
Технічні науки Scientific Journal «ScienceRise» №3/2(3)2014

 57

11. Diakov, V. P. (2007). Soil deformation mechanism
and model the critical speed of loading. Advances in science
and technology of agriculture, 10, 51–53.

12. Phan, Xuan Dung (1992). Substantiation of the
parameters of the rotary cultivator working body propasnogo.
Tashkent, 17.

13. Shamota, V. A. (1986). Justification shape and size
of processing row spacing Garden. Kishinev : Science, 92–95.

14. Matryshko, V. M. (1999). Research results mills
with vertical axis rotation Kyiv : NAU, 5, 245–250.

Рекомендовано до публікації д-р техн. наук Дмитриков В. П.
Дата надходження рукопису 28.09.2014

Прасолов Євген Якович, кандидат технічних наук, кафедра безпеки життєдіяльності, Полтавська
державна аграрна академія, вул. Сковороди, 1, м. Полтава, Україна, 36003
E-mail: belovol_sa@mail.ru
Крьока Максим Вікторович, Полтавська державна аграрна академія, вул. Сковороди, 1, м. Полтава,
Україна, 36003
E-mail: belovol_sa@mail.ru
Левін Володимир Валер’янович, Полтавська державна аграрна академія, вул. Сковороди, 1, м. Полтава,
Україна, 36003
E-mail: belovol_sa@mail.ru

UDC 621.391
DOI: 10.15587/2313-8416.2014.27459

TESTING AND ANALYSIS SDN TECHNOLOGY

©Taher Abdullah

The Software Defined Networking (SDN) is currently one of the most promising technologies in mobile backhaul
networks based on the OpenFlow protocol. OpenFlow provides a specification to migrate the control logic from
a switch into the controller. In this paper we apply Mininet software to verify the OpenFlow protocol messages.
Keywords: SDN openflow protocol, switch, Mininet, Wireshark

Software Defined Networking (програмно-конфігурована мережа) (SDN) є в даний час однією з найбільш
перспективних технологій в мобільних мережах транзитних з'єднань на основі протоколу OpenFlow.
OpenFlow надає специфікацію для перенастроювання керуючої логіки від комутатора в контролері. У
даній роботі ми застосовуємо програмне забезпечення Mininet для перевірки повідомлення протоколу
OpenFlow.
Ключові слова: протокол OpenFlow програмно-конфігурованої мережі (або протокол OpenFlow SDN),
комутатор, Mininet, Wireshark

1. Introduction
Software Defined Networking (SDN) is a new

approach in networking Technology, designed to create
high level abstractions on top of which hardware and
software infra-structure can be built to support new cloud
computing applications. SDN is also referred to as
programmable network, since it isolates control plane
from data plane and pro-vides an independent and
centralized unit to control the network [1].

OpenFlow protocol follows SDN approach, and
gives programmable control of flows to network
administrators to define a path that a flow takes from
source to destination regardless of the network topology,
and utilizes flow based processing for forwarding
packets. OpenFlow has gathered significant interest
among developers and manufacturers of network
switches, routers, and servers.

The original idea of SDN described in was born at
Stanford University around 2005. The SDN concept
brings the separation of network device features to the
control plane, and the data plane [2]. While the control
plane is programmatically accessible through well-

defined API (Application Programming Inter- face), data
plane ensures a data processing according to the rules
uploaded to the device. OpenFlow has been developed
since 2007, and the first protocol specification was
approved in 2009. Lately the development was adopted
by the Open Networking Foundation (ONF) consortium.

Fig. 1. A SDN approach to separate several layers
and introduce transparency of the network

Технічні науки Scientific Journal «ScienceRise» №3/2(3)2014

 58

The protocol defines the structure of control
messages and it describes the way how messages are
exchanged. ОpenFlow is based on the centralized
approach with a controller as a main driving element.
This controller runs a software platform with the API
enabling the direct control of data flows in a network.

Fig. 2. Main components of an OpenFlow

switch [2]

Network intelligence is (logically) centralized in

software-based SDN controllers, which maintain a global
view of the network. As a result, the network appears to
the applications and policy engines as a single, logical
switch [3]. With SDN, enterprises and carriers gain
vendor independent control over the entire network from
a single logical point, which greatly simplifies the
network design and operation. SDN also greatly
simplifies the network devices themselves, since they no
longer need to understand and process thousands of
protocol standards but merely accept instructions from
the SDN controllers. Perhaps most importantly, network
operators and administrators can programmatically
configure this simplified network abstraction rather than
having to hand-code tens of thousands of lines of
configuration scattered among thousands of devices. In
addition, leveraging the SDN controller’s centralized
intelligence, IT can alter network behavior in real-time
and deploy new applications and network services in a
matter of hours or days, rather than the weeks or months
needed today. By centralizing network state in the
control layer, SDN gives network managers the
flexibility to configure, manage, secure, and optimize
network resources via dynamic, automated SDN
programs. Moreover, they can write these programs
themselves and not wait for features to be embedded in
vendors’ proprietary and closed software environments
in the middle of the network. In addition to abstracting
the network, SDN architectures support a set of APIs that
make it possible to implement common network services,
including routing, multicast, security, access control,
bandwidth management, traffic engineering, quality of
service, processor and storage optimization, energy
usage, and all forms of policy management, custom
tailored to meet business objectives. For example, an
SDN architecture makes it easy to define and enforce
consistent policies across both wired and wireless
connections on a campus.

2. Software-defined networking
The SDN architecture is remarkably flexible; it

can operate with different types of switches and at
different protocol layers [4]. SDN controllers and
switches can be implemented for Ethernet switches
(Layer 2), Internet routers (Layer 3), transport (Layer 4)
switching, or application layer switching and routing.
SDN relies on the common functions found on
networking devices, which essentially involve
forwarding packets based on some form of flow
definition.

An OpenFlow Switch consists of one or more flow
tables and a group table, which perform packet lookups
and forwarding, and an Open Flow channel to an external
controller [5]. The switch communicates with the
controller and the controller manages the switch via the
Open Flow protocol. Using the Open Flow protocol, the
controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and
proactively. Each flow table in the switch contains a set
of flow entries; each flow entry consists of match fields,
counters, and a set of instructions to apply to Matching
packets.

First matching entry in each table is being used. If
a matching entry is found, the instructions associated
with the specific flow entry are executed. If no match is
found in a flow table, the outcome depends on
configuration of the table-miss flow entry: for example,
the packet may be forwarded to the controller over the
OpenFlow channel, dropped, or may continue to the next
flow table. Instructions associated with each flow entry
either contain actions or modify pipeline processing.
Actions included in instructions describe packet
forwarding, packet modification and group table
processing. Pipeline processing instructions allow
packets to be sent to subsequent tables for further
processing and allow information, in the form of
metadata, to be communicated between tables. Table
pipeline processing stops when the instruction set
associated with a matching flow entry does not specify a
next table; at this point the packet is usually modied and
forwarded. Flow entries may forward to a port. This is
usually a physical port, but it may also be a logical port
defined by the switch or a reserved port defined by this
specification. Reserved ports may specify generic
forwarding actions such as sending to the controller,
flooding, or forwarding using non-OpenFlow methods,
such as "normal" switch processing , while switch-
defined logical ports may specify link aggregation
groups, tunnels or loopback interfaces. Actions
associated with flow entries may also direct packets to a
group, which specifies additional processing. Groups
represent sets of actions for flooding, as well as more
complex forwarding semantics (e. g. multipath, fast
reroute, and link aggregation). As a general layer of
indirection, groups also enable multiple flow entries to
forward to a single identifier (e. g. IP forwarding to a
common next hop). This abstraction allows common
output actions across flow entries to be changed
efficiently. The group table contains group entries; each
group entry contains a list of action buckets with specific
semantics dependent on group type. The actions in one or

Технічні науки Scientific Journal «ScienceRise» №3/2(3)2014

 59

more action buckets are applied to packets sent to the
group. Switch designers are free to implement the
internals in any way convenient, provided that correct
match and instruction semantics are preserved. For
example, while a flow entry may use an all group to
forward to multiple ports, a switch designer may choose
to implement this as a single bitmask within the hardware
forwarding table. Another example is matching; the
pipeline exposed by an OpenFlow switch may be
physically implemented with a number of hardware
tables.

3. SDN In MININET Program
3. 1. Mininet Program
Mininet is a network emulator which creates a

network of virtual hosts, switches, controllers, and links.
Mininet hosts run standard Linux network software, and
its switches support OpenFlow for highly flexible custom
routing and Software-Defined Networking [6].

Mininet supports research, development, learning,
prototyping, testing, debugging, and any other tasks that
could benefit from having a complete experimental
network on a laptop or other PC. Mininet provides an
easy way to get correct system behavior (and, to the
extent supported by your hardware, performance) and to
experiment with topologies.

Mininet networks run real code including standard
Unix/Linux network applications as well as the real
Linux kernel and network stack (including any kernel
extensions which you may have available, as long as they
are compatible with network namespaces.) Because of
this, the code you develop and test on Mininet, for an
OpenFlow controller, modified switch, or host, can move
to a real system with minimal changes, for real-world
testing, performance evaluation, and deployment.
Importantly this means that a design that works in
Mininet can usually move directly to hardware switches
for line-rate packet forwarding.

We will need to install these files individually.
The files include virtualization software, a SSH-capable
terminal, an X server, and the VM image. The tutorial
image is distributed as a compressed VirtualBox image
(vdi). VirtualBox enables you to run a virtual machine
inside a physical machine, and is free and available for
Windows, Mac and Linux [7].

3. 2. Message between Controller with Switch

by Open flow Protocol
The communication between the controller and

switch happens using the OpenFlow protocol, where a set
of defined messages can be exchanged between these
entities over a secure channel [8]. The secure channel is
the interface that connects each OpenFlow switch to a
controller. The Transport Layer Security (TLS)
connection to the user-defined (otherwise fixed)
controller is initiated by the switch on its power on. The
controller's default TCP port is 6633. The switch and
controller mutually authenticate by exchanging
certificates signed by a site-specific private key. Each
switch must be user-configurable with one certificate for
authenticating the controller (controller certificate) and

the other for authenticating to the controller (switch
certificate).

The OpenFlow protocol supports three message
types, controller-to-switch, asynchronous, and
symmetric, each with multiple sub-types[9]. Controller-
to-switch messages are initiated by the controller and
used to directly manage or inspect the state of the switch.
Asynchronous messages are initiated by the Switch and
used to update the controller of network events and
changes to the switch state. Symmetric Messages are
initiated by either the switch or the controller and sent
without solicitation. The message types used by
OpenFlow are described below. Can we see this
message by wireshark program in Fig. 3.

Message between controller and switches by
wireshark program Fig 3.

 Symmetric
Symmetric messages are sent without solicitation,

in either direction.
Hello: Hello messages are exchanged between the

switch and controller upon connection startup.
Echo: Echo request/reply messages can be sent

from either the switch or the controller, and must return
an echo reply. They are mainly used to verify the
liveness of a controller-switch connection, and may as
well be used to measure its latency or bandwidth.

Experimenter: Experimenter messages provide a
standard way for OpenFlow switches to offer additional
functionality within the OpenFlow message type space.
This is a staging area for features meant for future
OpenFlow revisions.

 Controller-to-Switch
Features: The controller may request the

capabilities of a switch by sending a features request

Fig. 3. Controller/switch messages are initiated

by the controller and may or may not require a response
from the switch

Технічні науки Scientific Journal «ScienceRise» №3/2(3)2014

 60

Configuration: The controller is able to set and
query configuration parameters in the switch.

Modify-State: Modify-State messages are sent by
the controller to manage state on switches.

Read-State: Read-State messages are used by the
controller to collect various information from the switch,
such as current Configuration, statistics and capabilities.

Packet-out: These are used by the controller to
send packets out of a specified port on the switch, and to
forward packets received via Packet-in messages.

Barrier: Barrier request/reply messages are used
by the controller to ensure message dependencies have
been met or to receive notifications for completed
operations.

Role-Request: Role-Request messages are used
by the controller to set the role of its OpenFlow channel,
or query that role.

Asynchronous-configuration: The Asynchro-
nous-configuration message are used by the controller to
set an additional filter on the asynchronous messages that
it wants to receive on its OpenFlow channel, or to query
that filter.

 Asynchronous
Asynchronous messages are sent without a

controller soliciting them from a switch. Switches send
asynchronous messages to controllers to denote a packet
arrival, switch state change, or error. The four main
asynchronous message types are described below.

Packet-in: Transfer the control of a packet to the
controller. For all packets forwarded to the controller
reserved port using a flow entry or the table-miss flow
entry, a packet-in event is always sent to controllers.

Flow-Removed: Inform the controller about the
removal of a flow entry from a flow table

Port-status: Inform the controller of a change on
a port.

Error: The switch is able to notify controllers of
problems using error messages.

3. 3. Controller Adds Flow Entries In Switch
The Openflow switch, consists of a flow table

containing flow entries, used to perform packet lookup
and forwarding and a secure channel to the controller,
through which Openflow messages are exchanged
between the switch and the controller [10]. Can we see
flow entries by by Mininet in Fig.4.

Fig. 4. Flow entries

Main components of a flow entry in a flow
table [11].

• Match fields: to match against packets. These
consist of the ingress port and packet headers, and
optionally metadata specied by a previous table.

• Priority: matching precedence of the flow entry.
• Counters: updated when packets are matched.
• Instructions: to modify the action set or pipeline

processing.
• Timeouts: maximum amount of time or idle

time before flow is expired by the switch.
• Cookie: opaque data value chosen by the

controller. May be used by the controller to filter flow
statistics, flow modification and flow deletion. Not used
when processing packets.

4. Design topologies in Mininet
The SDN emulator needs topologies that are

defined in Python for its execution, since all topologies
available quite similar structure, parsing them to generate
executable Mininet topologies is possible with ease.
Topologies to be used in Mininet are executable/loadable
Python classes interfacing with the Mininet API. So each
usable Mininet topology is similar, having the same
content in the head and the tail of a file. The difference
between executable and loadable files is in the code at
the end of the Python script. If the topology is executed
from a Linux shell, Mininet is automatically started with
the topology defined and secure shell (SSH) access
available. Loaded means that Mininet was started alone
from the Linux shell and the topology was given as a
calling argument via the topo parameter. The code that
defines SSH access to the topology nodes is not
executed, only the part defining that the topology is used.
In return this means using the topology just by loading
SSH access is not available. So the preferred usage is to
directly execute the topology from a Linux shell.

Mininet can use. An adjustment of the bandwidth
in M bps is also possible by setting the B.w value of all
edges to the given value. Further, the parser requires the
files to be located in the same directory and without
specifying input parameters the program will terminate.
However, some values can be omitted, like the
bandwidth limitation, which is otherwise initialized to
10M bps. If omitted, the remote controller IP is
initialized with”10.0.2.2”, which is the standard IP for
the host OS when using Oracle Virtualbox for
virtualization.

4. 1. Opendaylight controller
OpenDaylight is an open source project with a

modular, pluggable, and flexible controller platform at its
core. This OpenFlow controller is implemented strictly in
software and is contained within its own Java Virtual
Machine (JVM). As such, it can be deployed on any
hardware and operating system platform that supports
Java.

OpenDaylight is a community to promote and/or
propose standardization of SDN northbound APIs, so
that services that use an open flow controller can be
written quickly and effectively. This controller is based
on OSGi (Open Serices Gateway initiative) framework

Технічні науки Scientific Journal «ScienceRise» №3/2(3)2014

 61

and it exposes REST (Representational State Transfer - a
web based) API.

The controller platform itself contains a collection
of dynamically pluggable modules to perform needed
network tasks. There are a series of base network
services for such tasks as understanding what devices are
contained within the network and the capabilities of each,
statistics gathering, etc. In addition, platform oriented
services and other extensions can also be inserted into the
controller platform for enhanced SDN functionality.

The southbound interface is capable of supporting
multiple protocols (as separate plugins), e. g.
OpenFlow 1.0, OpenFlow 1.3, BGP-LS, etc. These
modules are dynamically linked into a Service
Abstraction Layer (SAL). The SAL exposes device
services to which the modules north of it are written. The
SAL determines how to fulfill the requested service
irrespective of the underlying protocol used between the
controller and the network devices [12].

4. 2. Internet Traffic Generator (D-ITG)
To evaluate the performance of Mininet D-ITG in

version 2.8.0-rc1 was used: “Distributed Internet Traffic
Generator (D-ITG) is a platform capable to produce
traffic that accurately adheres to patterns defined by the
inter departure time between packets (IDT) and the
packet size (PS) stochastic processes” [13]. Therefore, it
offers a rich variety of probability distributions for the
traffic generation and uses some models proposed to
emulate sources of various protocols. With it, it is
possible to generate various packet streams and collect

statistics with a logging server. Important modules of the
D-ITG are depicted. The ITGSend module is responsible
for the traffic generation, while the ITGRecv module is
the sink for the packets, which are delivered over a Data
Channel. To collect logging information both, the
ITGSend and ITGRecv are communicating via a Log
Channel with the ITGLog module. For remote control the
ITGManager offers the functionalities to adjust
parameters of ITGSend through the Signaling Channel.

4. 3. Measurement Trials
Fig. 5 depicts the topology of our measurement

trials. S1 to S6 are the switches in the topology, while
Sender/Receiver denote the hosts that are handling
generated traffic. On each sender a ITGSend process is
called to generate the traffic, while on each receiver
ITGRecv handles the receipt of the packets. Besides, the
log server collects the relevant statistical data of the hosts
by running an instance of ITGLog. S4 is shutdown for a
few measurement trials and therefore all dashed links are
unavailable. To sum up, in total we performed trials,
each for TCP and UDP with a duration of one minute for
each trial.

The D-ITG decoder provides data files that can be
analyzed with MatLab. Initially, every trial is evaluated
and plotted as shown in Fig. 6. In the plots, graphs show
specific characteristics in the time sequence from 0 s to
60 s. In more detail, the upper left plot depicts the
throughput in M bps, while the upper right shows the
delay in ms. The lower left plot is evaluating the jitter
value in ms.

Fig. 5. Topology in in web interface controller

Технічні науки Scientific Journal «ScienceRise» №3/2(3)2014

 62

a

b

Fig. 6. Evaluation of traffic with a constant test bitrate of
10Mbps. The delay within the edges of the SDN
topology is 1ms: a–Traffic generation over TCP

b –Traffic generation over UDP

5. Conclusion & future work
This paper presents SDN technology We have

analyzed all messages between switch open flow and
controller and captured in wireshark, Allows us to
understand the relationship between controller and

switch openflow and relationship between switches.
In second part we have used the simulators

mininet and built by the new topology Consists of
6 switches and 6 host in the Python languages, all this
devices controlled by opendaylight controller and
D-ITG program for Generate traffic between devices we
show the results in graphs.

References
1. Khatri, V. (2013). Khatri vikramajeet analysis of

openflow protocol in local area net- degree programme in
information technology. Tampere university of technology, 74.

2. Hegr, T., Bohac, L., Uhlir, V., Chlumsky, P. (2013).
OpenFlow Deployment and Concept Analysis. Information and
communication technologies and services,
11 (5), 327–335.

3. Open New York Foundation Software-Defined
Networking (2012). The New Norm for Networks.

4. Octopress, M. T.-P. (2013). A Quarterly Technical
Publication for Internet and Intranet Professionals. A Quarterly
Technical Publication for Internet and Intranet Professionals.

5. Open Networking Foundation (2013). OpenFlow
Switch Specification, 1–205.

6. Mininet Team-Powered by Octopress (2014).
Mininet Overview. Available at: http://mininet.org/overview/

7. Openflow (2011). Explain all the requirements to
run Mininet.

8. Azodolmolky, S. (2013). Software Defined
Networking with OpenFlow. Packt Publishing, 153.

9. Open Networking Foundation (2014). OpenFlow
Switch Specification, 4, 1–171.

10. Kontesidou, G., Zarifis, K. (2009). Openflow
Virtual Networking : A Flow- Based Network Virtualization
Architecture Openflow Virtual Networking : A Flow-Based.
Royal Institute of Technology.

11. Technical Solution Guide (2013). HP OpenFlow
Protocol Overview, 18.

12. Opendaylight. Available:
http://www.opendaylight.org/ project/tech nical-overview

13. S. Avallone, S., Guadagno, S., Emma, D. (2004).
D-ITG Distributed Internet Traffic Generator. University’s di
Napoli Federico II COMICS Lab, Department di Informatics e
Sistemistica, 4.

Рекомендовано до публікації д-р техн. наук Тіхонов В. І.

Дата надходження рукопису 25.09.2014

Taher Abdullah, PHD, Telecommunication systems department, Odessa National Academy of
Telecommunications named after O. S. Popov, Ukraine
E-mail: abidalla_2004@yahoo.com

