УДК 537.32; 538.93

Ромака В.А.^{1,2}, Рогль П.³, Стаднык Ю.В⁴, Ромака Л.П.⁴, Качаровский Д.⁵, Крайовский В.Я.², Корж Р.О.², Горынь А.М.⁴

¹Институт прикладных проблем механики и математики им. Я. Пидстрыгача НАН Украины, ул. Научная, 3-б, Львов, 79060, Украина; ²Национальный университет "Львовская политехника", ул. С. Бандеры, 12, Львов, 79013, Украина; ³Венский университет, ул. Верингерштрасе, 42, Вена, А-1090, Австрия; ⁴Львовский национальный университет им. Ивана Франко, ул. Кирилла и Мефодия, 6, Львов, 79005, Украина; ⁵Институт низких температур и структурных исследований им. В. Тшебетовского Польской

²Институт низких температур и структурных исследований им. В. Тшебетовского Польской Академии наук, ул. Окольна, 2, Вроцлав, 50-422, Польша

ОСОБЕННОСТИ ЭЛЕКТРОННОЙ СТРУКТУРЫ И МЕХАНИЗМОВ ЭЛЕКТРОПРОВОДНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА Zr_{1-x}Ce_xNiSn

Исследованы кристаллическая и электронная структуры, температурные и концентрационные зависимости магнитной восприимчивости, удельного электросопротивления и коэффициента термоЭДС термоэлектрического материала $Zr_{1-x}Ce_xNiSn$ в диапазонах: T = 80 - 400 K, x = 0.01 - 0.10. Впервые получено увеличение значений коэффициента термоэлектрической мощности $Z^*(x)$ при легировании n-ZrNiSn атомами редкоземельного металла Се в результате реализации валентного состояния Ce^{4+} , что приводит к генерации в кристалле структурных дефектов донорной природы, а твердый раствор $Zr_{1-x}Ce_xNiSn$ делает перспективным термоэлектрическим материалом.

Ключевые слова: электронная структура, электросопротивление, коэффициент термоЭДС.

The crystal and electronic structures, the temperature and concentration dependencies of the magnetic susceptibility, resistivity, and the Seebeck coefficient of the $Zr_{1-x}Ce_xNiSn$ thermoelectric material in the ranges: T = 80 - 400 K, x = 0.01 - 0.10 were studied. Increasing values of the thermoelectric power factor $Z^*(x)$ were for the first time observed in n-ZrNiSn doped with Ce atoms in Ce^{4+} valence state. This leads to the generation of donor defects in the crystal and makes $Zr_{1-x}Ce_xNiSn$ solid solution a promising thermoelectric material.

Key words: electronic structure, resistivity, Seebeck coefficient.

Введение

Попытки получить термоэлектрические материалы с высокой эффективностью преобразования тепловой энергии в электрическую [1] путем легирования полупроводника *n-ZrNiSn* атомами редкоземельных металлов (*R*) не увенчались успехом [2-4]. В [5] показано, что при замещении *Zr* атомами *R* в кристалле генерируются структурные дефекты акцепторной природы, что вызывает дрейф уровня Ферми ε_f от зоны проводимости и приводит к возрастанию значений удельного сопротивления и уменьшению коэффициента термоЭДС. Дело в том, что при формировании твердых тел при участии R атомов их валентные электроны идут на образование химических связей или переходят в зону проводимости, а электроны частично заполненной 4*f*-оболочки в результате небольшого размера (~ 0.04 нм) остаются локализованными на ионном остове. Типичное значение валентности редкоземельных металлов 3+ (R^{3+}). Это означает, что R атом покидают 3 валентных электрона, их 4*f*-оболочка заполнена частично, а генерированный в $Zr_{1-x}R_xNiSn$ дефект имеет акцепторную природу. Во всех исследованных ранее твердых растворах $Zr_{1-x}R_xNiSn$ [6] валентность R атомов составляла 3+, а для 4*f*-электронов всегда реализовывался случай максимальной локализации: соответствующие электронные оболочки вели себя как атомные и характеризовались теми же квантовыми числами *L*, *S*, *J*, что и состояния соответствующего изолированного иона.

В ряде редкоземельных металлов, в частности, *Ce* и *Sm*, *Eu*, *Yb* валентность, наряду 3+, может соответственно иметь значения 4+ и 2+ (аномальная валентность) [7]. Так, в случае Ce^{3+} 4*f*-оболочка содержит 1 неспаренный электрон (4*f*¹), но является пустой (4*f*⁰) в случае валентности Ce^{4+} (атом *Ce* покидают 4 валентных электрона). Это приводит к тому, что для соответствующих атомов различные валентные состояния являются энергетически близкими и атомы редкоземельных элементов могут содержать в среднем дробное число 4*f*-электронов (промежуточная валентность (intermediate valence) [7]). В полупроводниковых соединениях при участии *R* металлов, 4*f*-уровень располагается вблизи зоны проводимости (ε_c).

Таким образом, можно ожидать, что в случае легирования полупроводника n-ZrNiSn, например, атомами Ce их 4f-оболочка может оказаться нестабильной. Поэтому возникла идея использовать свойство Ce изменять валентность при легировании n-ZrNiSn, что может привести к генерированию в кристалле структурных дефектов теперь донорной природы и отвечать условию получения материала с высокой эффективностью преобразования тепловой энергии в электрическую [8]. В свою очередь, исследование магнитной восприимчивости соединений с Ce в парамагнитной области позволяет идентифицировать степень застройки 4f-оболочки [9].

Целью работы является изучение механизмов проводимости n-ZrNiSn, легированного Ce, что позволит прогнозировать поведение кинетических характеристик $Zr_{1-x}Ce_xNiSn$ и исследовать условия получения материала с высокой эффективностью преобразования тепловой энергии в электрическую.

Методики исследований

Исследовались кристаллическая структура, распределение плотности электронных состояний (DOS), магнитные, электрокинетические и энергетические характеристики $Zr_{1-x}Ce_xNiSn$. Образцы синтезированы в лаборатории Института физической химии Венского университета. Методом рентгеноструктурного анализа (порошковый метод) получены массивы данных (дифрактометр Guinier-Huber image plate system, $Cu_{k\alpha 1}$), а с помощью программы Fullprof [10] рассчитаны структурные характеристики. Химический и фазовый составы образцов контролировались с помощью микрозондового анализатора (EPMA, energy-dispersive X-ray analyzer). Расчеты электронной структуры проводились методами Корринги-Кона-Ростокера (KKR) в приближении когерентного потенциала (CPA) и локальной плотности (LDA) [11] с использованием обменно-корреляционного потенциала Moruzzi-Janak-Williams [12]. Точность расчетов положения уровня Ферми ε_f составляет ± 8 мэВ. Измерялись температурные и концентрационные зависимости удельного электроспротивления (γ) (метод Фарадея) образцов

 $Zr_{1-x}Ce_xNiSn$ в диапазонах: T = 80 - 400 К, $N_D^{Ce} \approx 1.9 \cdot 10^{20}$ см⁻³ (x = 0.01) $\div 1.9 \cdot 10^{21}$ см⁻³ (x = 0.10) при напряженности магнитного поля $H \le 10$ кЭ.

Структурные исследования Zr_{1-x}Ce_xNiSn

Микрозондовый анализ концентрации атомов на поверхности образцов $Zr_{1-x}Ce_xNiSn$ показал их соответствие исходным составам шихты, а рентгеновские фазовый и структурный анализы не выявили следов других фаз. Замещение атомов меньшего размера Zr $(r_{z_r} = 0.1602 \text{ нм})$ атомами Ce $(r_e = 0.172 \text{ нм})$ ожидаемо ведет к увеличению значений периода элементарной ячейки $a(x) Zr_{1-x}Ce_xNiSn$ (рис. 1).

Уточнение кристаллической структуры $Zr_{1-x}Ce_xNiSn$ методом порошка с одновременным уточнением изотропных параметров атомного замещения и занятости кристаллографической позиции Zr (4*a*) показало, что наименьшее значение коэффициента несоответствия модели кристаллической структуры и массива брэгговских отражений получено для модели, в которой занятость позиции атомов Zr(Ce) для $x \ge 0.01$, составляет 100 %. Иными словами, как и в предыдущих случаях $Zr_{1-x}Ce_xNiSn$ [6], происходит упорядочение кристаллической структуры, что делает ее устойчивой к температурным и временным изменениям, создавая предпосылки для получения материала со стабильными характеристиками. Напомним, что структура n-ZrNiSn неупорядочена всилу частичного, до ~ 1 % ($y \approx 0.01$), занятия атомами Ni ($3d^{84}s^2$) позиции 4a атомов Zr ($4d^{25}s^2$), что порождает структурные дефекты донорной природы и объясняет природу проводимости электронного типа, а формула соединения имеет вид ($Zr_{1-y}Ni_y$)NiSn [6].

Рис. 1. Изменение значений периода элементарной ячейки a(x) (1) и концентрации y(x) атомов Ni в позиции 4a атомов Zr (2) $Zr_{1-x}Ce_xNiSn$.

С другой стороны, упорядочение кристаллической структуры $Zr_{1-x}Ce_xNiSn$ для x > 0.01 свидетельствует, что на участке x = 0 - 0.02 атомы Ni покидают позицию атомов Zr (4*a*) (рис. 1): происходит «залечивание» структурных дефектов донорной природы, сопровождающееся уменьшением концентрации доноров. Одновременно при замещении Zr атомами Ce в той же кристаллографической позиции 4*a* в кристалле могут генерироваться или структурные дефекты акцепторной природы, при реализации валентного состояния Ce^{3+} , или донорной, когда валентным является состояние Ce^{4+} .

Таким образом, легирование *n-ZrNiSn* атомами редкоземельного элемента *Ce* путем замещения *Zr* сопровождается одновременным уменьшением числа дефектов донорной

природы (атомы Ni в позиции 4a атомов Zr) и генерированием в этой же позиции дефектов донорной или акцепторной природы в зависимости от валентного состояния Ce. Возникает вопрос, а какой является валентность Ce в $Zr_{1-x}Ce_xNiSn$ и испытает ли она изменения при изменении концентрации? Ведь эти параметры являются ключевыми для расчетов электронной структуры твердого раствора. Очевидно определение валентного состояния Ce в $Zr_{1-x}Ce_xNiSn$ является необходимым условием для понимания механизмов проводимости полупроводника.

Исследование магнитного состояния Се в Zr_{1-x}Ce_xNiSn

Легирование слабого диамагнетика *n*-*ZrNiSn* ($\chi = -0.07 \cdot 10^{-6} \text{ см}^3/\Gamma$) [6] наименьшей в эксперименте концентрацией *Ce* (*x* = 0.01) порождает возникновение парамагнитного состояния, а небольшие значения магнитной восприимчивости ($\chi = 0.23 \cdot 10^{-6} \text{ см}^3/\Gamma$), отсутствие зависимости от напряженности магнитного поля и температуры указывает на парамагнетизм Паули (рис. 2).

В таком случае магнитную восприимчивость $Zr_{1-x}Ce_xNiSn$ определяют свободные электроны, а ее значения пропорциональны плотности электронных состояний на уровне Ферми $g(\varepsilon_F)$ (для парамагнетика Паули $\chi \sim g(\varepsilon_F)$). Принимая во внимание, что в интервале концентраций x = 0 - 0.08 зависимость $\chi(x)$ в $Zr_{1-x}Ce_xNiSn$ возрастает, можно предположить генерирование в кристалле структурных дефектов донорной природы. Отсутствие магнитного момента в образцах $Zr_{1-x}Ce_xNiSn$ (парамагнетизм Паули) является следствием отсутствия неспаренного электрона на 4f-оболочке (она является пустой $(4f^0)$), а потому валентным является состояние Ce^{4+} . Однако остается непонятным уменьшение значений $\chi(x) Zr_{1-x}Ce_xNiSn$ при x > 0.08, указывающее на уменьшение $g(\varepsilon_F)$. Одной из причин такого поведения $\chi(x)$ может быть генерирование в кристалле акцепторов по неизвестному пока механизму, однако это предположение требует детального исследования.

Рис. 2. Изменение значений магнитной восприимчивости χ при $T = 276 \ K(1) \ u$ плотности электронных состояний на уровне Ферми $g(\varepsilon_F) \ Zr_{1-x} Ce_x NiSn \ \partial$ ля случаев валентности $Ce^{4+}(2) \ u \ Ce^{3+}(3)$.

Таким образом, исследование магнитной восприимчивости $Zr_{1-x}Ce_xNiSn$ показало, что атомы *Ce* не имеют локального магнитного момента на интервале концентраций x = 0 - 0.08, а генерированные структурные дефекты имеют донорную природу.

Исследование электронной структуры Zr_{1-x}Ce_xNiSn

Для прогнозирования поведения уровня Ферми ε_F , ширины запрещенной зоны ε_g и кинетических характеристик *n*-*ZrNiSn*, легированного *Ce*, проведены расчеты плотности электронных состояний (DOS) для упорядоченного варианта структуры и валентных состояний *Ce*³⁺ и *Ce*⁴⁺ (рис. 3).

Рис. 3. Расчеты плотности электронных состояний DOS $Zr_{1-x}Ce_xNiSn$ *для* $Ce^{+3}(a)$ и $Ce^{+4}(b)$.

Как и ожидалось, в случае Ce^{+3} в кристалле генерируются структурные дефекты акцепторной природы, а потому при увеличении концентрации примеси уровень Ферми ε_F движется от края зоны проводимости ε_C к валентной зоне $\varepsilon_V Zr_{1-x}Ce_xNiSn$, которую пересечет при $x \approx 0.05$. В случае Ce^{4+} происходит перестройка зоны проводимости ε_C , уменьшается ширина запрещенной зоны, а уровень Ферми ε_F фиксируется вблизи зоны проводимости в силу донорной природы дефектов, генерируемых в кристалле.

В данном контексте интересным выглядит сравнение результатов изменения значений магнитной восприимчивости паулиевского парамагнетика $Zr_{1-x}Ce_xNiSn$ и плотности электронных состояний на уровне Ферми $g(\varepsilon_F)$ $Zr_{1-x}Ce_xNiSn$ для случаев валентного состояния Ce^{3+} и Ce^{4+} (рис. 2). Расчеты показывают, что в случае Ce^{3+} , когда в кристалле генерируются акцепторы, плотность состояний $g(\varepsilon_F)$ незначительно уменьшается на участке x = 0 - 0.02, проходя через минимум при $x \approx 0.02$, который связан с прохождением уровнем Ферми ε_F середины запрещенной зоны. При x > 0.02 происходит перекомпенсация полупроводника и дырки становятся основными носителями тока, а уровень Ферми приближается к валентной

зоне, которую пересечет при $x \approx 0.06$, что сопровождается увеличением значений плотности состояний на уровне Ферми $g(\varepsilon_F)$. То есть, изменение плотности состояний на уровне Ферми $g(\varepsilon_F)$ $Zr_{1-x}Ce_xNiSn$ для случая Ce^{3+} не согласуется с ходом зависимости магнитной восприимчивости $\chi(x)$, которая в пределах концентрации x = 0.06 проходит через максимум и в дальнейшем незначительно уменьшается.

Вместе с тем, характер изменения значений плотности состояний на уровне Ферми $g(\varepsilon_F)$ $Zr_{1-x}Ce_xNiSn$ для случая Ce^{4+} , когда в кристалле генерируются доноры, является близким к зависимости $\chi(x)$ (рис. 2), что подтверждает ранее сделанный вывод о валентном состоянии Ce^{4+} . Обращаем внимание на факт расщепления зоны проводимости ε_C в случае Ce^{4+} проявляющийся при $x \approx 0.05$ (рис. 3, δ) в наличии двух экстремумов, что указывает на уменьшение плотности электронных состояний на уровне Ферми. Можно утверждать, что спад зависимости $\chi(x)$ при x > 0.08 отображает факт перестройки электронной структуры $Zr_{1-x}Ce_xNiSn$ и не связан с генерированием структурных дефектов акцепторной природы.

Результаты кинетических исследований $Zr_{1-x}Ce_xNiSn$ позволят дополнительно установить валентное состояние *Ce*, а также природу генерируемых дефектов и их влияние на степень компенсации полупроводника.

Исследование электрокинетических и энергетических характеристик Zr_{1-x}Ce_xNiSn

Температурные и концентрационные зависимости удельного электросопротивления ρ и коэффициента термоЭДС α для образцов $Zr_{1-x}Ce_xNiSn$ приведены на рис. 4 и рис. 5. Температурные зависимости ln ρ (1/*T*) и α (1/*T*) являются типичными для легированных полупроводников с высоко- и низкотемпературными активационными участками [13], с помощью которых вычислены энергетические параметры полупроводника. Так, из активационных участков зависимостей ln ρ (1/*T*) определены значения энергий активации с уровня Ферми ε_f на уровень протекания зоны проводимости ε_1^{ρ} и прыжки электронов ε_3^{ρ} по состояниям с энергиями, близкими к уровню Ферми, а из активационных участков зависимостей активации ε_1^{α} и ε_3^{α} , которые дают, соответственно, значения амплитуды модуляции зон непрерывных энергий и мелкомасштабной флуктуации легированного и компенсированного полупроводника [6, 13].

Рис. 4. Температурные зависимости удельного сопротивления (a) и коэффициента термо ЭДС (б) $Zr_{1-x}Ce_xNiSn: 1 - x = 0.01; 2 - x = 0.02; 3 - x = 0.04; 4 - x = 0.05; 5 - x = 0.07; 6 - x = 0.08; 7 - x = 0.10.$

Введение в *n-ZrNiSn* наименьшей концентрации атомов *Ce* не приводит к изменению типа проводимости $Zr_{1-x}Ce_xNiSn$, как это имело место в предыдущих случаях легирования полупроводника атомами редкоземельных металлов [6], а значения коэффициента термоЭДС остаются отрицательными для всех значений температур и концентраций *Ce* (рис. 4, δ , 5, δ). Так, при 80 K, значение коэффициента термоЭДС изменяется от $\alpha(x = 0) = -14$ мкВ·K⁻¹ до $\alpha(x = 0.01) = -106.5$ мкВ·K⁻¹ и $\alpha(x = 0.10) = -8$ мкВ·K⁻¹. Такое поведение $\alpha(x)$ позволяет утверждать, что образованные в кристалле структурные дефекты имеют донорную природу, которая возможна лишь при валентности *Ce*⁴⁺.

На то, что атомы *Ce*, введенные в *n-ZrNiSn*, генерируют доноры, указывают также зависимости изменения значений удельного сопротивления $\rho(x)$ (рис. 5, *a*). Так, введение наименьшей в эксперименте концентрации *Ce* сопровождается стремительным уменьшением значений $\rho(x)$, например, при 80 K, от $\rho(x = 0) = 4751.1$ мкОм·м до $\rho(x = 0.01) = 402.48$ мкОм·м и $\rho(x = 0.10) = 28.20$ мкОм·м, что возможно лишь при условии легирования полупроводника донорами. В таком случае валентность Ce^{4+} .

Puc. 5. Изменение значений электросопротивления ρ(*x*) (*a*) и коэффициента термоЭДС α(*x*) (*б*) Zr_{1-x}Ce_xNiSn npu температурах: 1 – 80 K; 2 – 160 K; 3 – 250 K; 4 – 300 K; 5 – 380 K.

Таким образом, оба экспериментальных результата – изменение значений удельного электросопротивления $\rho(x)$ и коэффициента термоЭДС $\alpha(x) Zr_{1-x}Ce_xNiSn$, указывают на наличие механизма генерирования структурных дефектов донорной природы, подтверждая валентность Ce^{4+} . А это означает, что степень компенсации полупроводника $Zr_{1-x}Ce_xNiSn$ (отношение ионизированных доноров и акцепторов) должна лишь уменьшаться, поскольку мы прибавляем в полупроводник электронного типа проводимости *n*-*ZrNiSn* доноры путем генерирования структурных дефектов донорной природы. Полученный результат полностью согласуется с экспериментальными исследованиями магнитного состояния *Ce* в $Zr_{1-x}Ce_xNiSn$, а также с результатами расчетов электронной структуры полупроводника.

Изменение значений энергии активации $\varepsilon_1^{\rho}(x) Zr_{1-x}Ce_xNiSn$ (энергия активации с уровня Ферми ε_f на край зоны проводимости) не дает оснований говорить о наличии в кристалле акцепторов. Так, если в *n-ZrNiSn* значение энергии $\varepsilon_1^{\rho}(x)$ отображает положение уровня Ферми ε_f относительно края зоны проводимости, то легирование полупроводника наименьшей в эксперименте концентрацией *Ce* (*x* = 0.01) приводит к уменьшению значений $\varepsilon_1^{\rho}(x)$ (рис. 6, *a*). То есть, уровень Ферми ε_f дрейфует в направлении зоны проводимости, что возможно лишь при генерировании в кристалле доноров при условии валентности Ce^{4+} .

Рис. 6. Изменение значений энергий активации $\varepsilon_1^{\rho}(x)$ (1) и $\varepsilon_1^{\alpha}(x)$ (2) (a) и $\varepsilon_3^{\rho}(x)$ (1) и $\varepsilon_3^{\alpha}(x)$ (2) (б) $Zr_{I-x}Ce_xNiSn$.

В таком случае что же является причиной возникновения максимума при x = 0.01 на зависимости $\varepsilon_1^{\alpha}(x)$, значения которой пропорциональны амплитуде модуляции зон непрерывных энергий $\varepsilon_1^{\alpha}(x)$ (рис. 6, *a*), и которая отображает изменение степени компенсации полупроводника? На первый взгляд, это выглядит как проявление механизма генерирования акцепторов по неизвестному пока механизму, который компенсирует доноры, поскольку максимум $\varepsilon_1^{\alpha}(x)$ при x = 0.01 отображает уменьшение динамики роста числа доноров в $Zr_{1-x}Ce_xNiSn$. И это при том, что происходит постоянное увеличение числа доноров, генерируемых в кристалле в результате занятия Ce^{4+} позиции атомов Zr.

Для объяснения данного эффекта необходимо привлечь результаты структурных исследований, которые показали, что в нелегированном полупроводнике $(Zr_{1-y}Ni_y)NiSn$ позиция атомов Zr (4a) до ~ 1 % (y = 0.01) занята атомами Ni, являющегося источником доноров. На участке концентрации примесных атомов x = 0 - 0.02 происходит уменьшение и полная ликвидация структурных дефектов донорной природы (уменьшение числа доноров) при покидании атомами Ni кристаллографической позиции 4a атомов Zr в результате упорядочения структуры (рис. 1). Поскольку примесные атомы Ce генерируют в кристалле доноры, то на участке x = 0 - 0.02 на каждое число x введенных в кристалл доноров (атомов Ce) происходит уменьшение имеющегося числа доноров на значение y (атомы Ni покидают позицию 4a). Другими словами, максимум на зависимости $\varepsilon_1^{\alpha}(x) Zr_{1-x}Ce_xNiSn$ при x = 0.01 отображает факт уменьшения скорости генерирования доноров, что в полупроводнике обычно имеет место лишь при условии появления акцепторов, которые и приводят к увеличению степени компенсации [13].

И лишь при больших концентрация *Ce* (x > 0.02), когда атомы *Ni* покинут позицию 4*a* (y = 0), увеличение концентрации примесных атомов будет отвечать числу генерируемых доноров, которые в полупроводнике электронного типа проводимости $Zr_{1-x}Ce_xNiSn$ будут лишь уменьшать степень компенсации, о чем свидетельствует ход зависимости $\varepsilon_1^{\alpha}(x)$ (рис. 5, *a*). Незначительный экстремум $\varepsilon_1^{\alpha}(x)$ при x = 0.08 не связан с появлением в кристалле акцепторов, что могло бы повысить степень компенсации полупроводника, а отображает факт перестройки

зоны проводимости ε_C , о чем говорилось выше.

Уменьшение значений энергии активации прыжковой проводимости $\varepsilon_3^{\rho}(x)$ (рис. 5, δ) указывает на уменьшение радиуса локализации электрона, что в полупроводнике *n*-типа возможно при росте числа доноров [13]. Уменьшение значений амплитуды модуляции мелкомасштабной флуктуации от значений $\varepsilon_3^{\alpha}(x=0.01)=9.1$ мэВ до $\varepsilon_3^{\alpha}(x=0.05)=3.9$ мэВ и $\varepsilon_3^{\alpha}(x=0.10)=0.7$ мэВ так же является возможным лишь при условии генерирования доноров, уменьшающем степень компенсации полупроводника [13].

Таким образом, результаты кинетических исследований $Zr_{1-x}Ce_xNiSn$ дают право говорить о механизме генерирования в кристалле доноров, который возможен при условии валентного состояния Ce^{4+} .

Коэффициент термоэлектрической мощности Zr_{1-x}Ce_xNiSn

На рис. 7 представлен характер изменения значений коэффициента термоэлектрической мощности $Z^*(x)$ $Zr_{1-x}Ce_xNiSn$. Видно, что во всем диапазоне концентраций примесных атомов *Ce* значения $Z^*(x)$ являются большими, чем в нелегированном полупроводнике *n-ZrNiSn*. Полученный результат является ожидаемым, поскольку происходит легирование полупроводника электронного типа проводимости примесными атомами, которые генерируют в кристалле структурные дефекты донорной природы [8]. Впервые получен положительный результат увеличения эффективности преобразования тепловой энергии в электрическую [1] при легировании *n-ZrNiSn* атомами редкоземельного металла, поскольку было использовано свойство *Ce* изменять свое валентное состояние от 3+ до 4+ [7, 9].

Рис. 7. Изменение значений коэффициента термоэлектрической мощности $Z^* Zr_{1-x}Ce_xNiSn$ 1 - T = 380 K; 2 - T = 300 K; 3 - T = 250 K; 4 - T = 80 K.

Следует заметить, что значения $Z^*(x)$ $Zr_{1-x}Ce_xNiSn$ меньше рекордных [14], однако именно это побуждает к дальнейшему исследованию механизмов и природы генерируемых в полупроводнике *n*-*ZrNiSn* структурных дефектов при сильном легировании [13], а так же их влияния на механизмы электропроводности.

Выводы

Впервые обнаружено увеличение значений коэффициента термоэлектрической мощности $Z^*(x)$ при легировании *n*-*ZrNiSn* редкоземельным металлом *Ce* в результате реализации

валентного состояния Ce^{4+} , при котором в кристалле генерируются структурные дефекты донорной природы. Выявлен сложный механизм изменения степени компенсации $Zr_{1-x}Ce_xNiSn$ как результат одновременного уменьшения числа дефектов донорной природы (*Ni* в позиции 4*a* атомов *Zr*) и генерирования в этой же позиции дефектов донорной природы при замещении *Zr* атомами Ce^{4+} . Исследованный твердый раствор $Zr_{1-x}Ce_xNiSn$ является перспективным термоэлектрическим материалом.

Работа выполнена в рамках грантов НАН и МОН Украины, № 0113U007687 и № 0114U005464.

Литература

- 1. Анатычук Л.И. Термоэлементы и термоэлектрические устройства / Л.И. Анатычук // К.: Наукова думка, 1979. 768 с.
- 2. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, Efficient Dopants for *ZrNiSn*-based Thermoelectric Materials, *J. Phys. Condens. Matter.* 11, 1697-1709 (1999).
- 3. A. Slebarski, M. Orzechowski, A. Wrona, J. Szade, and A. Jezierski, Structural Properties and Electronic Structure of Some Ternary *d*-electron and *f*-electron Intermetallics, *J. Phys. Condens. Matter.* 12, 1269-1284 (2000).
- 4. S. Katsuyama, R. Matsuo, and M. Ito, Thermoelectric Properties of Half-Heusler Alloys $Zr_{1-x}Y_xNiSn_{1-y}Sb_y$, J. Alloys Compd. 428, 262-267 (2007).
- Yu.V. Stadnyk, V.A. Romaka, Yu.K. Gorelenko, L.P. Romaka, D. Fruchart, and V.F. Chekurin, Metal-Insulator Transition Induced by Changes in Composition in Zr_{1-x}Sc_xNiSn Solid Solution Range, J. Alloys Compd. 400, 29-32 (2005).
- 6. Ромака В.А. Інтерметалічні напівпровідники: властивості та застосування / В.А. Ромака, В.В. Ромака, Ю.В. Стадник // Львів, вид.-во Львівської політехніки, 2011. 488 с.
- 7. Хомский Д.И. Проблема промежуточной валентности / Д.И. Хомский // Успехи физ. наук. 1979. Т. 129, Вып. 3. С. 443 485.
- V.A. Romaka, D. Fruchart, Yu.V. Stadnyk, J. Tobola, Yu.K. Gorelenko, M.G. Shelyapina, L.P. Romaka, and V.F. Chekurin, A Condition of Maximum Power Characteristic to Intermetallic Semiconductors of the *MgAgAs* Structure Type, *Semiconductors* 40 (11), 1289-1395 (2006).
- Магнитные и кристаллографические характеристики соединений R₂Ni₂Ga и R₂Ni₂Al / В.А. Ромака, Ю.Н. Гринь, Я.П. Ярмолюк [и др.] // Физика металлов и металловедение – 1982. – Т. 54, № 4. – С. 691 – 696.
- 10. T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows Tool for Powder Diffraction Patterns Analysis, *Mater. Sci. Forum, Proc. EPDIC7* 378-381, 118–123 (2001).
- M. Schruter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, and G.G. Reddy, First-Principles Investigations of Atomic Disorder Effects on Magnetic and Structural Instabilities in Transition-Metal Alloys, *Phys. Rev. B* 52, 188-209 (1995).
- 12. V.L. Moruzzi, J.F. Janak, and A.R. Williams, *Calculated Electronic Properties of Metals* (NY, Pergamon Press, 1978), 348 p.
- 13. Шкловский Б.И. Электронные свойства легированных полупроводников / Б.И. Шкловский, А.Л. Эфрос // М.: Наука, 1979. 416 с.
- S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Effect of Substitutions on the Thermoelectric Figure of Merit of Half-Heusler Phases at 800 °C, *Appl. Phys. Letters* 88 (16), 042106-1-3 (2006).

Поступила в редакцию 02.12.2014