size 

256 8 264 8448 

512 16 528 16896 

2048 64
a
 2112 135168 

 

The spare area can contain information on the status of the block or the page.For instance 

when a block turns bad, it will be marked here. The spare area can also contain “Error Checking and 

Correcting” (ECC data). ECC data is used to detect errors in a page. With the ECC data an error of 

one bit can be corrected, after which the block will be marked bad. Finally the spare area can 

contain information necessary for the physical to logical address mapping. 

Erasing a block causes a block to deteriorate. Blocks can be erased between 104 and 106 

times before bits in this block start to become inerasable (stay “0”). Such a block is then called a 

"bad block". NAND flash usually already has bad blocks when leaving the factory. In datasheets of 

NAND flash chips, the guaranteed minimal number of good blocks when first shipped is specified. 

Typically at least 98% of the blocks are guaranteed to be in working order. Initial bad blocks are 

marked as such in the spare area. 

In order to spread the erasing of blocks as evenly as possible over the full range of physical 

blocks, flash memory vendors have developed so called “wear leveling” algorithms [5]. The idea is 

that spreading the wear, caused by erasing a block, as much as possible over the whole capacity of 

the flash memory will increase the overall lifetime of the memory. Wear leveling can be seen as a 

dynamic process that rearranges pages and/or blocks continuously in order to extend flash lifetime. 

The electrical interface of NAND flash differs from that of RAM. NAND flash has a 

multiplexed address/data bus, generally referred to as the I/O (Input/Output) lines. This bus can be 

either 8 or 16 bits wide. Data in the NAND flash chip is accessed by first applying the address of 

the required data on the I/O lines. As the highest address is generally higher than can breached with 

8 or 16 I/O line bits, the address is latched into the chip in three to five address cycles. After the 

address is latched into the chip, the data can be clocked out over the same I/O lines. A typical 

sequence to get access to data in a NAND flash chip is shown in table 2. 
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Table 2 

Typical addressing cycles for a NAND flash chip 

 

Cycle 
Input/Output lines 

I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O6  

1 A0 A1 A2 A3 A4 A5 A6 A7 
Column 

Address 

2 A8 A9 A10 A11 Low Low Low Low 
Column 

Address 

3 A12 A13 A14 A15 A16 A17 A18 A19 
Row 

Address 

4 A20 A21 A22 A23 A24 A25 A26 A27 
Row 

Address 

 

2.2. Logical Characteristics 

There are several ways in which flash memory can be used as file storage in embedded 

systems [3]. Three of them are explained below. A simplified diagram of components involved in 

host Operating System (OS) access to a flash file system is shown in Fig. 2. As a reference, the 

situation for a hard disk is shown on the left hand side. In case of a hard disk, the host OS accesses 

the hard disk through the file system driver (FSD). The FSD issues commands to the hard disk, for 

instance the ATA command “Read Sector” to read data from a Logical Block Address (LBA) - the 

address of data by the linear mapping of storage units. 

 

 
 

Fig. 2. Components involved in hard disk and flash memory access 

 

A USB flash disk presents itself to its host as a storage device. After mounting, the host OS 

can access the device. The disk access commands issued by the FSD are channeled through USB to 

the USB flash disk. The USB flash disk controller interprets these commands and accesses data in 

flash memory. To manage the special properties of flash memory the controller generally stores 

additional information (meta data) with that data. For instance, the LBA in the ATA command will 

not be the same as the physical address in the flash chip where the data is actually stored. 

Information necessary for mapping a LBA to a physical location is stored in the flash memory chip 

as well. 

When the embedded system 1 is connected to a host, the host OS can access the devices flash 

file system through standard disk access commands. The devices OS (Windows CE, Symbian, 
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proprietary) receives the disk access command from the host OS file system driver and returns the 

requested data. In this way, the host OS doesn’t see any difference between a hard disk or an 

attached device.  

Another way of accessing flash based storage in an embedded device is shown in Fig. 2, 

embedded device 2. Here the flash file system is accessed through a proprietary application that 

runs on the host OS. The application communicates with the embedded system and presents the data 

in the flash file system on the host. Although in this case the file system on the device can be 

viewed in the same way as other file systems on the host (with windows explorer), the higher level 

flash file system on the device might be of a completely different structure that usual in magnetic 

media. 

2.3. Flash Translation Layer 

NAND flash is typically used with a flash translation layer implementing a disk-like interface 

of addressable, re-writable 512-byte blocks, e.g. over an interface such as SATA or SCSI-over-

USB. The FTL maps logical addresses received over this interface (Logical Page Numbers or 

LPNs) to physical addresses in the flash chip (Physical Page Numbers, PPNs) and manage the 

details of erasure, wear-leveling, and garbage collection. 

A flash translation layer could in theory maintain a map with an entry for each 512-byte 

logical page containing its corresponding location; the overhead of doing so would be high, 

however, as the map for a 1GB device would then require 2M entries, consuming about 8MB; maps 

for larger drives would scale proportionally. FTL resource requirements are typically reduced by 

two methods: zoning and larger-granularity mapping.  

Zoning refers to the division of the logical addressspace into regions or zones, each of which 

is assigned its own region of physical pages. In other words, rather than using a single translation 

layer across the entire device, multiple instances of the FTL are used, one per zone. The map for the 

current zone is maintained in memory, and when an operation refers to a different zone, the map for 

that zone must be loaded from the flash device. This approach performs well when there is a high 

degree of locality in access patterns; however it results in high overhead for random operation. 

Nonetheless it is widely used in small devices (e.g. USB drives) due to its reduced memory 

requirements.  

By mapping larger units, and in particular entire erase blocks, it is possible to reduce the size 

of the mapping tables even further [6]. On a typical flash device (64-page erase blocks, 2KB pages) 

this reduces the map for a 1GB chip to 8K entries, or even fewer if divided into zones. This 

reduction carries a cost in performance: to modify a single 512-byte logical block, this block-

mapped FTL would need to copy an entire 128K block, for an overhead of 256×. 

Whenever units smaller than an erase blocks are mapped, there can be stale data: data which 

has been replaced by writes to the same logical address (and stored in a different physical location) 

but which has not yet been erased. In the general case recovering these pages efficiently is a 

difficult problem. However in the limited case of hybrid FTLs, this process consists of merging log 

blocks with blocks containing stale data, and programming the result into one or more free blocks. 

These operations are of the following types: switch merges, partial merges, and full merge. A 

switch merge occurs during sequential writing; the log block contains a sequence of pages exactly 

replacing an existing data block, and may replace it without any further operation; the old block 

may then be erased. A partial merge copies valid pages from a data block to the log block, after 

which the two may be switched. A full merge is needed when data in the log block is out of order; 

valid pages from the log block and the associated data block are copied together into a new free 

block, after which the old data block and log block are both erased. 

Many applications concentrate their writes on a small region of storage, such as the file 

allocation table (FAT) in MSDOS-derived files systems. Naive mechanisms might map these 

logical regions to similarsized regions of physical storage, resulting in premature device failure. To 

prevent this, wear-leveling algorithms are used to ensure that writes are spread across the entire 

device, regardless of application write behavior; these algorithms are classified as either dynamic or 
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static. Dynamic wear-leveling operates only on overwritten blocks, rotating writes between blocks 

on a free list; thus if there are m blocks on the free list, repeated writes to the same logical address 

will cause m + 1 physical blocks to be repeatedly programmed and erased. Static wear-leveling 

spreads the wear over both static and dynamic memory regions, by periodically swapping active 

blocks from the free list with static randomly-chosen blocks. 

2.4. Bad Block Management 

Bad blocks are blocks that contain one or more invalid bits whose reliability is not guaranteed 

[7]. Bad blocks may be present when the device is shipped, or may develop during the lifetime of 

the device. Devices with bad blocks have the same quality level and the same AC and DC 

characteristics as devices where all the blocks are valid. A bad block does not affect the 

performance of valid blocks because it is isolated from the bit line and common source line by a 

select transistor. Bad block management, Low Level Driver (LLD), and the ECC software are 

necessary to manage the error bits in NAND Flash devices. Fig. 3 shows how the software is used 

in an embedded system which uses NAND Flash for data storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Software for an embedded system using a NAND Flash memory 

 

NAND Flash devices are supplied with all the locations inside valid blocks erased (FFh). The 

bad block information is written prior to shipping. For single-level cell (SLC) small page (528-

byte/256-word page) devices, any block where the sixth byte (x8 device)/first word (x16 device), in 

the spare area of the first page does not contain FFh is a bad block. For SLC large page (2112-

byte/1056-word page) devices, any block where the first and sixth bytes (x8 device)/first word (x16 

device) in the spare area of the first page does not contain FFh is a bad block. For SLC very large 

page (4224-byte page) devices, any block where the first and sixth bytes in the spare area of the first 

page do not contain FFh is a bad block. Formultilevel cell (MLC) devices, any block where the first 

byte in the spare area of the last page does not contain FFh is a bad block. The bad block 

information must be read before any erase is attempted because the bad block information is 

erasable and cannot be recovered once erased. It is highly recommended to not erase the original 

bad block information. To allow the system to recognize the bad blocks based on the original 

information, it is recommended to implement the bad block management algorithm. 

The failures that affect invalid blocks may not all be recognized if methods different from 

those implemented in the factory are used. Once created, the bad block table is saved to a good 

block so that on rebooting the NAND Flash memory the bad block table is loaded into RAM. The 

blocks contained in the bad block table are not addressable. So, if the flash translation layer (FTL) 

addresses one of the bad blocks, the bad block management software redirects it to a good block. 
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3. LOW-LEVEL DATA RECOVERY 

The main condition for low-level data recovery - to keep data held on storage medium 

unchanged [8]. For embedded systems this principle is more challenging than it looks at first sight. 

Issues like network connections are similar to the open systems world although it might be more 

difficult to detect that an embedded system is connected to other systems. For flash memory wear 

leveling might cause unpredictable data changes. For example, switching mobile phones off and/or 

on has shown data changes probably caused by wear leveling and/or garbage collection algorithms. 

There are three possible  data acquisition approaches are presented for obtaining a full copy of flash 

memory data: flasher tools, method using the JTAG (Joint Test Action Group) test access port of an 

embedded device and  method is described in which the flash chip is physically removed and read 

with an external reader. 

Advantages / disadvantages of physical extraction: 

• It can be guaranteed that no data is written in flash memory because the embedded system 

stays powered down. 

• Data from broken or damaged embedded systems can be recovered. 

• A complete physical image can be produced (all data, inclusive spare area, bad blocks etc). 

• A disadvantage is that there is a risk of damaging the flash memory chip due to the heat for 

de-soldering. 

• The embedded system has to be opened to reach and desolder flash memory chips. 

We describe a method of low-level data recovery from flash chip is physically removed. 

3.1.Flash memory chip reader 

A flash memory chip can be read with a commercially available memory chip programmer 

like BP 1600 from manufacturer BP Microsystems. A disadvantage is that a driver is needed for 

each type of memory chip. If a driver for a certain type of chip is not available, the manufacturer of 

the programmer has to program this driver. This can take some time and is not always possible 

when a datasheet is not available for example. Another solution is to use a universalflash chip 

reader. This custom made design is called "NFI memory toolkit". A schematic is drawn in Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig. 4. Schematic of NFI memory toolkit 

 

An FPGA is used for communicating with a flash memory chip where configurations are 

available for a NAND and NOR flash protocol (with multiplexed and demultiplexed address bus). 

All parameters, like address bus size and data bus size are fully customizable by the PC software. In 

case of a NOR flash memory a data structure is read from the NOR flash memory (Common Flash 

Interface - CFI data structure). This data structure contains all parameters needed for reading that 

particular flash memory (like protocol, memory size, etc). The command to read this data structure 

is compatible with all protocols and the toolkit software automatically uses the parameters to read a 

NOR flash chip without any configuration from the user. NAND flash chips can also be read 

automatically because the number of protocols used by NAND flash chip is very limited. The 

toolkit software automatically scans all protocols until a correct response is received from the 

NAND flash chip. Due to the automatic configuration properties of the software it is sometimes 

possible to read flash chips even if a datasheet is not available. 

PC 

 

(Store 

image file 

and selects 

protocol) 

FPGA 

 

(Used for 

protocol 

conversion 

like NAND 

or NOR flash 

protocol) 

Pogo-

pinsocket 

 

(Connection 

to flash 

memory 

chip) 

Levelconver

ters 

 

(Used for  

converting 

electrical 

signals to 1.8 

volt for 

example) 



Сучасний захист інформації №1, 2015 
 

54 

 

There are several third-party software offerings on the market today. Many of these packages 

provide multiple features, including automatic power failure-recovery, PC-file compatibility, ECC, 

bad-block management, directory support, and wear-leveling. A partial list of third-party NAND 

Flash software vendors includes: Datalight, Inc., CMX Systems, Inc., HCC-Embedded, and Blank 

Microsystems. For Linux implementations, another alternative is Journaling Flash File System, 

version 2 (JFFS2). 

3.2.File system analysis 

Making an exact copy of the flash chip(s): When the chip is extracted from the PCB, it can be 

read with a device programmer (for example, BP1600 from BP Microsystems). When reading the 

content of flash chips one needs to be aware of the fact that some programmers have a special way 

of handling NAND flash. When programming a NAND flash in a production environment, the 

programmer obviously wants to skip bad blocks. Furthermore, when a file is loaded in the 

programmer, one wants to be sure that the file will fit in the flash chip, so the programmer will only 

accept files smaller than the guaranteed minimal number of good blocks. These two properties often 

also play a role when reading the device. Bad blocks are not read, and only the guaranteed minimal 

number of good blocks is read. Skipping of bad blocks can lead to the following problem when 

reconstructing the high level file system: suppose a USB memory controller divides the memory 

into zones of 256 blocks. Each block (belongingto the high level file system) within a zone has to 

have a unique number, stored in the spare area of each page in that block. Then one bad block in a 

zone arises. After this, the memory is imaged with a programmer that skips bad blocks. The 

resulting image is also split up into zones. Now, the zone with the bad block will contain one block 

of the next zone because all blocks after the bad block will be shifted one block in the image. Now 

it will be very likely that we have two blocks with the same "unique" number in one zone (Fig. 5). 

 

23 F4 6E 15 IIIIIIIIIIIIIIIIIIII 19 4B 6D A2 5B 15 

Starting situation (grey areas one zone) 

23 F4 6E 15   19 4B 6D A2 5B 15 

One block turns bad 

23 F4 6E 15   4B 6D A2 5B 15 29 
 

Image made, bad block skipped, block after bad block shifted back 

 
 Two block with the same number 

 

Fig. 5. Schematic of NFI memory toolkit 

 

Reading up to only the guaranteed minimum number of good blocks can result in blocks at 

the high end of the memory chip not being read. These blocks might very well contain parts of the 

high level file system so not reading them might hinder reconstruction of the high level file system. 

There are several solutions to these problems. One is to request the manufacturer of the device 

programmer to make a special version of the algorithm for the specific chip which reads all blocks, 

good and bad. Another is to develop an “in house” solution. For the Memory Toolkit an algorithm 

for reading NAND flash was developed. Furthermore, an adapter socket was made to make contact 

to TSOP 48 housings. With this system a complete binary copy of a NAND flash memory chip can 

be made. The rest of this paragraph is based on complete binary copies of flash chips, made with the 

NFI memory toolkit. 
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Converting the copy to the high level file system: in order to convert the exact copy of the 

NAND flash memory back to the file system as seen by the host OS, the meta data in the NAND 

flash memory needs to be interpreted. There are three main questions in this regard: 

1. What is the granularity of the flash file system? 

2. Where is the meta data stored? 

3. How can the meta data be interpreted? 

The answers to these questions are of course known by the manufacturer of the USB memory 

controller. Sometimes the answers can be found in literature, see for instance the definition of the 

Smart Media File System. 

4. What is the granularity of the flash file system? 

When we want to reconstruct the file system from a physical copy, the mapping from physical 

to logical, we has to explore the meta data. 

5. Where is the meta data stored? 

Meta data can be stored in the spare areas of the flash memory. In case there is a page size 

granularity, all spare areas within each block will contain different information. In case there is a 

block size granularity, spare areas within one erase block may contain at least a few identical bytes: 

the ones that indicate the logical block number. Meta data can also be stored in the normal 

pages/blocks. No generic method has yet been developed for USB memory to analyze this type of 

meta data storage. 

 

4. CONCLUSION 

Some techniques have been described for making low level byte-by-byte copies of flash 

memory chips. More research needs to be done on the flash read mechanisms used by flasher tools 

in order to adapt these mechanisms for usage in the next generation of data acquisitions tools. Steps 

have been illustrated for translating acquired flash data to a level that can be understood by existing 

tools targeted towards common used file systems. More research is also needed on the relation 

between flash specific operations like block erasing and wears leveling on one side and the resulting 

artifacts and potentials for data recovery and analysis on the other side. 
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