УДК 62-69

Анатычук Л.И.^{1, 2}, Михайловский В.Я. ¹, Максимук Н.В.¹, Андрусяк И.С.^{1, 2}

¹Институт термоэлектричества НАН и МОН Украины, ул. Науки, 1, Черновцы, 58029, Украина; ²Черновицкий национальный университет им. Юрия Федьковича, ул. Коцюбинского, 2, Черновцы, 58012, Украина

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО АВТОМОБИЛЬНОГО ПРЕДПУСКОВОГО НАГРЕВАТЕЛЯ НА ДИЗЕЛЬНОМ ТОПЛИВЕ

Приведены результаты экспериментальных исследований энергетических характеристик термоэлектрического автомобильного нагревателя на дизельном топливе исходной электрической мощностью 75 – 90 Вт для предпускового подогрева двигателя в условиях пониженных температур окружающей среды.

Ключевые слова: предпусковой нагреватель, термоэлектрический генератор.

The results of experimental research on the energy characteristics of $75-90\,W$ thermoelectric automobile heater operated with diesel fuel for start heating of engine under low ambient temperatures are presented.

Key words: starting pre-heater, thermoelectric generator.

Введение

На сегодняшний день проблема запуска двигателей внутреннего сгорания (ДВС) транспортных средств в условиях пониженных температур окружающей среды решается использованием предпусковых нагревателей, которые серийно производятся рядом фирм – Eberspecher, Webasto, Truma (Германия), Ateso (Чехия), Теплостар (Россия), Мікипі (Япония). Такие нагреватели работают на разных видах топлива и используются в легковых, грузовых автомобилях, автобусах, яхтах и катерах.

Многолетний опыт эксплуатации транспортных средств показывает, что предпусковой подогрев не только обеспечивает надежный запуск двигателя, но и позволяет увеличить его моторесурс на 50-60 тыс. км. за год и уменьшить выбросы токсичных веществ в 5 раз, экономя при этом 90-150 л топлива за один зимний сезон. Кроме того, комфортные условия, обеспечиваемые предпусковым подогревом, полностью исключают возможность возникновения аварий из-за влияния холода на водителя [1].

Однако, несмотря на широкие возможности, предпусковые нагреватели все еще не нашли массового использования. Одной из основных причин этого является необходимость в электрической энергии для питания компонентов обогревателя: топливного насоса, вентилятора для подачи воздуха в камеру сгорания, циркуляционного насоса для прокачки жидкого теплоносителя. Предыдущие исследования показали, что при работе жидкостного обогревателя тепловой мощностью 4 кВт и потребляемой электрической мощностью 40 Вт, аккумулятор

емкостью $60 \text{ A} \cdot \text{ч}$ за 4.5 часа теряет 50 % емкости. Это приводит к разрядке аккумулятора и создает существенные трудности при запуске двигателя. Во избежание разрядки аккумуляторной батареи во время предпускового подогрева, в качестве источника электричества для таких нагревателей рационально использовать термоэлектрический генератор [2-4].

В работе [5] проведен анализ технических характеристик предпусковых нагревателей для разных видов транспортных средств и определены электрические параметры термогенераторов, необходимые для автономной работы таких нагревателей и дополнительного питания другого автомобильного оборудования, в том числе, и подзарядки аккумулятора.

На основе проведенных в [6] компьютерных расчетов в Институте термоэлектричества, Украина создан образец термоэлектрического нагревателя на дизельном топливе исходной электрической мощностью 70 – 90 Вт для предпускового подогрева транспортных средств с объемом двигателя до 4 л.

Целью данной работы является исследования тепловых и электрических характеристик разработанной конструкции нагревателя и проверка его работы на автомобиле.

Строение и принцип работы термоэлектрического предпускового нагревателя

На рис. 1. приведена схема и внешний вид предпускового автомобильного нагревателя с термоэлектрическим источником питания.

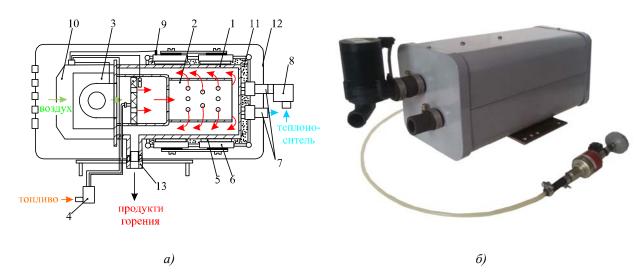


Рис. 1. Схема (а) и внешний вид (б) автомобильного предпускового нагревателя с термоэлектрическим источником питания: 1 — горячий теплообменник; 2 — источник тепла; 3 — вентилятор; 4 — топливный насос; 5 — термоэлектрическая батарея; 6 — холодный теплообменник; 7 — входной и выходной штуцера; 8 — циркуляционный насос; 9 — датчик перегрева; 10 — электронный блок; 11 — тепловая изоляция; 12 — корпус; 13 — выхлопная труба.

Термоэлектрический нагреватель состоит из горячего теплообменника 1, во внутреннем объеме которого расположен источник тепла 2. Подача топлива и воздуха к источнику тепла осуществляется вентилятором 3 и топливным насосом 4. На внешней поверхности горячего теплообменника находится термоэлектрическая батарея 5, тепло от которой отводится теплообменниками 6.

Холодные теплообменники объединены в один гидравлический контур с системой охлаждения двигателя штуцерами 7. Циркуляция жидкого теплоносителя в контуре «нагреватель-двигатель» осуществляется насосом 8. Для контроля температуры теплоносителя на одном из холодных теплообменников расположен датчик перегрева 9.

Запуск и управление работой всех устройств нагревателя (вентилятора, топливного и циркуляционного насосов) осуществляется электронным блоком 10.

Свободный объем между горячим и холодными теплообменниками заполнен тепловой изоляцией **11**. Автомобильный нагреватель с вентилятором, электронным блоком, теплообменниками, и термоэлектрической батареей помещен в корпус **12**. Продукты сгорания топлива отводятся в окружающую среду выхлопной трубой **13**.

Термоэлектрическая батарея состоит из 12 генераторных стандартных модулей «Алтек-1061» [7] электрически соединенных между собой параллельно. Коммутация модулей подбиралась таким образом, чтобы исходное напряжение нагревателя отвечало напряжению на аккумуляторе автомобиля.

В конструкции нагревателя в качестве источника тепла использована дизельная горелка марки Ersatzbrenner D TT-C MB, в качестве топливного и циркуляционного насосов – импульсный насос BTL.DP30.02.12V DAEMPFLER E-TEIL и жидкостная помпа 12V U4847 TT С/Е предпускового обогревателя «Thermo Top Evo 4» (Webasto) [8].

Нагреватель работает следующим образом. Тепловая энергия, полученная вследствие сгорания топлива, нагревает горячий теплообменник, проходит через термоэлектрический преобразователь и отводится жидким теплоносителем, который циркулирует в теплообменниках нагревателя и системе охлаждения двигателя. Вследствие различия температур между горячей и холодной сторонами термопреобразователь генерирует электрический ток. Таким образом, отведенная от термопреобразователя тепловая энергия используется для прогрева двигателя и отопления салона автомобиля, а электрическая – для питания компонентов обогревателя и подзарядки аккумулятора автомобиля.

Экспериментальные стенды для исследований термоэлектрического нагревателя

Исследования энергетических характеристик разработанного термоэлектрического дизельного нагревателя проводились на экспериментальных стендах, схематическое изображение которых приведено на рис. 2 и рис. 3.

Для подбора оптимальных режимов работы нагревателя и отрабатывания алгоритма его запуска и выхода в режим максимальной мощности, питание компонент (вентилятора 1, электрода зажигания дизельной горелки 2, топливного насоса 3, циркуляционной помпы 4) осуществлялось от отдельного источника электрической энергии 5. Расход топлива меняли с помощью регулятора импульсов 6, фиксируя период импульса осциллографом 7. При этом дифференциальными термопарами 8 измеряли температуры на горячем и холодном теплообменниках, а также температуру газов на выходе из выхлопной трубы. Внешнюю нагрузку задавали реостатом 13, снимая ток и напряжение с термоэлектрических модулей.

Исследование работы термоэлектрического нагревателя в паре с автомобильным аккумулятором проводилось на экспериментальном стенде №2 (рис. 3). В этом случае управление работой компонент осуществлялось не вручную, от блоков питания, а электронным блоком **5**.

Степень подзарядки аккумуляторная батарея (АКБ) оценивали путем определения тока в сети «аккумулятор-генератор» и напряжения на аккумуляторе. Температура теплоносителя задавалась панелью управления 7, контроль за установленной температурой осуществляется датчиком 8.

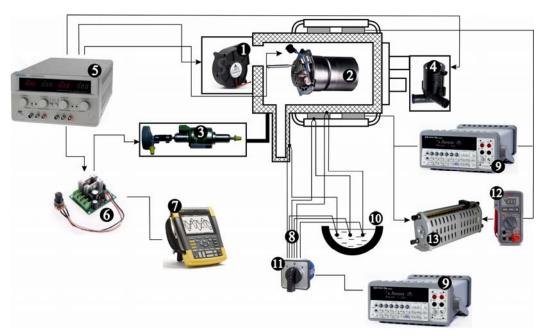


Рис. 2. Схема экспериментального стенда №1: 1 – воздушный вентилятор; 2 – дизельная горелка; 3 – топливный насос; 4 – циркуляционная помпа; 5 – блок питания; 6 – регулятор импульсов; 7 – осциллограф; 8 – термопары; 9 – мультиметр; 10 – дьюар со льдом; 11 – галетный переключатель; 12 – цифровой амперметр; 13 – реостат.

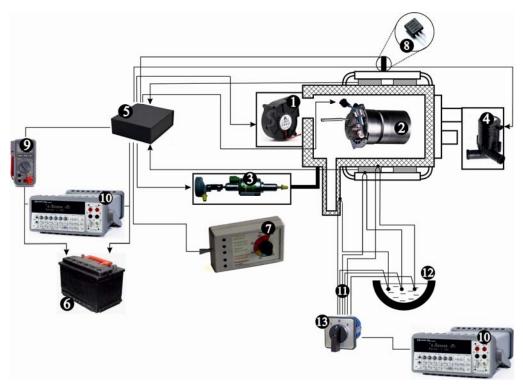


Рис. 3. Схема экспериментального стенда №2: 1 – воздушный вентилятор; 2 – дизельная горелка; 3 – топливный насос; 4 – циркуляционная помпа; 5 – электронный блок управления; 6 – аккумуляторная батарея; 7 – панель управления; 8 – датчик перегрева; 9 – цифровой амперметр; 10 – мультиметр; 11 – термопары; 12 – дьюар со льдом; 13 – переключатель.

Для оценки скорости прогрева теплоносителя систему теплоотвода нагревателя объединяли в один гидравлический контур с термостатом.

Результаты стендовых исследований

Результаты исследования характеристик предпускового автомобильного нагревателя с термоэлектрическим генератором приведены на рис. 4.

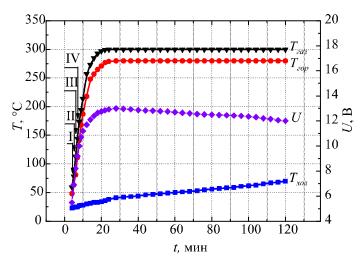


Рис. 4. Зависимость температур холодного T_{xon} и горячего T_{cop} теплообменников, температуры продуктов сгорания T_{ras} , и исходного электрического напряжения U нагревателя от времени работы.

Из приведенных данных видно, что за два часа работы нагревателя холодный теплоноситель, в данном случае вода, прогревается до 70 °C (температуру теплоносителя считали равной температуре холодного теплообменника T_{xon}). При этом уже на 20 мин. работы температуры горячего теплообменника T_{cop} и исходных газов T_{cas} находятся на уровне 280 °C и 300 °C и в дальнейшем не меняются — генератор выходит на стационарный режим. В таких условиях электрическое напряжение U термоэлектрического преобразователя в режиме максимальной мощности находится в пределах 13-12 В при $T_{xon}=30-70$ °C.

Стационарный режим работы нагревателя (режим IV) обеспечивается при тепловой мощности источника тепла Q на уровне 2.3 кВт и затрате холодного теплоносителя $g_t = 0.3 \text{ м}^3/\text{ч}$. Однако для надежного запуска и стабильной работы обогревателя в электронном блоке управления реализована схема плавного выхода на режим, при котором тепловая мощность горелки и затраты топливо-воздушной смеси увеличиваются постепенно (таблица).

Следует отметить, что дальнейшее наращивание тепловой мощности горелки ведет к перегреву горячей стороны модулей ($T_{cop} \sim 350~^{\circ}$ C) и поэтому такие режимы в работе нагревателя не используются.

<u>Таблица</u> Режимы работы предпускового термоэлектрического нагревателя

Режим	Тепловая	Расход топлива	Расход воздуха	Расход теплоносителя
	мощность Q , Вт	g_m , Γ/q	g_{603} , ${ m M}^3/{ m q}$	g_{T} , $\mathrm{M}^{3}/\mathrm{H}$
I	935	79	3.26	0.30
II	1190	100	3.50	
III	1570	132	3.65	
IV	2330	195	4.57	

На рис. 5 приведены зависимости максимальной электрической мощности P и КПД η нагревателя от температуры холодного теплоносителя.

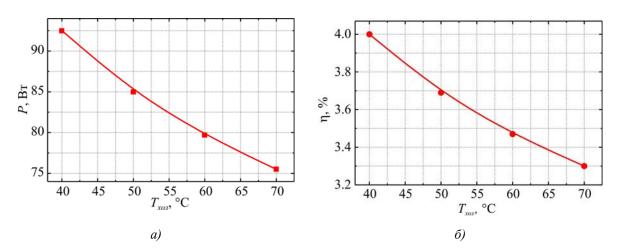


Рис. 5. Зависимость максимальной электрической мощности P(a) и КПД $\eta(b)$ от температуры холодного теплоносителя.

Из рис. 5 следует, что исходная электрическая мощность термоэлектрического предпускового нагревателя составляет 90-75 Вт в интервале температур циркулирующего теплоносителя 40-70 °C. КПД термоэлектрического преобразования составляет 4 % при $T_{xox} = 40$ °C и по мере прогрева теплоносителя уменьшается до 3.3 % при $T_{xox} = 70$ °C.

Результаты исследований работы термоэлектрического предпускового нагревателя в паре с автомобильным аккумулятором приведены на рис. 6.

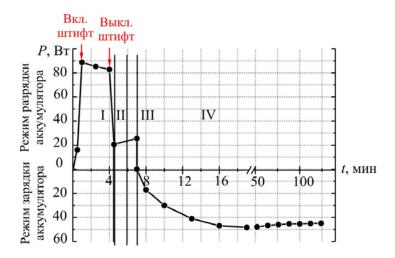


Рис. 6. Зависимость мощности зарядки и разрядки аккумулятора от времени работы термоэлектрического нагревателя. Латинскими цифрами обозначены режимы работы нагревателя (таблица).

Как видно из рис. 6, после запуска нагревателя питание его компонент осуществляется от аккумулятора (0-7) мин). Причем на циркуляционную помпу, топливный насос и вентилятор, в зависимости от режима работы, затрачивается 15-25 Вт электричества, на питание электрода накала горелки -60-70 Вт. Режим разрядки аккумуляторной батареи длится до момента, когда исходная мощность генератора не будет равной потребляемой мощности компонент. После этого электронный блок управления отключает питание компонент от аккумулятора — нагреватель переходит в автономный режим работы. По мере увеличения исходной электрической мощности генератора электронный блок направляет излишек электрической

энергии на подзарядку аккумулятора (7 – 120 мин). Приведенные на рис. 6 данные показывают, что максимальная мощность, которая используется для зарядки, составляет 50 Вт и в дальнейшем несколько снижается до уровня 45 Вт вследствие прогрева холодного теплоносителя.

Результаты исследований на автомобиле

Схема подключения нагревателя к гидравлическому контуру автомобиля приведена на рис. 7.

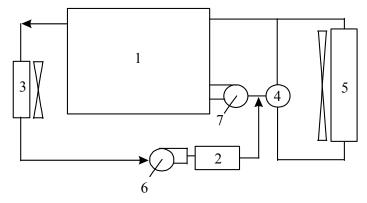


Рис. 7. Схема подключения нагревателя к гидравлическому контуру автомобиля: 1 — двигатель; 2 — термоэлектрический нагреватель; 3 — печка; 4 — термостат; 5 — радиатор; 6 — циркуляционная помпа нагревателя; 7 — штатный насос автомобиля.

В гидравлическом контуре автомобиля термоэлектрический нагреватель 2 целесообразно располагать между двигателем 1 и печкой 3 таким образом, чтобы жидкий теплоноситель, который движется по малому контуру охлаждения («двигатель-печка-штатный насос») из выхода нагревателя попадал на вход в двигатель.

Исследования работы термоэлектрического предпускового нагревателя проводились на автомобиле «Mercedes» с объемом двигателя 2.8 л (рис. 8).

Puc. 8. Термоэлектрический предпусковой нагреватель на автомобиле «Mercedes».

Дизельное топливо в нагреватель подавалось из отдельной емкости, которую вместе с топливным насосом размещали в багажном отделении автомобиля (рис. 9a). С помощью

электро- и топливопроводов топливный насос подключался к установленному под капотом автомобиля нагревателю (рис. 96).

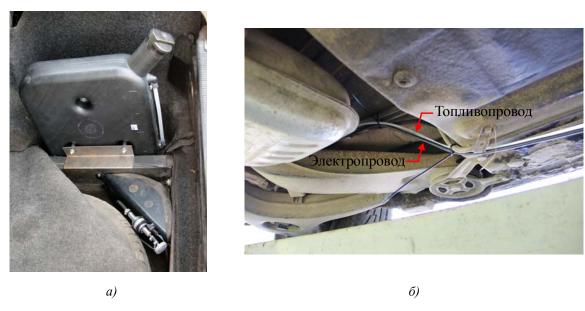


Рис. 9. Размещение топливной емкости и топливного насоса (а), электро- и топливопроводов (б).

Результаты экспериментальных исследований предпускового нагревателя на автомобиле приведены на рис. 10.

Как следует из приведенных данных, за время своей работы термоэлектрический нагреватель обеспечивает предпусковой прогрев двигателя до 50 °C (рис. 10a), что является хоть и не оптимальной, однако достаточной температурой для запуска автомобиля. Включение штатной системы отопления приводит к снижению температуры двигателя $T_{\mathcal{A}}$ на уровень 30 °C, при этом температура в салоне T_{can} поднимается до 10 °C (рис. 10δ). В этих условиях количество затраченного нагревателем дизельного топлива m_{mon} как в первом, так и во втором случае составляет ~ 400 г.

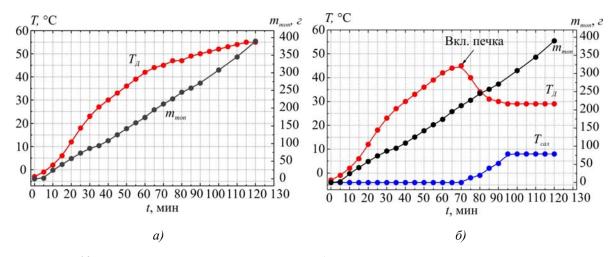


Рис. 10. Результаты экспериментальных исследований термоэлектрического нагревателя на автомобиле: а) прогрев двигателя; б) прогрев двигателя и отопления салона. Температура окружающей среды $T_o = -5$ °C.

Режим зарядки аккумуляторной батареи (рис. 11) включался на 7 мин. работы нагревателя, причем на двадцатой минуте ток зарядки I достиг своего максимума 1.9 А и в дальнейшем практически не менялся. При этом напряжение на аккумуляторе $U_{aккум}$ от момента выхода нагревателя в автономный режим работы к включению вентилятора штатной системы отопления находилось на уровне 13 В, потом резко проседало до 12 В.

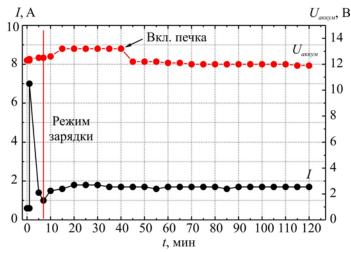


Рис. 11. Зависимость напряжения на аккумуляторе и тока в режиме зарядки от времени работы нагревателя.

Таким образом, за период работы нагревателя на автомобиле излишек электрической мощности генератора, который используется для зарядки аккумулятора, составляет $20-25~\mathrm{Br}$.

Следует заметить, что такое расхождение результатов измерений на автомобиле со стендовыми исследованиями (рис. 6) связано с тем, что в обеих случаях аккумуляторные батареи были заряжены по-разному. Поэтому ток зарядки для каждого конкретного случая будет определяться прежде всего степенью зарядки аккумулятора автомобиля [9].

Аналогичные исследования с целью определения расхода горючего и температур на двигателе и в салоне автомобиля проводились при прогреве двигателя на «холостом ходу». Результаты измерения представлены на рис. 12.

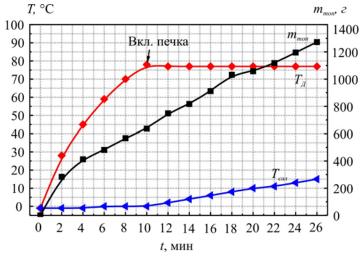


Рис. 12. Результаты экспериментальных исследований прогрева автомобиля на «холостом ходу». Температура окружающей среды $T_o = -5$ °C.

По сравнению с прогревом с помощью термоэлектрического нагревателя, «холостой ход» уже на 10 мин. обеспечивает оптимальную для старта автомобиля температуру на двигателе 80 °С и позволяет поднять температуру в салоне до 15 °С. Однако, в этом случае, масса сожженного топлива m_{mon} на момент включения штатной системы отопления составляет 700 г, что почти в 2 раза превышает количество затраченного топлива при предпусковом подогреве.

Таким образом, если учесть, что за один зимний сезон (90-110 дней) автомобиль осуществляет в среднем 4 холодных пуска в день, то экономия дизельного топлива для автомобиля с объемом двигателя 2.8 л будет составлять 120-150 л. ($\sim 40\%$).

Выводы

- 1. Установлено, что исходная электрическая мощность разработанного термоэлектрического предпускового нагревателя составляет 75 90 Вт при температуре горячего теплообменника 280 °C и температуре холодного теплоносителя в пределах 70 40 °C. При этих условиях максимальный КПД генератора составляет 4 %.
- 2. Определено, что режим максимальной мощности нагревателя достигается при тепловой мощности источника тепла на уровне 2.3 кВт, расходе топлива 195 г/ч и воздуха 4.57 м³/ч. При этом расход холодного теплоносителя составляет 0.3 м³/ч.
- 3. Установлено, что на питание компонент нагревателя затрачивается около 90 Вт электрической энергии аккумулятора. При выходе нагревателя в автономный режим работы электронный блок управления отключает питание компонент от аккумулятора и по мере увеличения исходной электрической мощности генератора направляет излишек электрической энергии на подзарядку аккумулятора. При этом ток зарядки определяется индивидуальной степенью зарядки аккумулятора.
- 4. Установлено, что за два часа работы термоэлектрический нагреватель обеспечивает предыдущий прогрев двигателя автомобиля до температуры 50 °C. Включение штатной системы отопления автомобиля приводит к снижению температуры двигателя на уровень 30 °C, при этом температура в салоне поднимается до 10 °C.
- 5. Показано, что использование термоэлектрического предпускового нагревателя для автомобилей с объемом двигателя 2.8 л позволяет за один зимний сезон сэкономить ~ 40% топлива в сравнении с прогревом на «холостом ходу».

Литература

- 1. Найман В.С. Все о предпусковых обогревателях и отопителях. Москва: АСТ, 2007. 213 с.
- 2. Михайловский В.Я., Максимук Н.В. Режимы работы автомобилей при пониженных температурах. Необходимость использования нагревателей и рациональность применения термогенераторов для их работы. *Термоэлектричество*. 2015. №3. С. 20 30.
- 3. Автомобільний обігрівач з термоелектричним джерелом живлення: пат. 02055 Україна: МПК F01N 5/00, H01L35/00. № 72304; заявл. 23.02.12; опубл. 10.08.12, бюл. № 15.
- 4. Термоелектричне джерело живлення для автомобіля: пат. 13957 Україна: МПК F01N 5/00 H01L 35/00. № 102303; заявл. 28.11.11; опубл. 25.06.13, бюл. № 12.
- Михайловский В.Я., Максимук Н.В. Рациональные мощности термогенераторов для предпусковых нагревателей транспортных средств. Термоэлектричество. 2015. №4. С. 65 – 73.

- 6. Михайловский В.Я., Максимук Н.В. Компьютерное проектирование термоэлектрического автомобильного предпускового нагревателя на дизельном топливе. *Термоэлектричество*. 2016. №1. С. 55 68.
- 7. http://www.inst.cv.ua
- 8. http://www.webasto.com.ua
- 9. Бубнов Ю.И., Орлов С.Б. Герметичные химические источники тока: Элементы и аккумуляторы. Оборудование для испытаний и эксплуатации. Справочник. Санкт-Петербург: ХИМИЗДАТ. 2005. 264 с.

Поступила в редакцию 16.08.2016.