УДК 621.577

Д.Х. Харлампиди

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, ул. Дм. Пожарского, 2/10, г. Харьков, Украина, 61046

e-mail: kharlampidi @ipmach.kharkov.ua

ВЛИЯНИЕ СТРУКТУРНОЙ СЛОЖНОСТИ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ НА ТЕРМОДИНАМИЧЕСКОЕ СОВЕРШЕНСТВО ТЕПЛОНАСОСНЫХ УСТАНОВОК

На основе разработанной методики системно-структурного анализа парокомпрессорных термотрансформаторов исследовано влияние и выявлена закономерность изменения потерь от необратимости в элементах теплонасосных установок, имеющих различный уровень структурной сложности технологической схемы **Ключевые слова:** Теплонасосная установка. Коэффициент структурных связей. Потери от необратимости.

D.Kh. Kharlampidi

INFLUENCE OF STRUCTURE COMPLEXITY OF TECHNOLOGICAL SCHEME ON THE THERMODYNAMIC EFFICIENCY OF HEAT PUMP INSTALLATION

On the basis of the developed methodology for system-structure analyze of vapor-compression thermotransformer influence of the irreversibility loses have been investigated in the elements of heat pumps installations which have different structure complexity of technological scheme.

Keywords: Heat pump installation. Coefficient of structure bonds. Irreversibility loses.

1. ВВЕДЕНИЕ

Специфика теплонасосных установок (ТНУ) как объектов состоит в том, что процессы преобразования энергии в них неразрывно связаны с технологическим назначением. В зависимости от назначения, температурных границ цикла и структурной сложности технологической схемы, оборудование ТНУ характеризуется различным внутренним взаимодействием и с самой окружающей средой. В связи с этим, разным технологическим схемам ТНУ свойственны специфические проявления необратимых потерь энергии [1].

Одним из источников потерь от необратимости являются гидравлические сопротивления по тракту движения хладагента [2,3]. Степень влияния гидравлических сопротивлений на величину потерь в THУ зависит от свойств рабочего вещества, конструкции и типа поверхностей теплообменных аппаратов, протяжённости и разветвлённости соединительных трубопроводов, а также количества запорно-регулирующей арматуры.

В современных системах комплексного тепло- и хладоснабжения на базе ТНУ важен учёт влияния неизобарности процессов в гидравлическом контуре на энергетическую эффективность. В первую очередь это связано с наметившейся тенденцией к увеличению общей протяжённости магистральных трубопроводов хладагента при сооружении многозональных

© Д.Х. Харлампиди

систем [4], а также с применением различных турбулизаторов потока рабочего вещества в теплообменных аппаратах.

2. ВЛИЯНИЕ ТЕРМОГИДРАВЛИЧЕСКОЙ НЕОБРАТИМОСТИ В ЦИКЛЕ ХОЛОДИЛЬНОЙ МАШИНЫ И ТЕПЛОВОГО НАСОСА

Попытка выявить системные закономерности влияния гидравлических сопротивлений на эффективность холодильных машин и тепловых насосов в зависимости от уровня структурной сложности технологической схемы предпринималась в работах [5,6]. Авторами предложена энтропийная методика учёта неизобарности процессов в термодинамическом цикле. Для анализа влияния гидравлических сопротивлений на эффективность холодильных машин используется показатель ε'/ε , представляющий собой отношение холодильного коэффициента, вычисленного с учётом влияния гидравлических сопротивлений ε', к холодильному коэффициенту є без учёта таковых. Величина ε'/ε характеризует устойчивость технологической схемы к термогидравлической необратимости в элементах холодильной машины.

Для количественной оценки уровня структурной сложности технологической схемы введён ранговый критерий сложности Таубмана [7,8]. Установлено, что с увеличением сложности технологической схемы влияние гидравлических сопротивлений на є'/є уменьшается. С усложнением схемы ослабевает влияние на показатель ε'/ε изменения температурных границ цикла. С увеличением разности между температурой конденсации и испарения при фиксированной температуре конденсации показатель є'/є для конкретной технологической схемы снижается [5]. Для однокомпонентных хладагентов гидравлические сопротивления в испарителе при работе в области низких температур оказывают значительно большее влияние на эффективность, чем гидравлические сопротивления в конденсаторе. При переходе в область высоких температур эта закономерность изменяется. Для неазеотропных смесей хладагентов имеет место другая зависимость. Величина потерь давления в конденсаторе для неазеотропных смесей оказывает более существенное влияние на энергетическую эффективность ТНУ, чем потери давления в испарителе во всем диапазоне рабочих температур. При переходе в область низких температур влияние потерь давления в испарителе усиливается, но в то же время остается меньшим, чем для конденсатора [9,10].

Следует отметить, что при расчёте параметров цикла для различных технологических схем XM с помощью энтропийной методики учёта неизобарности процессов [11], авторами не принимались во внимание приведённые теплоты взаимодействия элементов THУ с окружающей средой. Последние, в итоге, и определяют величину производства энтропии в термодинамическом цикле, приводящую к снижению его эффективности. Это допущение может привести к неточности при моделировании процессов в XM и THУ и, как следствие этого, неоднозначности полученных результатов.

При сравнении различных по уровню сложности технологических схем холодильных машин в работах [5,6] использовалась суммарная величина гидравлических сопротивлений по тракту циркуляции хладагента. Между тем, известно из [12], что влияние гидравлических сопротивлений в различных элементах технологической схемы ТНУ или XM на термодинамическую эффективность цикла неодинаково. Один и тот же элемент, имеющий одинаковое конструктивное исполнение, но при этом включённый в разные технологические схемы или же участки конкретной схемы, имеет различный уровень потерь от необратимости [7]. Минимизация потерь в каждом элементе в отдельности не приводит к повышению эффективности всей установки, поскольку снижение потерь в одном элементе может вызвать более существенное их увеличение в других взаимосвязанных с ним элементах и в итоге снизить эффективность системы в целом [3].

3. СИСТЕМНО-СТРУКТУРНЫЙ АНАЛИЗ ПОТЕРЬ ОТ НЕОБРАТИМОСТИ

Существующие методы термодинамического анализа: энтропийный и его модификация — эксергетический, позволяют установить теоретический предел, который может быть достигнут при усовершенствовании процессов деформированного необратимостями цикла. Однако они не показывают, за счёт изменения каких факторов можно добиться снижения этого предела [13].

Оценить влияние изменения параметров одного процесса на потери от необратимости в элементе, а также влияние этих потерь на потери во всей системе можно с помощью коэффициентов структурных связей [3,7,14,15].

Для анализа влияния потерь от необратимости на эффективность технических систем любой сложности Байером предложен структурный коэффициент следующего вида [3,7]:

$$\pi_{i,k} = \left[\frac{\partial \left(\sum_{i=1}^{n} \prod_{i}\right)}{\partial \prod_{i}}\right]_{x_{k} = \text{var}},$$
(1)

где П_i — потери в *i*-ом элементе, определяемые по уравнению Гюи-Стодола

$$\Pi_i = T_{\rm oc} S^i_{\rm ref}; \tag{2}$$

 S_{ren}^{i} — величина производства энтропии в *i*-ом элементе; T_{oc} — температура окружающей среды; n число элементов; x_{k} — параметр, влияющий на величину потерь от необратимости.

Значение $\pi_{i,k}$ может изменяться от $\pi_{i,k} \approx 0$ до $\pi_{i,k} \geq 1$. Если $0 < \pi_{i,k} < 1$, то это означает, что для рассматриваемой схемы характерна определённая жёсткость структурных связей, и необратимость одного звена не может привести к существенному увеличению потерь от необратимости в системе в целом. Когда $\pi_{i,k} \ge 1$, то в данном случае имеется резерв для снижения суммарных потерь в системе за счёт изменения их в отдельном элементе. Поэтому конструктивному совершенствованию должны подлежать элементы, для которых $\pi_{i,k} \ge 1$. Следует отметить, что структурный коэффициент не в состоянии указать на существующую взаимосвязь потерь в одном элементе от потерь в другом. Так, к примеру, с одной стороны, потери в конденсаторе предопределены самим ходом осуществления термодинамического цикла и большей частью зависят от потерь в компрессоре [16]. С другой стороны, дополнительная затрата работы в компрессоре и, соответственно, потери определяются не только необратимостью процесса сжатия, но и несовершенством самого процесса конденсации, обусловленного наличием гидравлических сопротивлений и конечного температурного напора [17]. Попытка учесть взаимосвязь потерь от необратимости путём разделения их на эндогенную и экзогенную части предпринята в [18]. Однако, как отмечают авторы, говорить о создании единой инженерной методики пока преждевременно. Для этого необходима разработка вспомогательной теории, чётко определяющей понятие «идеальный элемент».

В некоторых случаях по результатам анализа потерь от необратимости целесообразно полностью изменить структуру технологической схемы. В этом случае поиск новой структуры должен быть формализован. Единым критерием оценки технологической схемы, лишённым субъективных факторов, здесь может выступать упоминавшийся выше критерий сложности Таубмана [7]

$$D = D_i (2\overline{m} + \overline{p}), \tag{2}$$

учитывающий суммарное число взаимодействий теплотехнической системы с окружающей средой \overline{p} (в данном случае — отвод теплоты от конденсатора, подвод низкопотенциальной теплоты к испарителю, подвод мощности на компрессию пара), суммарное число технологических связей между элементами системы \overline{m} и сложность *i*-го элемента D_i .

Введение в структурный анализ критерия сложности позволяет выявить закономерности проявления необратимых потерь в различных технологических схемах и указать направление поиска эффективной схемы ТНУ. Таким образом, ещё на этапе предпроектного анализа появляется возможность устанавливать рациональные конструктивные характеристики теплообменной поверхности испарителя и конденсатора, а также трубопроводов обвязки основного оборудования в зависимости от уровня структурной сложности технологической схемы ТНУ.

Структурный анализ с учётом критерия сложности позволяет выявить ряд других практически важных зависимостей, например, зависимость эксергетического КПД элемента от показателя его сложности D_i . Последний количественно характеризует соответствие между его конструктивным совершенством и сложностью, что даёт возможность исключить из дальнейшего анализа те модели, для которых сложность завышена [8]. Для детальной оценки структурной сложности технологической схемы ТНУ может быть использован предложенный нами в работе [6] модифицированный критерий сложности.

4. МЕТОДИКА ПОСТРОЕНИЯ ЦИКЛА ТНУ, ДЕФОРМИРОВАННОГО ТЕРМОГИДРАВЛИЧЕСКОЙ НЕОБРАТИМОСТЬЮ

Рассмотрим методику построения цикла ТНУ, деформированного термогидравлической необратимостью. В основу методики положены рекомендации работы [11], а также подход, используемый при параметризации цикла в программных продуктах SOLKA-NE и REFRIGERATION UTILITIES.

Если в первом приближении при формировании действительного цикла пренебречь гидравлическими сопротивлениями в трактах конденсации и испарения, а также сопротивлениями в узлах соединения всех основных блоков, то, как известно, в *P-i*-диаграмме цикл ТНУ будет иметь вид, показанный пунктиром на рисунках 1 и 2. Этот цикл является базовым для построения на следующем этапе деформированного цикла.

Первый этап (рис. 1) предусматривает внесение

уточнений, обусловленных неизобарностью процессов в гидравлическом контуре циркуляции хладагента и наличием неизоэнтропного характера процесса сжатия в компрессоре, в уже сформированный базовый цикл. При этом фиксированными считаются т. 3 и т. 7. Используются следующие обозначения: $\Delta T_{\rm nep}$ — величина перегрева; $\Delta T_{\rm no}$ — величина переохлаждения; $T_{\rm cp}^{\ \ \kappa}$, $T_{\rm cp}^{\ \ \mu}$ — средние температуры конденсации и испарения в неизобарных процессах.

Диссипация энергии, вызванная силами вязкости в потоке и трением на внутренних поверхностях элементов ТНУ, приводит к термодинамической неравновесности состояния хладагента, а следовательно и к необратимому характеру процессов испарения и конденсации. В этой связи можно лишь условно изображать процессы 3-4' и 6'-7 прямыми линиями. Вместе с тем, если точки 3 и 4', а также 6' и 7 зафиксированы на основе построения цикла и гидравлического расчёта испарителя и конденсатора, то в силу линейного характера падения давления, обусловленного законом Дарси, можно с достаточной степенью обоснованности считать процессы 3-4' и 6'-7 соответствующими реальному характеру течения [11].

Второй этап (см. рис. 2) построения деформированного цикла заключается в реализации процедуры перепостроения т. 3 и т. 7, которая учитывает влияние увеличения температуры начала конденсации на величину, эквивалентную изменению средней температуры в процессе, вызванной потерями давления в конденсаторе, и влияние уменьшения температуры в конце процесса испарения на величину, эквивалентную изменению средней температуры испарения, вызванной падением давления в испарителе.

Поясним это на примере. По результатам расчёта цикла после первого этапа построения можно заключить, что гидравлические сопротивления в испарителе не оказывают никакого влияния на изменение работы сжатия в компрессоре. Это происходит ввиду того, что на первом этапе построения цикла т. 7 считается фиксированной и от неё должна откладываться величина ΔP_{μ} , чтобы получить положение т. 6'. Между тем, из рис. 1 видно, что средняя температура в процессе 6'-7 повысилась по сравнению с базовым циклом на некоторую величину $\Delta T_{\mu}'$. Таким образом, температура низкопотенциального источника теплоты уже не будет соответствовать тому заданному значению минимального температурного напора в испарителе, которое принято при проектировании. Поэтому на втором этапе построения деформированного цикла температуру в т. 7 необходимо уменьшить на величину $\Delta T_{\mu}' = T_6 - T_{cp}^{\ \mu}$. Аналогично следует поступить при построении процесса неизобарной конденсации, т.е. температуру в т. 3 увеличить на величину $\Delta T_{\kappa}' = T_4 - T_{cp}^{\ \mu}$.

Расчёт термодинамических параметров цикла и конструктивных характеристик гидравлического контура циркуляции хладагента можно проводить с помощью методик [12,19,20]. Для расчёта потерь давления при внутритрубном кипении используются уравнения Мартинелли [20,21]. Для расчёта потерь давления при внутритрубной конденсации применяется уравнение из работы [22]. Потери давления для однофазного потока рассчитываются по уравнению Блаузиуса [20]. Теплофизические свойства хладагентов определяются при помощи базы данных программного продукта SOLKANE [23]. К числу исходных данных относятся: теплопроизводительность Q_{κ} , температуры испарения T_7 и конденсации T_3 на правой пограничной кривой, перегрев хладагента ΔT_{nep} , величина переохлаждения $\Delta T_{\rm no}$, фиктивные длины труб теплообменных аппаратов и соединительных трубопроводов L_i и их диаметры d_i , механический $\eta_{\text{мех}}$ и электрический $\eta_{\text{эл}}$ КПД компрессора, число параллельно работающих змеевиков п и количество колонн в теплообменнике N_v.

5. ПРОЯВЛЕНИЯ ТЕРМОГИДРАВЛИЧЕСКОЙ НЕОБРАТИМОСТИ В ТЕХНОЛОГИЧЕСКИХ СХЕМАХ ТНУ РАЗЛИЧНОЙ СТРУКТУРНОЙ СЛОЖНОСТИ

Для установления зависимости между сложностью технологической схемы и величиной потерь от необратимости в элементах ТНУ рассмотрим несколько усложнённых схем с одноступенчатым и двухступенчатым сжатием хладагента.

На рисунках 3-6 представлены усложнённые технологические схемы ТНУ: схема с одноступенчатым сжатием и регенеративным теплообменником (рис. 3); схема с двухступенчатым сжатием, неполным промежуточным охлаждением и однократным дросселированием (рис. 4); схема с двухступенчатым сжатием, неполным промежуточным охлаждением параллельным дросселированием и переохлаждением тараллельным дросселированием и переохлаждением жидкости (рис. 5); схема с двухступенчатым сжатием с промежуточным впрыском влажного пара во всасывающую линию компрессора второй ступени (рис. 6). На этих рисунках пунктиром показаны базовые циклы для различных технологических схем, а сплошной линией — деформируемые циклы с обозначениями, соответствующими второму этапу их построения.

При вычислении потерь от необратимости в элементах ТНУ использовались рекомендации работ [3,24-26].

Потери со стороны хладагента складываются из потерь, обусловленных теплообменом при конечных разностях температур $\Pi_{xn}^{\Delta T}$ и наличием гидравлических сопротивлений $\Pi_{xn}^{\Delta P}$:

$$\Pi_{x\pi} = \Pi^{\Delta T}_{x\pi} + \Pi^{\Delta P}_{x\pi}.$$
 (4)

Потери от необратимости, обусловленные дисси-

пативными явлениями в трубопроводах обвязки элементов ТНУ, запорно-регулирующей арматуре и теплообменных аппаратах $\Pi_{\chi_1}^{\Delta P}$, можно рассматривать как потери вследствие дросселирования [25,26]:

$$\Pi_{_{\rm XI}}^{_{\Delta P}} = m_{_{\rm XI}}T_{_{\rm oc}}(S_j - S_j^{_{\Delta P}}), \tag{5}$$

где S_j и $S_j^{\Delta P}$ — значения энтропии в конце процесса в соответствующих точках базового и деформированного неизобарностью цикла; m_{xx} — массовый расход хладагента.

Потери П^{AT}_{xл} в испарителе, конденсаторе, охладителе перегретого пара, а также трубопроводах обвязки элементов оборудования определяются по уравнению:

$$\Pi_{x\pi}^{\Delta T} = m_{x\pi} T_{oc} \left[(S_{j+1} - S_j) - \frac{(i_{j+1} - i_j)}{T_{T}} \right],$$
(6)

где T_{τ} — температура теплоносителя в рассматриваемом теплообменном аппарате; S_{j+1} , S_j — значения энтропии хладагента в конце и начале рассматриваемого процесса термодинамического цикла; i_{j+1} и i_j значения энтальпии хладагента в конце и начале рассматриваемого процесса.

Температура окружающей среды $T_{\rm oc}$ принимается равной средней температуре наружного воздуха за

отопительный период [27]. При вычислении величины П^{Δ7} для трубопроводов обвязки оборудования ТНУ

значение T_{τ} в (13) принимается равным T_{oc} .

Потери от необратимости в компрессоре

$$\Pi_{\rm KM} = m_{\rm XN} T_{\rm oc} \left[(S_{j+1} - S_j) - \frac{(i_{j+1} - i_j)}{T_{\rm oc}} \right].$$
(7)

Потери в электродвигателе компрессора

$$\Pi_{\scriptscriptstyle \mathfrak{S},\mathfrak{N}} = N_{\scriptscriptstyle \mathsf{K},\mathfrak{M}}(1 - \eta_{\scriptscriptstyle \mathfrak{S},\mathfrak{M}}), \qquad (8)$$

где *N*_{км} — мощность компрессора; **η**_м — электромеханический КПД компрессора.

Потери в процессе дросселирования

$$\Pi_{\rm Ap} = m_{\rm xn} T_{\rm oc} (S_{j+1} - S_j). \tag{9}$$

В регенеративном теплообменнике величина потерь от необратимости

$$\Pi_{\rm pt}^{\Delta T} = m_{\rm xt} T_{\rm oc} [(S_{j+1} - S_j) - (S_{i+1} - S_i)], \qquad (10)$$

где S_{i+1} , S_i — значения энтропии хладагента в конце и начале процесса для обратного потока в регенеративном теплообменнике.

Аналогичное уравнение можно записать для расчёта потерь в экономайзере схемы с двухступенчатым сжатием, неполным промежуточным охлаждением параллельным дросселированием и переохлаждением жидкости:

$$\Pi_{s}^{\Delta T} = T_{oc}[m_{xn}^{KM1}(S_{j+1} - S_{j}) - m_{xn}^{s}(S_{i+1} - S_{i})], \qquad (11)$$

где $m_{_{XI}}^{^{9}}$ — массовый расход хладагента в экономайзере; $m_{_{XI}}^{^{KM1}}$ — массовый расход хладагента через компрессор первой ступени.

Для определения массового расхода хладагента через компрессоры ступеней низкого и высокого давлений при расчёте термодинамических параметров усложнённых двухступенчатых схем ТНУ используется методика [14].

Суммарные потери от необратимости в элементах ТНУ

$$\Sigma \Pi_i = \Pi_{\text{\tiny HCH}} + \Pi_{\text{\tiny TP}} + \Pi_{\text{\tiny KOH}} + \Pi_{\text{\tiny KM}} + \Pi_{\text{\tiny 9.7}} + \Pi_{\text{\tiny AP}} + \Pi_{\text{\tiny BCH}}, \quad (12)$$

где $\Pi_{\text{исп}}$ — потери в испарителе; $\Pi_{\text{тр}}$ — потери в соединительных трубопроводах; $\Pi_{\text{кон}}$ — потери в конденсаторе; $\Pi_{\text{всп}}$ — потери во вспомогательном оборудовании, входящем в технологическую схему (регенеративный теплообменник, промежуточный охладитель перегретого пара, экономайзер).

С использованием формулы (3) для технологических схем ТНУ, представленных на рисунках 3-6, были вычислены значения критерия сложности. Предполагали, что однотипные элементы схемы имеют одинаковый уровень сложности. Для элементов с разным уровнем сложности могут быть использованы рекомендации работы [8].

В результате были получены следующие значения критерия сложности Таубмана: схема с одноступенчатым сжатием и регенеративным теплообменом — D=15; схема с двухступенчатым сжатием, неполным промежуточным охлаждением и однократным дросселированием — D=17; схема с двухступенчатым сжатием, неполным промежуточным охлаждением параллельным дросселированием и переохлаждением жидкости — D=22; схема с двухступенчатым сжатием и промежуточным впрыском пара во всасывающую магистраль второй ступени — D=18.

При вычислении структурных коэффициентов обязательным условием является варьирование только одного параметра. Все остальные параметры цикла ТНУ считаются условно фиксированными, т.е. не подвергаются специальному воздействию на них.

В настоящей работе в качестве варьируемого параметра была выбрана величина гидравлического сопротивления со стороны хладагента для различных элементов ТНУ. Потери от необратимости в испарителе Писп и конденсаторе Пконд рассчитывались при варьировании значения гидравлического сопротивления в них в диапазоне от 10 до 70 кПа с шагом в 10 кПа. При расчёте потерь в линии всасывания П_{вс} значения гидравлического сопротивления варьировались в диапазоне от 10 до 40 кПа с тем же шагом в 10 кПа. Изменение гидравлического сопротивления теплообменных аппаратов достигалось за счёт варьирования параметра $z = L_i / (d_i N_k)$, характеризующего конструктивные особенности испарителя и конденсатора, а также за счёт варьирования числа параллельно работающих змеевиков п.

В качестве исходных данных при параметризации термодинамического цикла принимались следующие значения: температура испарения $T_0 = 271$ K; температура конденсации T_{κ} =330 К; перегрев пара в испарителе $\Delta T_{\rm nep} = 2$ K; переохлаждение в конденсаторе $\Delta T_{\rm no} = 2$ K; разность температур в регенеративном теплообменнике $\Delta T_{pr} = 35$ K; разность температур в экономайзере $\Delta T_{3} = 5$ К; нагрев хладагента в экономайзере $\Delta T_{a}^{Harp} = 7$ K; температура всасываемого газа в компрессор второй ступени для схемы с неполным промежуточным охлаждением принималась равной $T_{\rm BC2}$ =307,5 K; температура окружающей среды $T_{\rm oc}$ =272 К; температура низкопотенциального теплоносителя *T*_{нп}=283 К; температура теплоносителя после конденсатора ТНУ T₁=320 К; тепловая мощность, подведённая к испарителю ТНУ $Q_0 = 7,65$ кВт; рабочее вещество — R22.

На рисунках 7-9 представлены зависимости, показывающие влияние потерь от необратимости в испарителе, конденсаторе и во всасывающей линии, на суммарные потери в ТНУ при использовании технологических схем разного уровня структурной сложности. В подрисуночных подписях указаны значения структурных коэффициентов π для рассматриваемых элементов, а также критериев сложности *D*.

Как видно из рис. 7, менее устойчивыми к влиянию гидравлических сопротивлений со стороны хладагента в испарителе являются схема с двухступенчатым сжатием и с промежуточным впрыском во всасывающую магистраль второй ступени (π =1,756) и схема с одноступенчатым сжатием и регенеративным теплообменником (π=1,37). Практически это означает, что в данных схемах не следует использовать развитые поверхности теплообмена с внутренним оребрением трубок испарителя. Такие поверхности целесообразно применять в схемах, имеющих большую жёсткость структурных связей по испарителю, а именно в схеме с двухступенчатым сжатием и экономайзером (π=0,84) или в схеме с двухступенчатым сжатием, неполным промежуточным охлаждением и однократным дросселированием (π=0,902). В этих схемах структурный коэффициент $\pi < 1$.

6. ЗАКЛЮЧЕНИЕ

1. Всем рассмотренным схемам в указанных условиях эксплуатации характерна высокая жёсткость структурных связей при изменении гидравлического сопротивления конденсатора (рис. 8). Исключение составляет схема с одноступенчатым сжатием и с регенеративным теплообменником, для которой изменение гидравлического сопротивления конденсатора с 10 до 70 кПа хотя и приводит к незначительному увеличению П_{конд}, однако влияет на величину суммарных потерь ΣΠ_{тну}. Этого не наблюдается в более сложных схемах с двухступенчатым сжатием, в которых имеет место значительное изменение П конл вследствие влияния гидравлических сопротивлений, тем не менее, оно не сказывается на суммарных потерях во всей системе. Из этого следует, что с увеличением структурной сложности технологической схемы растёт жёсткость структурных связей по конденсатору ТНУ. Поэтому для схем со значением критерия сложности D>17 величина $\pi = 0$.

2. Наименее устойчивой к влиянию гидравлических сопротивлений во всасывающей линии является схема с одноступенчатым сжатием и регенеративным теплообменником (рис. 9). Структурный коэффициент для этой схемы больше, чем для остальных схем с двухступенчатым сжатием, однако величина суммарных потерь в системе меньше. Таким образом, при проектировании ТНУ с одноступенчатым сжатием и регенеративным теплообменником длина всасывающей линии и гидравлическое сопротивление самого теплообменника должны быть минимизированы.

3. Для рассмотренных технологических схем при увеличении гидравлического сопротивления в элементах ТНУ имеет место неодинаковый характер изменения различных видов потерь от необратимости. Так, для испарителя и конденсатора существенно большей является величина потерь из-за неравновесного теплообмена Π_{xn}^{AT} , чем потерь из-за наличия гидравлических сопротивлений Π_{xn}^{AP} . Установлено, что для конденсатора схемы с двухступенчатым сжатием, неполным промежуточным охлаждением и однократным дросселированием разность между $\prod_{x_{n}}^{\Delta T}$ и $\prod_{x_{n}}^{\Delta P}$ наименьшая, а наибольшая разность между $\prod_{x_{n}}^{\Delta T}$ и $\prod_{x_{n}}^{\Delta P}$ характерна для схемы с одноступенчатым сжатием и регенеративным теплообменником. Для всасывающей линии преобладающими являются потери из-за гидравлических сопротивлений $\prod_{x_{n}}^{\Delta P}$, а потери от теплообмена $\prod_{x_{n}}^{\Delta T}$ менее существенны. Наименьшая разность между $\prod_{x_{n}}^{\Delta P}$ и $\prod_{x_{n}}^{\Delta T}$ характерна для всасывающей линии схемы с двухступенчатым сжатием и экономайзером.

Предложенная методика структурного анализа технологической схемы с использованием критерия сложности позволила выявить ряд системных закономерностей проявления термогидравлической необратимости в элементах различных схем ТНУ. Данный подход может быть применим и для любых других типов термотрансформаторов, в основе работы которых лежат обратные термодинамические циклы.

ЛИТЕРАТУРА

1. Архаров А.М., Сычев В.М. Основы энтропийностатистического анализа реальных энергетических потерь в низкотемпературных и высокотемпературных машинах и установках// Холодильная техника. — 2005. — № 12. — С. 14-23.

2. **Мартыновский В.С.** Циклы, схемы и характеристики термотрансформаторов. — М.: Энергия, 1979. — 288 с.

3. Бродянский В.М., Фратшер В., Михалек К. Эксергетический метод и его приложения. — М.: Энергоатомиздат, 1988. — 288 с.

4. Нимич Г.В., Михайлов В.А., Бондарь Е.С. Современные системы вентиляции и кондиционирования воздуха. — К.: Аванпост Прим, 2003. — 626 с.

5. **Братута Э.Г., Харлампиди Д.Х, Шерстюк В.Г.** Влияние гидравлических сопротивлений на энергетическую эффективность цикла холодильной машины в зависимости от сложности её технологической схемы// Труды Одесского политехнического университета. — 2007. — № 1 (27). — С. 98-104.

6. **Харлампиди Д.Х.** Применение системного подхода при выборе технологической схемы теплонасосной установки// Інтегровані технології та енергозбереження. — 2008. — № 1. — С. 16-24.

7. Таубман Е.И. Анализ и синтез теплотехнических систем. — М.: Энергоатомиздат, 1983. — 176 с.

8. **Харлампиди Д.Х.** Выбор термодинамического цикла и технологической схемы теплонасосной установки на основе оценки критерия сложности// Інтегровані технології та енергозбереження. — 2006. — № 4. — С. 3-11.

9. **Харлампиди Д.Х.** Обобщенная зависимость для расчета коэффициента преобразования теплового насоса// Восточно-европейский журнал передовых технологий. — 2007. — № 5/4 (29). — С. 70-72.

10. **Харлампиди Д.Х.** Анализ влияния состава многокомпонентной смеси на неизобарность процессов в гидравлическом контуре теплового насоса// Энергосбережение. Энергетика. Энергоаудит. — 2007. — № 7. — С. 16-22.

11. Братута Э.Г., Харлампиди Д.Х., Шерстюк В.Г. Влияние неизобарности процессов конденсации и испарения на энергетические показатели холодильных машин и тепловых насосов// Восточно-европейский журнал передовых технологий. — 2006. — № 3/3 (21). — С. 91-93.

12. **Братута Э.Г., Шерстюк В.Г., Харлампиди Д.Х.** Анализ влияния сопротивления соединительных трубопроводов холодильной машины на ее эффективность// Інтегровані технології та енергозбереження. — 2007. — № 1. — С. 16-23.

13. Дехтярев В.Л. Термодинамический анализ и некоторые возможности усовершенствования реальных циклов холодильных и энергохолодильных установок// Холодильная техника и технология. — 1975. — № 20. — С. 13-19.

14. **D'Accada M.D., Vanoli L.** Thermoeconomic optimization of condenser in a vapor compression heat pump// International Journal of Refrigeration. — 2004. — Vol. 27. — P. 433-441.

15. **Boer D.** Exergy and structural analysis of an absorption cooling cycle and the effect of efficiency parameters//International Journal of Thermodynamics. — Vol. 8 (4). — 2005. - P. 191-198.

16. **Мельцер Л.З.** Методы термодинамической оценки теоретических и действительных циклов холодильных машин// Холодильная техника и технология. — 1968. — № 6. — С. 27-32.

17. Тимченко Е.Л., Чепурненко В.П. Анализ эксергетического КПД аммиачной холодильной машины с винтовым компрессором// Холодильная техника и технология. — 1977. — № 24. — С. 11-17.

18. **Морозюк Т.В., Тсатсаронис Дж.** Теория разделения деструкции эксергии на внутренне и внешнезависимые части// Промышленная теплотехника. — 2006. — Т. 28. — № 6. — С. 94-99.

19. **Харлампиди Д.Х.** Методика расчета водогрейной теплонасосной установки// Науковий вісник будівництва. — 2000. — Вип. 10. — С. 75-82.

20. Kim Y.J., Park I.S. Development of performanceanalysis program for vapor-compression cycle based on thermodynamic analysis// Journal of Industrial and Engineering Chemistry. -2000. - Vol. 6 (6). - P. 385-394.

21. Thermodynamic performance analysis of multi-air-conditioning systems/ Y.J. Kim, I.S. Park, B. Youn at al.// Journal of Industrial and Engineering Chemistry. -2004. - Vol. 10 (2). - P. 220-233.

22. Smith S.J., Shao L. Riffat S.B. Pressure drop of HFC refrigerants inside evaporator and condenser coils as determined by CFD// Applied Energy. — Vol. 70 (2). — 2001. — P. 169-178.

23. Refrigeration and air-conditioning technology/ **Dr.H. Buchwald, J. Hellman, H. Kong, C. Meurer**// Solkane-Pocket Manual. Heinel Welbeagentur GmbH, 2004. — 285 p.

24. **Морозюк Т.В.** Теория холодильных машин и тепловых насосов. — Одесса: Негоциант, 2006. — 721 с.

25. Андреев Л.П., Костенко Г.Н. Эксергетические характеристики эффективности теплообменных аппаратов// Известия высших учебных заведений. Энергетика. — 1965. — № 3. — С. 53-60.

26. Jassim R.K., Khir T., Ghaffour N. Application of exergoeconomic techniques to the optimization of a refrigeration evaporator coil with continuous fins// Journal of Energy Resourch Technology. — 2007. — Vol. 129 (3). — P. 266-278.

27. **Янтовский Е.И., Пустовалов Ю.В.** Парокомпрессионные теплонасосные установки. — М.: Энергоиздат, 1982. — 144 с.

28. Данилова Г.Н., Богданов С.Н., Иванов О.П. Теплообменные аппараты холодильных установок. — Л.: Машиностроение, 1986. — 303 с.