ТЕРМОЭЛЕКТРИЧЕСКАЯ ДОБРОТНОСТЬ МОНОКРИСТАЛЛОВ *p-(Bi_xSb*1-*x*)2-*y*Sn*y*Te₃ В ШИРОКОМ ТЕМПЕРАТУРНОМ ДИАПАЗОНЕ

Кульбачинский В.А.¹, Кытин В.Г.¹, Кудряшов А.А.¹, Лоштак П.² (¹Московский государственный университет им. М.В. Ломоносова, Ленинские горы 1/2, GSP-1, Москва, 119991, Россия; ²Пардубицкий университет, ул. Студенческая, 573, Пардубице, 53210, Чешская Республика)

• В данной работе мы сообщаем о влиянии олова на термоэлектрические свойства монокристаллов p- $(Bi_xSb_{1-x})_2Te_3$ (x = 0; 0.25; 0.5) в температурном диапазоне 7 K – 300 K. Проведены исследования температурной зависимости коэффициента Зеебека S, электропроводности σ , теплопроводности k и добротности монокристаллов p- $(Bi_xSb_{1-x})_2Te_3$. Для определения концентрации легких дырок и энергии Ферми, мы использовали эффект Шубникова-де-Гааза при T = 4.2 K. С повышением содержания Sn, концентрация дырок в p- $(Bi_xSb_{1-x})_{2-y}Sn_yTe_3$ возрастает. Теплопроводность k кристаллов p- $(Bi_xSb_{1-x})_{2-y}Sn_yTe_3$ снижается за счет легирования Sn, а электрическое сопротивление возрастает в температурном интервале 150 K < T < 300 K и снижается при T < 150 K. Коэффициент Зеебека S для всех составов является положительным и снижается за счет легирования Sn во всем температурном диапазоне. Основной причиной этого является акцепторный эффект и рост концентрации дырок при легировании Sn. Энергия Ферми при легировании Sn растет u, следовательно, коэффициент Зеебека снижается.

Введение

В настоящее время полупроводники на основе теллуридов висмута и сурьмы являются наиболее эффективными и широко используемыми материалами для термоэлектрических устройств в диапазоне рабочих температур 200 – 350 К. Показано, что искажение плотности состояний резонансной примесью Sn повышает термоэлектрическую добротность ZT исходного полупроводника в случае Bi₂Te₃ [1]. Принцип вызванного примесью связанного состояния, известного также как «виртуальное связанное состояние», был введен Фриделем [2] как связанное состояние с положительной энергией относительно края энергетической зоны, то есть, с той же энергией, что и у делокализованного состояния. Если оно может резонировать с компонентом этого делокализованного состояния, то наращивается два делокализованных состояния с несколько различными энергиями; они в свою очередь имеют те же энергии, что и делокализованные состояния, с которыми они будут резонировать, и т.д., пока избыточная плотность состояний не возникнет в узком энергетическом диапазоне зоны материала-хозяина. Вскоре после их открытия виртуальные связанные состояния в металлах привели к росту термоЭДС металла-хозяина по механизму, известному теперь как резонансное рассеяние [3]. В противоположности принципу резонансного рассеяния, Маган и Софо [4] предлагают, что термоЭДС и термоэлектрическую добротность можно повысить за счет самой избыточной плотности состояний. Поскольку этот механизм не связан с рассеянием, он, в сущности, не зависит от температуры (исключая температурную зависимость самой зонной структуры [5]), и поэтому подходит для улучшения добротности в практических термоэлектрических материалах при комнатной температуре и выше. Гальваномагнитные свойства легированных оловом твердых растворов монокристаллов $(Bi_xSb_{1-x})_{2-\nu}Sn_\nu Te_3$ исследованы в работах [6-12].

Квантовые колебания сопротивления Холла в магнитном поле до 54 Т и энергетический спектр легированных *Sn* слоистых полупроводников $p-(B_{1-x}Sb_x)_2Te_3$ изучены в работах [10, 12]. Известно, что олово образует резонансное состояние на 15 мэВ ниже поверхности верхней валентной зоны и повышает коэффициент Зеебека *S* монокристаллов Bi_2Te_3 [6 – 9].

Верхние валентные зоны Bi₂Te₃ содержат поверхности Ферми, состоящие из шести эллипсоидальных карманов в k-пространстве, с центром в зеркальной плоскости зоны Бриллюэна в направлении 0.3 – 0.5 Х и имеют эффективную массу интегральной плотности состояний $m_d = 0.35 m_0$. Показано, что нижняя, более тяжелая валентная зона, состоящая из шести эллипсоидов, существует на 20.5 мэВ ниже верхней валентной зоны в k-пространстве при 0.3 - 0.4 A. $Bi_2Te_3 p$ -типа можно легировать примесными атомами Ge, Sn, Pb, а n-типа – In, Cl или I. Как правило, введение легирующих примесей существенно увеличивает флуктуации термоЭДС, возникающие в результате стохастического характера распределения примеси через кристалл. Однако, в случае с Bi_2Te_3 , легированном Sn, наблюдается обратная ситуация. С увеличением количества примеси Sn, снижаются флуктуации термоЭДС и, соответственно, концентрации дырок, указывая на значительно улучшенную электрическую однородность кристаллов [13, 14]. Твердые растворы $(Bi_xSb_{1-x})_2Te_3$ являются более эффективными термоэлектрическими материалами, чем Bi₂Te₃. Поэтому, важно исследовать влияние Sn на термоэлектрическую добротность в широком температурном диапазоне твердых растворов монокристаллов (*Bi_xSb*_{1-x})₂*Te*₃ с разным *x*. Здесь мы сообщаем о влиянии легирования оловом на термоэлектрические свойства монокристаллов $(Bi_xSb_{1-x})_2Te_3$ в температурном диапазоне 7 К – 300 К. Нами изучены образцы монокристаллов $(Bi_xSb_{1-x})_2Te_3$ (x = 0; 0.25; 0.5) p-типа как нелегированные, так и легированные оловом.

Образцы

В данной работе нами исследованы чистые и легированные Sn монокристаллы $p(Bi_xSb_{1-x})_2Te_3$ (x = 0; 0.25; 0.5), выращенные методом Бриджмена. Образцы для измерений с характерными размерами $1 \times 1 \times 5$ мм (самый крупный размер вдоль оси C_2) после расщепления вдоль плоскостей спайности перпендикулярно оси C_3 кристалла разрезались на электроэрозионном станке. Электрические контакты припаивались с помощью сплава *BiSb*. При измерении эффекта Холла ток протекал вдоль оси C_2 , а магнитное поле было направлено вдоль оси C_3 . При измерении термоЭДС и теплопроводности температурный градиент и тепловой поток были направлены вдоль оси C_2 . Некоторые параметры образцов согласно гальванометрическим измерениям перечислены в Таблице. Фактическая концентрация олова у в исследованных образцах определялась экспериментально с помощью после легирования Sn возрастает. Для определения концентрации легких дырок и энергии Ферми мы также использовали эффект Шубникова-де-Гааза при T = 4.2 К в сильных магнитных полях [12].

Термоэлектрические свойства

1. $Sb_{2-x}Sn_xTe_3$

На рис. 1 *а* представлен график температурной зависимости коэффициента Зеебека *S* монокристаллов $Sb_{2-x}Sn_xTe_3$. Значение *S* является положительным, поэтому оба образца (чистый и легированный *Sn*) имеют проводимость *p*-типа. При низких температурах мы наблюдаем максимум за счет фононного торможения. Как видно на рис. 1 *a*, легирование *Sn* снижает термоЭДС монокристалла Sb_2Te_3 во всем температурном интервале. Основная причина состоит в том, что *Sn* является акцептором и повышает концентрацию дырок и уровень Ферми.

<u>Таблица</u>

Состав образца	у – нагруженный	y-AAS	$1/eR_{H4.2}$ $(10^{19}cm^{-3})$	ρ _{4.2} (мкОм∙см)	Р ₃₀₀ (мкОм∙см)	$\mu_{H4.2}$ (m ² /B·c)	<i>Е</i> _{<i>F</i>} (мэВ)
$Sb_{2-y}Sn_yTe_3$	0	0	8.2	38.8	260	0.196	104
	0.0075	0.047	56.4	67.6	181	0.018	137
	0	0	6.4	47.4	445	0.205	69
$(Bi_{0.25}Sb_{0.75})_{2-y}Sn_yTe_3$	0.005	0.0030	7.4	68.6	426	0.122	97
	0.0075	0.0034	—	73	292	_	110
$(Bi_{0.5}Sb_{0.5})_{2-y}Sn_yTe_3$	0	0	3.5	56	737	0.320	44
	0.0075	0.0037	20.8	148	435	0.020	115

Холловская концентрация дырок 1/eR, удельное сопротивление $\rho_{4,2}$ при T = 4.2 K и ρ_{300} при T = 300 K, холловский коэффициент $R_{H4,2}$ и холловская подвижность $\mu_{H4,2}$ при T = 4.2 K для $(Bi_{1x}Sb_x)_{2-y}Sn_yTe_3$

Простая модель с квадратичным законом дисперсии и изотропным временем релаксации т, выраженным как

$$\tau = \tau_0 E^r \,, \tag{1}$$

приводит к следующему выражению для коэффициента Зеебека:

$$S(T) = \frac{k_B}{e} \left(\frac{(2r+5)F_{r+3/2}(\eta)}{(2r+3)F_{r+1/2}(\eta)} - \eta \right),$$
(2)

где k_B – постоянная Больцмана, e – заряд электронов, E_F – энергия Ферми, $\eta = E_F / k_B T$ – приведенная энергия Ферми, а r – параметр, характеризующий механизм рассеяния (r = -1/2 f для рассеяния на акустических фононах, r = 1/2 для полярного оптического рассеяния, а r = 3/2 для рассеяния на ионизированных примесях);

$$F_{s}(\eta) = \int_{0}^{\infty} [x^{s} / (e^{x - \eta} + 1)] dx$$
(3)

- интеграл Ферми. В случае невырождения, выражение (2) дает для S

$$S = \frac{k_B}{e} \left(p + \frac{5}{2} - \frac{\varepsilon_F}{k_B T} \right),\tag{4}$$

Таким образом, рост энергии Ферми снижает значение S.

Теплопроводность монокристаллов $Sb_{2-x}Sn_xTe_3$ была измерена в температурном диапазоне 5 – 300 К. Температурный градиент направлен вдоль оси C_2 . На рис. 1 δ показаны температурные зависимости теплопроводности k. Теплопроводность k кристаллов $Sb_{2-x}Sn_xTe_3$ снижается несущественно за счет легирования Sn по сравнению с чистым Sb_2Te_3 , а электропроводность возрастает в температурном интервале 150 К < T < 300 К и снижается при T < 150 К, как показано на рис. 1 ϵ . При T = 10 К мы наблюдали максимум на зависимости k(T)при значении для Sb_2Te_3 около 18 Вт/м·К. Это значение соответствует тому, которое наблюдалось в работе [12, 13].

Под влиянием всех этих факторов значение безразмерной термоэлектрической добротности *ZT* снижается после легирования оловом (рис. 1 *г*).

Рис. 1 Температурная зависимость (a) коэффициента Зеебека S; (б) теплопроводности k; (в) электропроводности σ и (г) безразмерной добротности ZT для монокристаллов Sb_{2-x}Sn_xTe₃

2. $(Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe_3$

Температурная зависимость коэффициента Зеебека *S* для монокристаллов $(Bi_{0.25}Sb_{0.75})_2Te_3$ и $(Bi_{0.25}Sb_{0.75})_{1.9925}Sn_{0.0075}Te_3$ показана на рис. 2 *a*. Значение *S* является положительным и снижается за счет легирования *Sn* во всем температурном диапазоне. Основная причина этого – влияние акцепторов и рост концентрации дырок при легировании *Sn*. Энергия Ферми увеличивается, и согласно (2), (4) снижается коэффициент Зеебека.

Теплопроводность k монокристаллов $(Bi_{0.25}Sb_{0.75})_2Te_3$ и $(Bi_{0.25}Sb_{0.75})_{1.9925}Sn_{0.0075}Te_3$ возрастает до ~ 8 Вт/м·К при снижении температуры (рис. 2 δ). Значение k для $(Bi_{0.25}Sb_{0.75})_{1.9925}Sn_{0.0075}Te_3$ меньше, чем для $(Bi_{0.25}Sb_{0.75})_2Te_3$ во всем температурном диапазоне. Это характерно для легированного материала благодаря дополнительному рассеянию фононов на примесях. Электропроводность возрастает за счет легирования Sn в температурном интервале 150 К < T < 300 К и снижается при T < 150 К, как показано на рис. 2 e. Во всем температурном диапазоне это типично для вырожденных проводников, то есть, происходит рост σ при снижении температуры. Расчетное значение добротности ZT в легированном Sn $(Bi_{0.25}Sb_{0.75})_2Te_3$ несколько ниже, чем в чистом материале, как показано на рис. 2 e. Основная причина этого – снижение коэффициента Зеебека при легировании Sn, тогда как электропроводность при T > 150 К в легированных образцах еще выше.

Рис. 2. Температурная зависимость (a) коэффициента Зеебека S, (б) теплопроводности k, (в) электропроводности σ, (г) безразмерной термоэлектрической эффективности ZT для монокристаллов (Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe₃.

3. $(Bi_{0.5}Sb_{0.5})_{2-x}Sn_xTe_3$

На рис. 3 показана температурная зависимость *S*, *k*, σ и *ZT* для монокристаллов $(Bi_{0.5}Sb_{0.5})_2Te_3$ и $(Bi_{0.5}Sb_{0.5})_{1.9925}Sn_{0.0075}Te_3$. Результаты аналогичны полученным для $(Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe_3$. Коэффициент Зеебека *S* и теплопроводность *k* снижаются при легировании *Sn*, проводимость возрастает при *T* > 220 К и снижается при *T* < 220 К. Наконец, добротность *ZT* снижается во всем температурном диапазоне.

Применяя простую модель и квадратичный закон дисперсии, а также изотропное время релаксации τ (1) можно вычислить параметр рассеяния r, используя формулу (2) для всех образцов. В качестве примера на рис. 4 показано значение r, вычисленное с помощью экспериментальных данных для $(Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe_3$. В кристаллах без Sn параметр r приближается $\kappa - 1/2$ при високих температурах, указывая основную роль рассеяния акустических фононов: r увеличивается при низких температурах. Легирование оловом приводит κ явному увеличению r, указывая на основное изменение механизма рассеяния дырок: из акустического фононного рассеяния κ рассеянию на ионизированных примесях в легированных образцах. Такое же явление наблюдалось для всех исследованных твердых растворов p- $(Bi_xSb_{1-x})_{2-y}Sn_yTe_3$.

Рис. 3. Температурная зависимость (a) коэффициента Зеебека S, (б) теплопроводности k, (в) электропроводности σ, (г) безразмерной термоэлектрической эффективности ZT для (Bi_{0.5}Sb_{0.5})_{2-x}Sn_xTe₃.

Рис. 4. Температурная зависимость параметра рассеивания r для кристаллов (Bi_{0.25}Sb_{0.075})_{2-v}Sn_vTe₃.

Выводы

Нами исследованы термоэлектрические свойства чистых и легированных *Sn* монокристаллов p-(Bi_xSb_{1-x})₂ Te_3 (x = 0, 0.25, 0.5) в температурном диапазоне 5 < T < 300 К. Мы установили, что в твердых растворах (Bi_xSb_{1-x})₂ Te_3 олово имеет характеристики акцептора. Значение коэффициента Зеебека *S* является положительным для всех составов и снижается за счет легирования *Sn* во всем

температурном диапазоне в связи с увеличением концентрации дырок в образцах легированных оловом. Теплопроводность k также снижается за счет легирования Sn для всех составов. Температурная зависимость проводимости σ сложнее: при комнатной температуре σ возрастает за счет легирования Sn, а при низких температурах σ снижается. Наконец, добротность ZT снижается при 7 < T < 300 К для всех составов p- $(Bi_xSb_{1-x})_2Te_3$. Преимущественный механизм рассеяния в образцах легированных Sn изменяется от акустического фононного к рассеянию на ионизированных примесях.

Литература

- 1. C.M. Jaworski, V.A. Kulbachinskii, J.P. Heremans, Phys. Rev. B 80, 233201 1 (2009).
- 2. J. Friedel, Can. J. Phys. 34, 1190, (1956).
- P. de Faget de Casteljau, J. Friedel, J. Phys. Radium, 17, 27 (1956); A. Blandin, J. Friedel, ibid. 20, 160 (1959).
- 4. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).
- 5. V. Jovovic, S.J. Thiagarajan, J.P. Heremans, T. Komissarova, D.R. Khokhlov, A. Nicorici, JAP, 103, 053710 (2008).
- V.A. Kulbachinskii, N.B. Brandt, P.A. Cheremnykh, S.A. Azou, J. Horak, P. Lostak, Phys. Status Solidi 150, 237 – 243 (1988).
- V.A. Kulbachinskii, M. Inoe, M. Sasaki, H. Negishi, W.X. Gao, K. Takase, Y. Giman, P. Lostak, J. Horak, Phys. Rev. B 50, 16921 – 16930 (1994).
- V.A. Kulbachinskii, H. Negishi, M. Sasaki, Y. Giman, M. Inoue, P. Lostak, J. Horak, Phys. Status Solidi 199, 505 – 513 (1997).
- 9. V.A. Kul'bachinskii, N.E. Klokova, J. Horak, P. Lostak, S.A. Azou, G.A. Mironova, Sov. Phys. Solid State, 31, 112 114 (1989).
- N. Miyajima, M. Sasaki, H. Negishi, M. Inoue, V.A. Kulbachinskii, A.Yu. Kaminskii, K. Suga, J. Low Temp. Phys. 123, N 3/4, 219 – 238 (2001).
- 11. Kulbachinskii V.A., Kaminskii A.Yu., Lunin R.A., Kindo K., Narumi Y., Suga K, Kawasaki S., Sasaki S., Miyajima N., G.R. Wu, Lostak P., Hajek, phys. stat. sol. (*b*) 229, 1467 1480 (2002).
- Kulbachinskii V.A., Kaminskii A.Yu., Lunin R.A., Kindo K., Narumi Y., Suga K, Kawasaki S., Sasaki S., Miyajima N., Lostak P., Hajek, Semicond. Sci. Technol. 17, 1133 – 1140 (2002).
- M.K. Zhitinskaya, S.A. Nemova, V.R. Muhtarova, T.E. Svechnikova, Semiconductors, 45, 988 992 (2011).
- 14. M.K. Zhitinskaya, S.A. Nemov, T.E. Svechnikova, P. Reinhaus, E. Müller, Semiconductors, 34, 1363 1364 (2000).
- 15. P.M. Tarasov, V.A. Kulbachinski, V.G. Kytin, JETP, 105, 21 (2007).
- 16. Dyck J.S., Chen W., Uher C., Drasar C, Lostak P., Phys. Rev. B., 66, 125206-1 (2002).

Поступила в редакцию 04.10.2011.