КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЛОИСТЫХ ТЕТРАДИМИТОПОДОБНЫХ ХАЛЬКОГЕНИДОВ

Земсков В.С.¹, Шелимова Л.Е.¹, Константинов П.П.², Житинская М.К.³, Авилов Е.С.¹, Кретова М.А.¹, Нихезина И.Ю.¹

 (¹Учреждение Российской академии наук, Институт металлургии и материаловедения им. А.А. Байкова РАН, Ленинский просп., 49, Москва, 119991, Россия;
 ²Учреждение Российской академии наук, Физико-технический институт им. А.Ф. Иоффе РАН, ул. Политехническая, 26, Санкт-Петербург, 194021, Россия;
 ³Санкт-Петербургский государственный политехнический университет, ул. Политехническая, 29, Санкт-Петербург, 195251, Россия)

• Монокристаллы соединений PbSb₂Te₄ (p-muna) и PbBi₄Te₇ (n-muna) проводимости, легированные электроактивными примесями (Cd, Ag, Cu), выращены методом Чохральского. Измерены коэффициент термоЭДС, электро- и теплопроводность этих монокристаллов в интервале температур 80-350 К в двух кристаллографических направлениях: параллельно (поперек слоев) и перпендикулярно (в направлении плоскостей скола) тригональной оси с. Измерения эффекта Холла в тех же кристаллографических направлениях проведены в интервале температур 77-450 К. Выявлена существенная анизотропия измеренных кинетических коэффициентов. низкой Соединения характеризуются решеточной теплопроводностью, которая существенно ниже по сравнению с таковой сплавов на основе Проведен анализ механизма проникновения электроактивных примесей в Bi₂Te₃. кристаллическую решетку тройных соединений. Экспериментальные данные для р-типа PbSb₂Te₄ анализируются в рамках однозонной и двухзонной моделей валентной зоны.

Введение

Поиск новых термоэлектрических материалов (ТЭМ) для термогенераторов (ТЭГ) является актуальной задачей науки и техники. ТЭГ используются для преобразования в электричество тепла, генерируемого многими источниками, такими как солнечное тепло, тепло выхлопных газов автомобилей, тепло от сжигания муниципальных отходов и т.д. Уменьшение решеточной теплопроводности к_{рh} является одним из эффективных путей увеличения термоэлектрической эффективности ТЭМ для ТЭГ [1]. В настоящее время активно развивается направление по поиску новых термоэлектрических материалов на основе тройных или четверных слоистых халькогенидов со сложными кристаллическими решетками и низкой решеточной теплопроводностью [2]. Соединения со сложными структурами, содержащие в своем составе тяжелые элементы, обладают низкими значениями решеточной теплопроводности вследствие эффективного рассеяния фононов. Тройные слоистые тетрадимитоподобные соединения в квазибинарных системах $A^{IV}B^{VI} - A^{V}_{2}B^{VI}_{3}$ ($A^{IV} - Ge$, Sn, Pb, $A^{V} - Bi$, Sb, $B^{VI} - Se$, Te) представляют интерес с этой точки зрения, т.к. в этих системах образуются гомологические ряды слоистых соединений типа $nA^{IV}B^{VI} \cdot mA^{V}_{2}B^{VI}_{3}$ и существует большое разнообразие смешанослойных соединений, структурно и композиционно более сложных по сравнению с традиционными твердыми растворами на основе Bi₂Te₃ [3-5]. Элементарные ячейки тройных соединений образованы многослойными пакетами разного типа, упорядоченно чередующимися в направлении тригональной оси с. Слоистая структура тройных соединений представляет собой плотнейшую кубическую упаковку атомов Те, в октаэдрических пустотах которой расположены атомы *Ge*(*Sn*, *Pb*) и *Bi*(*Sb*). При этом катионы занимают лишь часть октаэдрических пустот.

Соединения $PbSb_2Te_4$ (*p*-тип) и $PbBi_4Te_7$ (*n*-тип) проводимости принадлежат к гомологическим рядам $nPbTe \cdot mSb_2Te_3$ и $nPbTe \cdot mBi_2Te_3$ со значениями (n = 1, m = 1) и (n = 1, m = 2), соответственно, и представляют интерес для получения новых ТЭМ [6, 7]. Соединение $PbSb_2Te_4$ образуется по перитектической реакции и имеет 21-слойную решетку со следующими параметрами в гексагональной установке: a = 0.4350(1) нм, c = 4.1712(2) нм (пр.гр. R3m) [5]. Элементарная ячейка этого соединения содержит три семислойных пакета $TeSbTePbTeSbTe_4$, упорядоченно чередующиеся в направлении тригональной оси c. Соединение $PbBi_4Te_7$ плавится конгруэнтно при 858 К [8] и имеет 12-слойную решетку со следующими параметрами: a = 0.4409 нм, c = 2.4000 нм (пр.гр. P3m1) [4]. Элементарная ячейка $PbBi_4Te_7$ содержит слоевые пакеты двух типов: один семислойный TeBiTePbTeBiTe и один пятислойный TeBiTeBiTe [6]. В структурах $PbSb_2Te_4$ и $PbBi_4Te_7$ связи внутри многослойных пакетов ионно-ковалентные, а связь между пакетами осуществляется, в основном, слабыми ван-дер-ваальсовыми силами. Эффективное рассеяние фононов на потенциальных барьерах на границах между слоевыми пакетами может являться важным фактором снижения решеточной теплопроводности в слоистых соединениях [6].

Цель настоящей работы – выращивание и рентгенографическое исследование кристаллов тройных соединений, исследование анизотропии термоэлектрических свойств и изучение влияния легирования электроактивными примесями (Cd, Ag, Cu) на анизотропию термоэлектрических параметров и микротвердости монокристаллов *n*-типа на основе соединения $PbBi_4Te_7$, а также *p*-типа проводимости на основе соединения $PbSb_2Te_4$.

Методика эксперимента

Монокристаллы указанных соединений выращивали методом Чохральского с подпиткой жидкой фазой из плавающего тигля. Шихту для роста синтезировали в вакуумированных кварцевых ампулах из элементов, взятых в соответствующих соотношениях, при 1070 К в течение 5 ч. Выращивание кристаллов тройных соединений проводили на монокристаллические затравки составов $(Bi_2Te_3)_{0.90}(Sb_2Te_3)_{0.05}(Sb_2Se_3)_{0.05}$ и $(Bi_2Te_3)_{0.25}(Sb_2Te_3)_{0.72}(Sb_2Se_3)_{0.03}$ для материалов *n*- и *p*-типа проводимости, соответственно. Полученные методом Чохральского кристаллы имели диаметр от 20 до 30 мм, длину около 100 мм и были ориентированы вдоль плоскостей спайности в направлении [1010]. Тройные соединения идентифицировали путем рентгенографического исследования монокристаллических сколов с использованием автоматического дифрактометра ДРОН-УМ (*СиК*_α-излучение) [9].

Измерения термоэлектрических свойств проводили в двух кристаллографических направлениях: параллельно (индексы 33) и перпендикулярно тригональной оси c (индексы 11). Измерялись следующие независимые компоненты тензоров кинетических коэффициентов: термоЭДС α_{11} , α_{33} ; электропроводности σ_{11} , σ_{33} ; теплопроводности κ_{11} , κ_{33} и коэффициента Холла R_{123} , R_{321} . Индексы при коэффициентах соответствуют порядку их расположения: первый – направлению измеряемого электрического поля, второй – направлению электрического тока или градиента температуры, третий – направлению магнитного поля.

Измерения микротвердости проводили с помощью микроскопа "Reichert" с приставкой "Поливар-мет".

Результаты эксперимента и их обсуждение

Легирование $PbBi_4Te_7$ кадмием. Поликристаллические образцы твердого раствора с гетеровалентным замещением $PbBi_{1-x}Cd_xTe_7$ (0 < x < 0.06) исследовались в работе [6]. Было установлено, что оптимальными термоэлектрическими свойствами обладает сплав состава $PbBi_{3.94}Cd_{0.06}Te_7$. В связи с этим, этот состав использовался в настоящей работе при получении монокристаллов *n*-типа проводимости.

Рентгенографическое исследование монокристаллических сколов позволило определить параметр *c* кристаллической решетки $PbBi_4Te_7$ и $PbBi_{3.94}Cd_{0.06}Te_7$. Сравнение параметров *c* кристаллов $PbBi_4Te_7$ (*c* = 2.3934(2) нм) и $PbBi_{3.94}Cd_{0.06}Te_7$ (*c* = 2.3928(2) нм) на одинаковом расстоянии от затравки показывает, что введение Cd приводит к уменьшению параметра *c*. Это связано с меньшими размерами атомов Cd (октаэдрический ковалентный радиус Cd: $R_{Cd} = 0.138$ нм) по сравнению с размерами атомов Bi ($R_{Bi} = 0.165$ нм), которые кадмий замещает в катионной подрешетке [10].

Результаты измерения коэффициента термоЭДС и электропроводности $PbBi_4Te_7$ и сплава твердого раствора $PbBi_{3.94}Cd_{0.06}Te_7$ при 300 К в направлении тригональной оси *с* и перпендикулярном к ней направлении представлены в таблице 1. Анизотропия термоЭДС, электро- и теплопроводности $PbBi_4Te_7$ близка к анизотропии свойств в бинарном соединении Bi_2Te_3 . Значения $\Delta \alpha$ для $PbBi_4Te_7$ и твердого раствора $PbBi_{3.94}Cd_{0.06}Te_7$ примерно одинаковы и близки по величине к анизотропии термоЭДС для Bi_2Te_3 : $\Delta \alpha = 16$ мкВ/К [11].

Таблица 1

		n			0	-
Соединение	α_{11} ,	α ₃₃ ,	Δα,	σ_{11} ,	σ ₃₃ ,	$\sigma_{11/}\sigma_{33}$
	мкВ/К	мкВ/К	мкВ/К	См/см	См/см	
$PbBi_4Te_7$	- 18	- 40	22	3358	784	4.3
$PbBi_{3.94}Cd_{0.06}Te_7$	- 20	- 40	20	3694	654	5.6
$PbBi_4Te_7 < Ag >$	- 28	- 36	8.0	3655	1584	2.3
Соединение	$\kappa_{11(ph)} \cdot 10^3$,	$\kappa_{33(ph)} \cdot 10^3$,	$\kappa_{11(ph)}/\kappa_{33(ph)}$			
	Вт/см•К	Вт/см•К				
$PbBi_4Te_7$	17.1	5.2	3.3			
$PbBi_{3.94}Cd_{0.06}Te_7$	9.3	6.5	1.4			

Результаты измерения коэффициента термоЭДС и электропроводности при 300 К в направлении тригональной оси с (α_{33} , σ_{33}) и перпендикулярном к ней направлении (α_{11} , σ_{11}) для PbBi₄Te₇, твердого раствора PbBi_{3.94}Cd_{0.06}Te₇ и PbBi₄Te₇, легированного серебром п-типа

Решеточная теплопроводность рассчитывалась вычитанием из общей теплопроводности электронной составляющей, оцененной по закону Видемана-Франца: $\kappa_{el} = L\sigma T$, где *L*-число Лоренца. Использовалось стандартное число Лоренца, рассчитанное для однозонной модели для случая сильного вырождения: $L = \pi^2/3(k_0/e)^2$. Ниже приведены данные, демонстрирующие изменение решеточной теплопроводности при 300 К при замещении *Bi* атомами *Cd* [9].

Из приведенных данных видно, что введение Cd приводит к существенному снижению к_{11(ph)} при незначительном изменении к_{33(ph)}. Образование дефектов замещения типа Cd'_{Bi} в слое способствует эффективному рассеянию фононов на флуктуациях масс и напряжений, что приводит к уменьшению к_{11(ph)}. Слабое изменение к_{33(ph)} может быть связано с незначительным изменением характера межатомного взаимодействия между слоевыми пакетами при введении Cd.

Исследование температурных зависимостей кинетических коэффициентов

*PbBi*_{3.94}*Cd*_{0.06}*Te*₇ (рис.1 *a-г*) показало, что анизотропия α возрастает с увеличением температуры (рис. 1 *a*), в то время как анизотропия электропроводности при этом уменьшается (рис. 1 *в*). Значение σ_{11}/σ_3 в сплаве *PbBi*_{3.94}*Cd*_{0.06}*Te*₇ изменяется от $\sigma_{11}/\sigma_{33} = 5.9$ при 85 K до $\sigma_{11}/\sigma_3 = 5.6$ при 300 K. Анизотропия решеточной теплопроводности изменяется в пределах от $\kappa_{11(ph)}/\kappa_{33(ph)} = 2.0$ при 85 K до $\kappa_{11(ph)}/\kappa_{33(ph)} = 1.4$ при 300 K. При температурах выше 150 K наблюдаются аномальные зависимости $\kappa_{11(ph)} = f(T)$ и $\kappa_{33(ph)} = f(T)$ (рис.1 *б*). Аномальное поведение решеточной теплопроводности в существенном отклонении от закона $\kappa_{ph} \sim T^{-1}$.

Рис.1. Температурные зависимости для двух кристаллографических направлений коэффициента термоЭДС (а), решеточной теплопроводности (б), электропроводности (в) и коэффициента Холла (г) сплава PbBi_{3.94}Cd_{0.06}Te₇

Обе компоненты тензора коэффициента Холла растут при увеличении температуры с несколько различной скоростью (рис. 1 *г*). Анизотропия коэффициента Холла уменьшается при увеличении температуры от $R_{321}/R_{123} = 1.4$ при 77 К до $R_{321}/R_{123} = 1.1$ при 440 К для сплава $PbBi_{3.94}Cd_{0.06}Te_7$. Таким образом, в случае, когда легирующая добавка приводит к образованию дефектов замещения в слое типа Cd_{Bi} , ее введение способствует росту σ_{11} и уменьшению $\kappa_{11(ph)}$ без существенного изменения σ_{33} и $\kappa_{33(ph)}$. Это делает кадмий перспективной добавкой в $PbBi_4Te_7$, приводящей к улучшению термоэлектрических свойств в направлении плоскостей спайности.

Легирование *PbBi***₄***Te***₇ серебром.** Рентгенографическое исследование монокристаллических сколов $PbBi_4Te_7 < Ag > (N_{Ag} \sim 4.8 \cdot 10^{19} \text{ см}^{-3})$ показывает, что введение Ag

приводит к росту параметра *c* кристаллической решетки. Параметр *c* для нелегированного монокристалла $PbBi_4Te_7$ равен c = 2.3934(2) нм, а параметр *c* для легированного соединения составляет: c = 2.3964(2) нм, что заметно выше первого значения. На основании небольшого размера атомов Ag (октаэдрический ковалентный радиус серебра равен $R_{Ag} = 0.136$ нм [10]) можно было бы ожидать уменьшения параметра *c* в случае замещения в слое больших по размеру атомов Pb, Bi атомами серебра, однако, это не наблюдается. Обнаруженное увеличение параметра *c* при введении Ag может быть объяснено вхождением атомов серебра в ван-дерваальсовы щели между семислойными и пятислойными пакетами в структуре $PbBi_4Te_7$.

Как показало ранее проведенное исследование соединения $GeBi_4Te_7$, легированного медью [12], термоэлектрические свойства слоистых соединений весьма чувствительны к появлению в ван-дер-ваальсовых щелях элементов 1Б-подгруппы Периодической системы. В таблице 1 и на рис. 2–4 представлены результаты измерения термоэлектрических свойств нелегированного и легированного серебром $PbBi_4Te_7$. Из этих данных видно, что анизотропия всех кинетических коэффициентов уменьшается при введении атомов серебра в решетку $PbBi_4Te_7$. Компонента тензора коэффициента термоЭДС α_{11} увеличивается (концентрация электронов уменьшается) при легировании, а компонента α_{33} при этом слегка уменьшается. Компонента тензора электропроводности σ_{33} заметно возрастает при введении серебра, а компонента σ_{11} практически не меняется при легировании.

термоЭДС для PbBi₄Te₇ n-типа, нелегированного (1, 2) и легированного серебром (3, 4); 1, 3- α_{11} ; 2, 4- α_{33} .

Из приведенных данных видно, что при 350 К решеточная теплопроводность имеет очень низкие значения в кристалле $PbBi_4Te_7 < Ag >$, особенно в направлении тригональной оси *c*.

Анизотропия коэффициента термЭДС в легированном соединении слегка возрастает с ростом температуры (рис. 2), а электропроводности и теплопроводности уменьшается (рис. 3, 4).

Изменение электро- и теплопроводности при легировании $PbBi_4Te_7$ серебром можно объяснить на основе результатов рентгеновского анализа, согласно которым атомы серебра встраиваются в ван-дер-ваальсовы щели. Увеличение компоненты тензора σ_{33} при введении Ag может быть связано с усилением взаимодействия между слоевыми пакетами и с уменьшением роли потенциальных барьеров на границе между этими пакетами в рассеяние носителей заряда. В то же время, компонента σ_{11} меняется мало при введении Ag. Это показывает, что дефекты замещения типа Ag_{Bi} или Ag_{Pb} не могут быть преобладающими дефектами в катионной

подрешетке. Слабое изменение σ_{11} и сильное изменение σ_{33} при легировании свидетельствуют в пользу механизма встраивания атомов *Ag* в ван-дер-ваальсовы щели.

Рис. 4. Температурные зависимости теплопроводности для $PbBi_4Te_7$ п-типа, нелегированного (1, 2) и легированного серебром (3,4); 2, 4 – $\kappa_{33(tot)}$; 1, 3 – $\kappa_{11(tot)}$.

Как известно, микротвердость является важным структурно-чувствительным параметром, позволяющим сделать некоторые выводы о характере взаимодействия между слоевыми пакетами при легировании слоистых соединений электроактивными примесями. В таблице 2 представлены результаты измерения микротвердости вдоль плоскостей спайности и перпендикулярно к ним для монокристаллов $PbBi_4Te_7$, нелегированных и легированных серебром в сравнении с литературными данными для Bi_2Te_3 [13]. Ниже приведены данные, иллюстрирующие изменение решеточной теплопроводности $\kappa_{11(ph)}$ и $\kappa_{33(ph)}$ при легировании серебром при 350 К.

Таблица 2

Соединение	H_{\parallel} , МПа	<i>Н</i> ⊥, МПа	H_{\parallel}/H_{\perp}
Bi_2Te_3 [13]	340	259	1.31
$PbBi_4Te_7$	840(12)	730(14)	1.15
PbBi ₄ Te ₇ <ag></ag>	820(10)	730(15)	1.12
Соединение	${ \kappa_{11(ph)} imes 10^3 \ m Bt/cm^{-}K}$	$\kappa_{33(ph)} imes 10^3$ Вт/см·К	$\kappa_{11(ph)}/\kappa_{33(ph)}$
PbBi ₄ Te ₇	17.1	5.2	3.3
$PbBi_4Te_7 < Ag >$	4.4	2.9	1.5

Микротвердость монокристаллов PbBi₄Te₇, измеренная параллельно плоскостям спайности (H_I) и перпендикулярно плоскостям спайности (H_⊥)

Из таблицы 2 видно, что существует заметная анизотропия микротвердости в исследованных монокристаллах, связанная с различием химических связей в направлениях параллельном и перпендикулярном плоскостям спайности. Структура Bi_2Te_3 образована 5-слойными пакетами, разделенными ван-дер-ваальсовыми щелями. Слабые ван-дер-ваальсовы силы, действующие между 5-слойными пакетами, обуславливают низкие значения H_{\perp} в монокристаллах Bi_2Te_3 [13]. Внутри квинтетов связь более сильная – преимущественно ионно-ковалентная, что обуславливает более высокие значения микротвердости (H_{\parallel}). При этом, выполняется соотношение: $H_{\perp} < H_{\parallel}$. Такое же соотношение характерно для $PbBi_4Te_7$, однако, значения микротвердости, как H_{\perp} , так и H_{\parallel} , для этого соединения существенно больше по

сравнению с Bi_2Te_3 . Как указывалось выше, структура $PbBi_4Te_7$ образована одним 5-слойным и одним 7-слойным пакетом, разделенными ван-дер-ваальсовыми щелями. Однако роль ван-дерваальсовых взаимодействий уменьшается в $PbBi_4Te_7$, т.к. число ван-дер-ваальсовых щелей в структуре соединения $PbBi_4Te_7$ меньше, чем в структуре Bi_2Te_3 . Введение Ag в решетку $PbBi_4Te_7$ практически не изменяет значения H_{\perp} . Это может быть связано с соревнованием двух факторов. С одной стороны, судя по свойствам, возможно усиление химического взаимодействия между пакетами при интеркаляции Ag, что должно приводить к росту H_{\perp} . С другой стороны, искажения кристаллической решетки, возникающие при встраивании атомов Ag в решетку $PbBi_4Te_7$, должны приводить к снижению H_{\perp} . В результате совокупного действия этих двух факторов значение H_{\perp} при введении Ag не претерпевает изменений.

В целом, следует отметить, что введение серебра улучшает термоэлектрические свойства $PbBi_4Te_7$ в направлении тригональной оси *c*, т.к. в этом направлении возрастает электропроводность σ_{33} при незначительном изменении коэффициента термоЭДС. Кроме того, решеточная теплопроводность, измеренная в направлении оси *c* (κ_{33}) (поперек барьеров), заметно уменьшается при легировании серебром.

Термоэлектрические свойства сплавов *р*-типа проводимости на основе PbSb₂Te₄

Легирование $PbSb_2Te_4$ медью. Рентгенографическое исследование монокристаллического скола соединения $PbSb_2Te_4$, легированного медью ($N_{Cu} \sim 3 \cdot 10^{19}$ см⁻³), показало, что введение меди приводит к небольшому росту параметра решетки *с*. Полученное значение c = 4.1736(3) нм для легированного соединения немного превышает значение c = 4.1712(2) нм для нелегированного $PbSb_2Te_4$, определенное в работе [5]. Учитывая малые размеры атомов Cu ($R_{Cu} = 0.116$ нм [10]), можно предположить, что, по крайней мере, частично атомы меди встраиваются в ван-дерваальсовы щели между семислойными пакетами.

В таблице 3 и на рис. 5 – 7 представлены результаты измерения в двух кристаллографических направлениях (параллельно и перпендикулярно тригональной оси *c*) термоэлектрических свойств $PbSb_2Te_4$, нелегированного и легированного медью. Как видно из таблицы 3, анизотропия кинетических коэффициентов существенно уменьшается при введении атомов *Cu*. Анизотропия коэффициента термоЭДС уменьшается при легировании почти в 6 раз. Компонента тензора электропроводности σ_{33} возрастает в 5 раз, а компонента σ_{11} изменяется незначительно при введении *Cu*.

Ниже в таблице 3 приведены данные, демонстрирующие изменение решеточной теплопроводности при легировании медью при комнатной температуре:

<u>Таблица 3</u>

Результаты измерения коэффициента термоЭДС и электропроводности при 300 К в направлении тригональной оси с (α₃₃, σ₃₃) и перпендикулярном к ней направлении (α₁₁, σ₁₁) для нелегированного и легированного медью PbSb₂Te₄ p-типа проводимости

Соединение	α ₁₁ , мкВ/К	α ₃₃ , мкВ/К	Δα, мкВ/К	σ ₁₁ , См/см	σ ₃₃ , См/см	$\sigma_{11/}\sigma_{33}$
$PbSb_2Te_4$	26	107	81	2354	232	10.1
$PbSb_2Te_4 < Cu >$	30	44	14	2971	1705	1.7
Соединение	$\kappa_{11(ph)} \cdot 10^3$	$\kappa_{33(ph)} \cdot 10^3$	$\kappa_{11(ph)}/\kappa_{33(ph)}$			
	Вт/см•К	Вт/см•К				
$PbSb_2Te_4$	11.9	4.8	2.5			
$PbSb_2Te_4 < Cu >$	2.7	8.4	<1			

Рис.5. Температурные зависимости коэффициента термоЭРС для PbSb₂Te₄ p-типа, нелегированного (1, 2) и легированного медью (3,4); 1, 3 – α_{11} ; 2, 4 – α_{33} .

Рис.6. Температурные зависимости электропроводности для PbSb₂Te₄ p-типа, нелегированного (1, 2) и легированного медью (3,4); 1, 3 – σ_{11} ; 2, 4 – σ_{33} .

Компонента тензора теплопроводности $\kappa_{33(ph)}$ увеличивается, а компонента тензора теплопроводности $\kappa_{11(ph)}$ уменьшается при легировании медью. В результате, отношение $\kappa_{11(ph)}/\kappa_{33(ph)}$ становится меньше единицы при введении атомов *Cu*. Такой характер изменения решеточной теплопроводности в $PbSb_2Te_4 < Cu >$ показывает, что в $PbSb_2Te_4 < Cu >$ реализуется сложный механизм вхождения меди в решетку соединения. Наряду с ее вхождением в ван-дерваальсовы щели возможно образование дефектов типа Cu'_{Pb} и Cu''_{Sb} , способствующих снижению $\kappa_{11(ph)}$. Исследование температурных зависимостей термоэлектрических свойств показало, что, как и в случае $PbBi_4Te_7$, анизотропия коэффициента термоЭДС $PbSb_2Te_4$ слегка возрастает (рис. 5), а анизотропия электропроводности (рис. 6) уменьшается с ростом температуры. Анизотропия теплопроводности меняется незначительно с увеличением температуры (рис. 7).

Рис. 7. Температурные зависимости общей теплопроводности для PbSb₂Te₄ p-типа, нелегированного (1, 2) и легированного медью (3, 4); 1, 3 – к_{11(tot)}; 2, 4 – к_{33(tot)}.

Результаты измерения микротвердости нелегированного и легированного медью соединения *PbSb*₂*Te*₄ представлены в таблице 4.

<u>Таблица 4</u>

(P 1 P	*	
Соединение	<i>H</i> ∥, МПа	<i>H</i> ⊥, MΠa	H_{\parallel}/H_{\perp}
$PbSb_2Te_4$	833(9)	680(14)	1.23
$PbSb_2Te_4 < Cu >$	895(12)	826(14)	1.08

Микротвердость монокристаллов PbSb₂Te₄, измеренная параллельно плоскостям спайности (H₁) и перпендикулярно плоскостям спайности (H₁)

Из таблицы 4 видно, что введение меди в решетку соединения $PbSb_2Te_4$ приводит к заметному росту микротвердости в обоих кристаллографических направлениях. Характер изменения H_{\perp} согласуется с предположением о вхождении Cu в ван-дер-ваальсовы щели между 7-слойными пакетами TeSbTePbTeSbTe, из которых построена кристаллическая решетка соединения $PbSb_2Te_4$. По-видимому, введение меди приводит к усилению химической связи между слоевыми пакетами, что сопровождается ростом H_{\perp} .

Анализ экспериментальных данных исследования соединения *PbSb*₂*T*e₄ *p*-типа в рамках однозонной и двухзонной моделей валентной зоны

В работе проведен анализ возможных причин возникновения анизотропии коэффициента термоЭДС и электропроводности, а также аномального поведения решеточной теплопроводности и коэффициента Холла в зависимости от температуры для нелегированного соединения *PbSb*₂*Te*₄.

Однозонная модель. Высокая концентрация дырок в $PbSb_2Te_4$ ($p = 3.0 \cdot 10^{20}$ см⁻³) позволяет использовать для анализа экспериментальных результатов формулы для кинетических коэффициентов, справедливые для сильного вырождения газа свободных носителей. Коэффициент термоЭДС в этом случае равен:

$$\alpha = \{k_0/e \cdot \pi^2/3\} \{k_0 T/\mu\} (r+1), \tag{1}$$

где μ – химический потенциал, T – температура, k_0 – постоянная Больцмана, e – величина заряда электрона, r – параметр рассеяния – показатель степени в энергетической зависимости времени релаксации $\tau(\varepsilon) \sim \varepsilon^{r^{-1/2}}$.

Наиболее распространенным механизмом рассеяния электронов в полупроводниках в области температур 77 – 400 К является рассеяние на акустических колебаниях кристаллической решетки, для которого параметр рассеяния r = 0. Из меньшего значения коэффициента термоЭДС $\alpha_{11} = 10$ мкВ/К при 100 К при r = 0 получаем параметр, характеризующий степень вырождения дырочного газа $\mu^* = \mu/k_0T \approx 28 >>1$ и уровень Ферми дырок $\mu \approx 0.24$ эВ. Найденное значение μ^* подтверждает справедливость использования формулы (1), которая в согласии с экспериментом дает линейную зависимость термоЭДС от температуры.

В области температур 77 – 450 К в сильно легированных полупроводниках, кроме рассеяния на акустических фононах, как правило, вносит существенный вклад рассеяние на кулоновском потенциале ионизированных примесей и дефектов. По-видимому, смешанный механизм рассеяния дырок возможен в $PbSb_2Te_4$. Он может быть одной из причин возникновения анизотропии термоЭДС, если предположить, что в разных направлениях действуют разные доминирующие механизмы рассеяния: в плоскости скола – акустическое рассеяние, а в направлении тригональной оси c – рассеяние на ионах примеси.

В таком случае для большей компоненты тензора коэффициента термоЭДС α₃₃, полагая

параметр рассеяния r = 2 и используя найденное ранее из компоненты α_{11} значение приведенного химического потенциала μ^* , по формуле (1) при температуре 100 К получаем значение $\alpha_{33} = 30$ мкВ/К, близкое к экспериментальному. Более того, производные по температуре $d\alpha_{33}/dT$ и $d\alpha_{11}/dT$ в рассматриваемой модели должны отличаться в 3 раза, что и наблюдается на эксперименте.

Данные по температурным зависимостям электропроводности также подтверждают сделанное предположение о механизмах рассеяния. Электропроводность в плоскости скола σ_{11} убывает примерно как $T^{-0.8}$, что близко к теоретическому T^{-1} для акустического механизма рассеяния в случае сильного вырождения. В то же время электропроводность в направлении тригональной оси σ_{33} изменяется с температурой заметно слабее ($\sigma_{33} \sim T^{-0.3}$), как и должно быть при доминирующем рассеянии дырок на ионах примеси.

Проведенный анализ показывает, что экспериментальные данные, в основных чертах, могут быть объяснены в рамках однозонной модели зонного спектра и смешанного механизма рассеяния дырок в предположении, что в плоскости скола доминирует рассеяние на акустических фононах, а в направлении тригональной оси – рассеяние на ионах примеси.

Двухзонная модель для PbSb₂Te₄

Для объяснения сильной температурной зависимости обеих компонент тензора Холла и необычной температурной зависимости теплопроводности в работе была привлечена двухзонная модель валентной зоны. В основе рассмотрения использовали вариант, когда в явлениях переноса участвуют носители тока (дырки) двух типов – легкие и тяжелые с различной анизотропией подвижностей в разных направлениях. Для расчета использовалась феноменологическая теория, развитая в работе [14] для бинарного соединения Sb_2Te_3 . Если предположить, что парциальные коэффициенты термоЭДС для легких и тяжелых дырок изотропны, то при проводимости с участием двух типов дырок анизотропия термоЭДС описывается формулой:

$$\Delta \alpha = \alpha_{33} - \alpha_{11} = (\alpha^{(1)} - \alpha^{(2)}) v(b_c - b_a) / b_c b_a,$$
⁽²⁾

где $v = p_2/p_0$ – отношение концентраций легких дырок к полной концентрации $p_0 = p_1 + p_2$, $b_a = u_1^a/u_2^a$, $b_c = u_1^c/u_2^c$ – отношения их подвижностей: b_a – в направлении плоскости скола; b_c – в направлении перпендикулярном плоскости скола, соответственно.

Из формулы (2) следует, что при $\Delta \alpha > 0$ (что согласуется с экспериментом), $b_a/b_c > 1$. Это условие удовлетворяется в том случае, если дырки, принадлежащие зоне с более высокой подвижностью, обладают большей анизотропией. В частности, если подвижности дырок в дополнительной зоне (2) выше, чем в основной (1), ($b_a/b_c > 1$), то анизотропия подвижностей дырок в основной зоне (1) меньше, чем анизотропия дырок в дополнительной зоне (2), так как

$$b_a/b_c = (u_1^a/u_1^c)/(u_2^a/u_2^c).$$
(3)

Тот факт, что анизотропия коэффициента Зеебека связана с появлением носителей (дырок) второго типа, позволяет использовать ее температурную зависимость (рис. 8) [15] для оценки энергетического зазора между основным и дополнительным экстремумами. В области температур, когда вклад дырок второй зоны в проводимость только начинается, т.е. когда $v = p_2/p_0 \ll 1$, формула (2) принимает вид:

$$\Delta \alpha \sim \nu \sim \exp(-\Delta \varepsilon_{\nu}/k_0 T), \tag{4}$$

Рис.8. Температурные зависимости коэффициента термоЭДС соединения PbSb₂Te₄: 1, 2 – эксперимент; 3 – 6 – расчетные значения: 3, 4 – при r = 0; 5, 6 – r = 2; 1, 3, 5 – вдоль плоскостей спайности; 2, 4, 6 – вдоль тригональной оси с.

Оценка энергетического зазора между зонами 1 и 2 дала значение $\Delta \varepsilon_v \sim 0.24$ эВ. Таким образом, экспериментальные данные по эффекту Зеебека не противоречат предположению о влиянии дополнительной зоны на явления переноса в $PbSb_2Te_4$. На рис. 9 представлена схема предполагаемого зонного спектра соединения $PbSb_2Te_4$. Используя значение указанного выше энергетического зазора, а также значения эффективных масс, подвижностей легких и тяжелых дырок, их отношения, значения холловских факторов и их отношения для зон 1 и 2 в качестве подгоночных параметров были рассчитаны температурные зависимости компонент R_{ijk} в рамках двухзонной модели, развитой в работе [14] для Sb_2Te_3 . На рис.10 представлены экспериментальные и расчетные значения R_{ijk} . Видно, что расчетные и экспериментальные данные находятся в хорошем согласии друг с другом. Кроме того, в согласии с экспериментом R_{123} больше R_{321} во всем исследованном интервале температур.

Рис. 9. Схема возможного зонного спектра соединения PbSb₂Te₄ p-типа проводимости

Рис. 10. Температурные зависимости компонент коэффициента Холла R_{ijk}: 1, 2 – эксперимент; 3, 4 – расчет по двухзонной модели; 1, 3 – R₁₂₃ – магнитное поле параллельно оси с; 2, 4 – R₃₂₁ – магнитное поле перпендикулярно оси с.

Выводы

 Исследованные тройные соединения являются сильно анизотропными полупроводниками в связи с различием в характере химической связи внутри слоевых пакетов и между ними. Связи внутри пакетов являются ионно-ковалентными, а между пакетами связь преимущественно осуществляется слабыми ван-дер-ваальсовыми силами, что обуславливает наличие ван-дер-ваальсовых щелей, а также наличие ярко выраженных плоскостей спайности.

- На основе рентгеновского анализа монокристаллических сколов *PbBi*_{3.94}*Cd*_{0.06}*Te*₇ сделано заключение о том, что *Cd* замещает в слое атомы *Bi*. Образование дефектов замещения типа *Cd*[']_{Bi} в слое способствует эффективному рассеянию фононов на флуктуациях масс и напряжений, что приводит к уменьшению к_{11(ph)}.
- Проведенное рентгенографическое исследование показало, что при легировании *PbBi₄Te₇* серебром наиболее вероятным механизмом легирования является вхождение серебра в вандер-ваальсовы щели между пятислойными и семислойными пакетами в структуре *PbBi₄Te₇*.
- В случае легирования *PbSb*₂*Te*₄ медью можно предположить частичное вхождение атомов Си в ван-дер-ваальсовы щели между семислойными пакетами в структуре *PbSb*₂*Te*₄.
- Такой механизм встраивания элементов 1Б-подгруппы Периодической системы в решетку соединений *PbBi*₄*Te*₇ и *PbSb*₂*Te*₄ оказывает существенное влияние на термоэлектрические свойства этих соединений. Уменьшается анизотропия всех исследованных кинетических коэффициентов: коэффициента термоЭДС, электро- и теплопроводности.
- Исследование анизотропии термоэлектрических свойств монокристаллов показало, что легирование кадмием улучшает термоэлектрические свойства *PbBi₄Te₇* в направлении плоскостей спайности, а легирование серебром в направлении тригональной оси *с*.
- Показано, что существует заметная анизотропия микротвердости в исследованных монокристаллах *PbBi*₄*Te*₇ и *PbSb*₂*Te*₄, связанная с различием характера химических связей в направлениях, параллельном и перпендикулярном плоскостям спайности.
- На кинетические коэффициенты в направлении тригональной оси *с* сильно влияют потенциальные барьеры на границах слоевых пакетов. В слоистых соединениях компонента тензора к₃₃ (поперек барьеров) существенно меньше компоненты к₁₁ (в направлении плоскостей спайности). По-видимому, это связано с эффективным рассеянием фононов на потенциальных барьерах на границах между семислойными и пятислойными пакетами, разделенными ван-дер-ваальсовыми щелями.
- Роль барьеров при легировании серебром уменьшается вследствие усиления взаимодействия между слоевыми пакетами. Это приводит к заметному росту компоненты тензора электропроводности σ₃₃.
- Проведенное на высококачественных монокристаллах исследование показало, что указанные тройные соединения перспективны для получения среднетемпературного ТЭМ с низкой решеточной теплопроводностью. Выбор оптимальной ориентации монокристаллических образцов способствует улучшению термоэлектрических свойств материала.
- Данные по анизотропии коэффициента термоЭДС и электропроводности *PbSb*₂*Te*₄ хорошо объясняются в рамках однозонной модели с различным механизмом рассеяния носителей заряда в направлении оси *с* и перпендикулярно к ней. Аномальное поведение компонент тензора коэффициента Холла объяснено в рамках двухзонной модели валентной зоны. Оценка энергетического зазора между подзонами 1 и 2 валентной зоны дала значение Δε_ν ~ 0.24 эВ.

Благодарности. Работа поддержана грантом РФФИ № 11-03-00422-а. Авторы благодарят Карпинского О.Г. за помощь в проведении рентгенографического исследования, а также Свечникову Т.Е. за предоставление монокристаллических образцов.

Литература

- 1. Иоффе А.Ф. Полупроводниковые термоэлементы / А.Ф. Иоффе. М., Л.: Издательство АН СССР, 1960. 188 с.
- Kanatzidis M.G. The Role of Solid State Chemistry in the Discovery of New Thermoelectric Materials in "Semiconductors and Semimetals" / Ed. Terry M. Tritt, San Diego; San Francisco; N.Y.; Boston; London; Sydney; Tokyo: Academic Press. – V.69. – 2001. – P. 51.
- 3. Shelimova L.E., Konstantinov P.P., Karpinsky O.G., Avilov E.S., Kretova M.A., Zemskov V.S. *X*-ray Diffraction Study and Electrical and Thermal Transport Properties of *nGeTe mBi*₂*Te*₃ Homologous Series Compounds // Journal of Alloys and Compounds. V.329. № 1-2. 2001. P.50.
- Карпинский О.Г. Рентгенографическое исследование смешанослойных соединений в системе *PbTe-Bi*₂*Te*₃ / О.Г. Карпинский, Л.Е. Шелимова, Е.С. Авилов [и др.] // Неорганические материалы. – 2002. – Т. 38, № 1. – С.24.
- 5. Шелимова Л.Е. Синтез и структура слоистых соединений в системах *PbTe-Bi₂Te₃* и *PbTe-Sb₂Te₃* / Л.Е. Шелимова, О.Г. Карпинский, Т.Е. Свечникова [и др.] // Неорганические материалы. 2004. Т.40, №12. С. 1440.
- 6. Шелимова Л.Е. Структура и термоэлектрические свойства слоистых соединений в системах *Ge*(*Sn*, *Pb*)*Te-Bi*₂*Te*₃ / Л.Е. Шелимова, О.Г. Карпинский, П.П. Константинов [и др.] // Неорганические материалы. – 2004. – Т.40, № 5. – С.530.
- Shelimova L.E., Svechnikova T.E., Konstantinov P.P., Karpinsky O.G., Avilov E.S., Kretova M.A., Zemskov V.S. The *n* and *p*-Type Mixed Layered Tetradymite-Like Compounds with Low Lattice Thermal Conductivity: Growth, Structure and Thermoelectric Properties // Proceedings of 2nd European Conference on Thermoelectrics, Krakow, Poland: The European.Thermoelectric Society. 2004. P.202.
- 8. Голованова Н.С., Зломанов В.П., Тананаева О.И. Исследование взаимодействия теллурида свинца с теллуридом висмута / Н.С. Голованова, В.П. Зломанов, О.И. Тананаева // Известия АН СССР. Неорганические материалы. 1983. Т.19, № 5. С.740.
- 9. Шелимова Л.Е. Анизотропия термоэлектрических свойств слоистых соединений *PbSb*₂*Te*₄ и *PbBi*₄*Te*₇ / Л.Е. Шелимова, Т.Е. Свечникова, П.П. Константинов [и др.] // Неорганические материалы. 2007. Т.43, № 2. С.165.
- 10. Семилетов С.А. Тетраэдрические и октаэдрические ковалентные радиусы / С.А. Семилетов // Кристаллография. 1976. Т.21, № 4. С.752.
- Кутасов В.А., Свечникова Т.Е., Чижевская С.Н. Анизотропия свойств монокристаллов *Bi*₂*Te*_{3-x}*Se*_x / В.А. Кутасов, Т.Е. Свечникова, С.Н. Чижевская // Физика твердого тела. – 1987. – Т.29, № 10. –С. 3008.
- Шелимова Л.Е. Термоэлектрические свойства слоистого соединения GeBi₄Te₇, легированного медью / Л.Е. Шелимова, О.Г. Карпинский, П.П. Константинов [и др.] // Неорганические материалы. – 2002. – Т.38, № 8. – С. 947.
- Коржуев М.А. Механические свойства моно- и поликристаллов Bi₂Te₃ и Bi₂Te_{2.85}Se_{0.15}, легированных медью / М.А. Коржуев, С.Н. Чижевская, Т.Е. Свечникова [и др.] // Неорганические материалы. 1992. Т.28, №.7. С. 1383.
- 14. Житинская М.А., Немов С.А., Иванова Л.Д. Эффекты Нернста-Эттингсгаузена, Зеебека и Холла в монокристаллах *Sb*₂*Te*₃ // Физика твердого тела. Т.44. № 1. 2002. С.41.
- Житинская М.К. Анизотропия термоЭДС слоистого соединения *PbSb*₂*Te*₄ / М.К. Житинская, С.А. Немов, Л.Е. Шелимова // Физика твердого тела. – 2008. – Т.50, № 1. – С.8.

Поступила в редакцию 23.05.2011.