

Технічні науки Scientific Journal «ScienceRise» №5/2(4)2014

68

Семенов Анатолій Олексійович, кандидат фізико-математичних наук, доцент, кафедра товарознавства
непродовольчих товарів, Полтавський університет економіки і торгівлі, вул. Коваля, 3, м. Полтава,
Україна, 36000
E-mail: a-semenov@li.ru

UDC 621.391
DOI: 10.15587/2313-8416.2014.31734

TESTING OF FLOODLIGHT CONTROLLER WITH MININET IN SDN TOPOLOGY

© Taher Abdullah

Програмно-конфігуруєма мережа (ПКМ) є в даний час однією з найбільш перспективних технологій в
мобільних мережах передаючих каналів на основі протоколу OpenFlow. OpenFlow надає функціональні
вимоги для перенесення логіки управління від комутатора в контролер. У цій статті ми застосовуємо
програмне забезпечення Mininet з Floodlight-контролером для перевірки OpenFlow контролера на
здатність виконувати свою функцію
Ключові слова: SDN Openflow protocol, Floodlight-контролер, комутатор, Mininet, Wireshark

The Software Defined Networking (SDN) is currently one of the most promising technologies in mobile backhaul
networks based on the OpenFlow protocol. OpenFlow provides a specification to migrate the control logic from
a switch into the controller. In this paper we apply Mininet software with Floodlight controller to verify the
OpenFlow controller to perform its function
Keywords: SDN Openflow protocol, floodlight controller, switch, Mininet, Wireshark

1. Introduction
Software Defined Networking (SDN) is a new

path in networking technology, designed to create a high
level abstractions and can build hardware and software
infrastructure to support new cloud computing
applications. SDN is considered to as programming
network, because it isolates the surveillance aircraft from
the aircraft data and provides an independent and
centralized network control [1]. OpenFlow protocol
approach SDN, and programmable control flows for
network administrators to determine the path that takes
the flow from the source to the destination, regardless of
the network structure, and flow-based processing is used
to forward packets. OpenFlow collected great interest
among developers and manufacturers of network routers,
servers, and switches.

Network Intelligence is (logically) centralized
software based controllers SDN, which keeps a
comprehensive view of the network. As a result, the grid
appears to applications and drives politics as one logical
switch [2]. With SDN, companies and carriers make
vendor-independent control over the entire network from
the point of view of the logical one, which greatly
simplifies network design and operation. SDN also
greatly simplifies the network devices themselves, they
no longer need to understand and address thousands of
standard protocol but simply reviewed the instructions
from controllers SDN. Perhaps most importantly,
network operators and administrators can configure
programmatically this abstraction of a simplified network
instead of having to hand over tens of thousands of lines
of code configuration across thousands of devices. In
addition, benefit from a centralized console for intel-
ligence SDN can alter the behavior of the network in real
time and the deployment of new applications and net-
work services within hours or days, not weeks or months

required today. By centralized state in the control layer,
the shape 1 shows the layers of SDN technology.

Fig. 1. ONF/SDN architecture [3].

SDN gives network engineers the automated SDN

programs, optimize network resources via dynamic,
manage, flexibility to configure and secure. Moreover,
they can write these programs themselves and not wait
for the features to be embedded in the property and
closed software vendor environments in the middle of the
network as well as to abstracting the network, SDN
architectures. It is provided a set of APIs that make it
possible to implement common network services,
multicast, traffic engineering, including routing, energy
usage, all forms of policy management, security, quality
of service, processor and storage optimization, custom
tailored to meet business objectives and access control.
For example, SDN architecture makes it simple to
determine and the imposition of consistent policies
across both wireless connections on a campus and wire.

Технічні науки Scientific Journal «ScienceRise» №5/2(4)2014

69

2. Formulation of the problem
SDN technology is currently under development.

It is needed a lot of research and testing, because it will
change a lot of the concepts of network engineering and
the author presents his analysis study to understand the
relationship between the layers SDN technology and test
traffic generation of the networks.

3. Literature review
The original idea of SDN is first described at

Stanford University around 2005. The SDN concept
brings the separation of network device features to the
control plane, and the data plane [4]. While the control
plane is programmatically accessible through well-
defined API (Application Programming Interface), data
plane ensures a data processing according to the rules
uploaded to the device. OpenFlow has been developed
since 2007, and the first protocol specification was
approved in 2009. Lately, the development was adopted
by the Open Networking Foundation (ONF) consortium.
The protocol defines the structure of control messages
and it describes the way how messages are exchanged.
ОpenFlow is based on the centralized approach with a
controller as a main driving element. This controller runs
a software platform with the API enabling the direct
control of data flows in a network.

4. Software-Defined Network architecture
The SDN architecture is flexible significantly. It

can work with different types of switches and the various
protocol layers [5]. The controllers and switches can be
implemented for Ethernet switches (Layer 2), Internet
routers (Layer 3), transport (Layer 4) switching, or
application layer switching and routing. SDN depends on
the functions commonly found on networking devices,
which mainly involves forwarding packets based on the
form of the flow definition.

OpenFlow switch includes one or more flow
tables and a group table, which performance packet
searches and forwarding, and an Open Flow channel to
an external controller [6]. The switch contact with the
controller and the controller manages the switch via the
OpenFlow protocol. Using the OpenFlow protocol, the
controller can delete, update, and add flow entries in flow
tables, whether reactively (in answer to packets) and
proactively. Each flow table in the switch includes a set
of flow entries, each flow entry consists of match fields,
counters, and a set of instructions to apply to matching
packets. We can see this table in Fig. 2.

The first matching entry in the table is used when
matching if found the entry, the instructions linked with a
certain flow. If no match is found in the table of flow,
and the result depends on the configuration of the flow
table miss, for example, the packet can be forwarded to
the controller via the channel OpenFlow, dropped, or
may continue to the next flow table. Instructions linked
with each login flow have either procedures or modify
the processing pipeline. Actions existing in instructions
shows packet forwarding, group table processing and
packet modification. Processing instruction pipeline
allows packets to be sent to the following tables for
further processing and allow information, in the form of

metadata, to send between tables. Stop valves address
table when the associated instruction set entry flow
matches the next table outlines; at this stage usually
muddied package and send. The flow of entries
submitted to the port. It is mostly by physical port, but it
can be also logical port specific by the switch or may by
reserved port specified by this specification. Reserved
ports may be designated by generic forwarding actions
such as giving to the controller, flooding, or forwarding
using non-OpenFlow methods, like normal switch
processing, during switch-defined logical ports may be
designated link aggregation groups, tunnels or loopback
interfaces. Actions linked with flow entries may also
direct packets to a group, which sets additional
processing. Groups are sets of actions for flooding, as
well as more complex shipping semantics (e. g., multiple
tracks, fast forwarding, and link aggregation). The layer
of indirection, and empower communities multiple flow
entries are also forward to one ID (for example, IP
forwarding to the next joint). This abstraction allows the
joint production process via the entrances to flow
efficiently. Table group contains entries of the group;
each entry contains a list of buckets work with specific
semantics depend on the collection type. The procedures
are applied in one or more of the buckets of packets sent
to the group. Switch designers are free to implement
internal parts in any convenient way, provided that the
correct match is kept and semantics. For example, while
the entry flow may use all set to forward to multiple
ports, a designer switch may choose to implement this as
a bit mask in the hardware forwarding table. Another
example is matching. Pipeline exposed by switching the
OpenFlow could be implemented physically with a
number of devices.

Fig. 2. Main components of OpenFlow switch

5. Mininet with Floodlight Controller
5.1. Mininet Program
Mininet is a network simulator. Through this

program we can create the network infrastructure of the
switch’s Openflow, hosts and links, linking this topology
with controller to add flow entries to control all of these
networks. Mininet hosts run standard software, Linux
and network switches support OpenFlow flexibility of
high custom forwarding and Software-Defined
Networking [7].

Технічні науки Scientific Journal «ScienceRise» №5/2(4)2014

70

Mininet helps researchers to testing, developing,
learning, debugging and other functions that can benefit
from an experimental network on a laptop or other
computer. Mininet supports the easy way to learn the
system behavior and experiment with topology.

Mininet builds the virtual networks using domain
based on the principle virtualization and network -
features that are existing in modern Linux kernels. in
Mininet hosts are simulated as bash processes running in
a network domain , therefore, any code that will normally
operate on a Linux server (like a client program or web
server) should start just fine within a Mininet "Host".
The Host in “Mininet " has their own special network
interface and can only see their own processes. The
Mininet "Switches" software-based switches like
OpenSwitch or switch reference OpenFlow. Links are the
default Ethernet couples living in the Linux kernel and
connecting our keys for the hosts to follow (operations).

We need to install these files separately .The files
include virtualization program, a SSH-capable terminal,
an X server, and the VM image. The tutorial image
program is publishing as a compressed VirtualBox image
(vbi). VirtualBox enables you to run a virtual machine
inside a physical machine, and is open source image and
available for Windows, Mac and Linux [8].

5. 2. Messages between controller and switch by
OpenFlow protocol

The link between controller and switch Openflow
allows using the OpenFlow protocol, where a set of
specific messages can be exchanged between these actors
over a secure channel [9].The secure channel is the ports
that link each OpenFlow switch to a controller. The
controller begins to communicate in the event of the
switch on its power on. The controller's default TCP port
is 6633. Switch controller authentication of the parties
through an exchange of letters signed by the private key
of the specified location. Each switch must have user
configurable with one certificate for the authentication
controller (controller certificate) and the other for
authentication on the controller (a switch).

The OpenFlow protocol provides three message
types: controller-to-switch, asynchronous, and
symmetric, each with multiple sub-types [10].
Controller-to-switch messages are initiated by the
controller and used to directly administration or viewed
the state of the switch. Asynchronous messages are
initiated by the switch and used to tell the controller of
network activates and changes to the switch state.
Symmetric messages are started by either the switch or
the controller and sent without petition. The message
types used by OpenFlow are described below. We can
see this message by Wireshark program in Fig. 3.

Fig. 3. Message between controller and switches by Wireshark program. (Done by the author)

 Symmetric
Symmetric messages are sent without solicitation,

in either direction.
Hello: Hello messages are exchanged between the

switch and controller upon connection startup.
Echo: Echo request/reply messages can be sent

from either the switch or the controller, and must return
an echo reply. They are mainly used to verify the
liveness of a controller-switch connection, and may as
well be used to measure its latency or bandwidth.

Experimenter: Experimenter messages provide a
standard way for OpenFlow switches to offer additional
functionality within the OpenFlow message type space.
This is a staging area for features meant for future
OpenFlow revisions.

 Controller-to-Switch
Controller/switch messages are initiated by the

controller and may or may not require a response from
the switch.

Features: The controller may request the
capabilities of a switch by sending a features request.

Технічні науки Scientific Journal «ScienceRise» №5/2(4)2014

71

Configuration: The controller is able to set and
query configuration parameters in the switch.

Modify-State: Modify-State messages are sent by
the controller to manage state on switches.

Read-State: Read-State messages are used by the
controller to collect various information from the switch,
such as current configuration, statistics and capabilities.

Packet-out: These are used by the controller to
send packets out of a specified port on the switch, and to
forward packets received via Packet-in messages.

Barrier: Barrier request/reply messages are used
by the controller to ensure message dependencies have
been met or to receive notifications for completed
operations.

Role-Request: Role-Request messages are used
by the controller to set the role of its OpenFlow channel,
or query that role.

Asynchronous-configuration: The
Asynchronous-configuration message is used by the
controller to set an additional filter on the asynchronous
messages that it wants to receive on its OpenFlow
channel, or to query that filter.

 Asynchronous
Asynchronous messages are sent without a

controller soliciting them from a switch. Switches sent
asynchronous messages to controllers to denote a packet
arrival, switch state change, or error. The four main
asynchronous message types are described below.

Packet-in: Transfer the control of a packet to the
controller. For all packets forwarded to the controller
reserved port using a flow entry or the table-miss flow
entry, a packet-in event is always sent to controllers.

Flow-Removed: Inform the controller about the
removal of a flow entry from a flow table

Port-status: Inform the controller of a change on
a port.

Error: The switch is able to notify controllers of
problems using error messages.

5. 3. Controller Adds Flow Entries in Switch
The controller adds flow entries for switch by

secure channel that managed by Openflow protocol.
When reach to switch the flow entries for switch puts in
flow table, switch uses the flow entries for taking
decision of forwarding packets[11]. We can see flow
entries by Mininet in Fig. 4. Main components of a flow
entry in a flow table [12].

• Match fields: to match against packets. It consist
of the ingress port and packet headers, and optionally
metadata specified by a previous table.

• Priority: matching precedence of the flow entry.
• Counters: updated when packets are matched.
• Instructions: to modify the action set or pipeline

processing.
• Timeouts: maximum amount of time or idle

time before flow is expired by the switch.
• Cookie: opaque data value chosen by the

controller. It may be used by the controller to filter flow
statistics, flow modification and flow deletion. It is not
used when processing packets.

Fig. 4. Flow entries (Done by the author)

6. Design of topologies in Mininet
The Mininet is one of many simulator network

programs for the SDN technology and the most common
provides many of the most important features that hasn’t
a lot of resources and just needs a laptop to create
hundreds of nodes and tested, is an open source program
needs topologies that are defined in Python for its
execution, built with some topological simple and can
create the appropriate topology for the test by typing
some lines in the Python language. So each usable
Mininet topology is similar, having the same content in
the head and the tail of a file, in Mininet version 2.1.0 not
need for remote controller because there are some
controllers as pox and nox but when need to use
floodlight controller must be separate for Mininet.

Mininet can use to modify of the bandwidth in
Mbps is also possible by setting the B.w value of all
hosts to the given value. Further, the parser requires the
files to be located in the same directory and without
specifying input parameters the program will terminate.
However, some values can be deleted, like the bandwidth
limitation, which is otherwise initialized to 10 Mbps. In
this case the remote controller IP is initialized with
“10.0.2.2” which is the standard IP for the host OS when
using Oracle Virtualbox for virtualization.

6.1. Floodlight controller
The Floodlight Open SDN Controller is a

company-class, open source, Java-based OpenFlow
Controller. It is supported by a group of developers
among them of engineers from Big Switch Networks.
OpenFlow protocols are an open standard managed by
ONF. It specifies a protocol through switch a remote
controller can modify the behavior of networking devices
through a well-defined “forwarding instruction set”

Floodlight is designed to work with the increasing
number of switches, routers, virtual switches, and access
points that support the OpenFlow standard [13].

Feature Floodlight:
 Offered module loading system makes it easy to

extend and improvements.
 Simple to set up with minimum accreditation.
 Support a wide range of virtual and physical

OpenFlow switches.

Технічні науки Scientific Journal «ScienceRise» №5/2(4)2014

72

 Possibility of implementation mixed OpenFlow
and non-OpenFlow networks it can manage

Multiple of OpenFlow switches.
 High-performance design is the essence of a

commercial product from Big Switch Networks.
 Support for OpenStack (link) cloud

synchronization platform.

Fig. 5. Floodlight OpenFlow controller [12]

6. 2. Internet Traffic Generator (D-ITG)
To evaluate the performance of Mininet D-ITG in

version 2.8.0-rc1 was used: “Distributed Internet Traffic
Generator (D-ITG) – platform capable to produce traffic
that accurately adheres to patterns defined by the inter
departure time between packets (IDT) and the packet size
(PS) stochastic processes” [14]. Therefore, it offers a rich
variety of probability distributions for the traffic
generation and uses some models proposed to emulate
sources of various protocols. With this, it is possible to
generate various packet streams and collect statistics with
a logging server. Important modules of the D-ITG are
depicted. The ITGSend module is responsible for the
traffic generation, while the ITGRecv module is the sink
for the packets, which are delivered over a data channel.
To collect logging information both, the ITGSend and
ITGRecv are communicated via a Log Channel with the
ITGLog module. For remote control the ITGManager
offers the functionalities to adjust parameters of ITGSend
through the Signaling Channel.

6. 3. Measurement Trials
Fig. 6 depicts the topology of our measurement

trials. S1 to S6 are the switches in the topology, while
sender/receiver denotes the hosts that are handling
generated traffic. On each sender of ITGSend process is
called to generate the traffic, while on each receiver
ITGRecv handles the receipt of the packets. Besides, the
log server collects the relevant statistical data of the hosts
by running an instance of ITGLog. S4 is shutdown for a
few measurement trials and therefore all dashed links are
unavailable. To sum up, in total we performed trials,
each for TCP and UDP with a duration of one minute for
each trial.

Fig. 6. Topology in web interface Floodlight controller

(Done by the author)

The D-ITG decoder provides data files that can be

analyzed with MatLab. Initially, every trial is evaluated
and plotted as shown in Fig. 7. The graphs show specific
characteristics in the time sequence from 0 s to 60 s in
the plots. In more detail, the upper left plot depicts the
throughput in Mbps, while the upper right shows the
delay in ms. The lower left plot is evaluating the jitter
value in ms.

a b

 c d

Fig. 7. Evaluation of traffic with a constant test
bitrate of 10Mbps. The delay within the edges of the

SDN topology is 1ms: a, b – traffic generation over TCP;
c, d – traffic generation over UDP

7. Conclusion
This paper presents the SDN technology. We have

analyzed all messages between switch OpenFlow and
Floodlight controller and captured in Wireshark that
allows us to understand the relationship between contro-
ller and switch Openflow and relationship between
switches.

In second part we have used the Mininet
simulators and built by the new topology consists of

Технічні науки Scientific Journal «ScienceRise» №5/2(4)2014

73

7 switches and 8 host in the Python languages, all this
devices controlled by Floodlight controller through add
flow entry for switches to teach switches how reach for
each other and D-ITG program for generate traffic
between devices. We show the results in graphs.

References

1. Khatri, V. Khatri vikramajeet analysis of openflow
protocol in local area Net – degree programme in information
technology [Text] / V. Khatri. – Tampere University of
technology, 2013. – 74 p.

2. Open networking Foundation Software-Defined
Networking [Text] / The New Norm for Networks, 2012.

3. OpenFlow-enabled SDN and Network Functions
Virtualization [Text] / Open networking Foundation, 2014.

4. Hegr, T. OpenFlow Deployment and Concept
Analysis [Text] / T. Hegr, L. Bohac, V. Uhlir, P. Chlumsky //
Advances in Electrical and Electronic Engineering. – 2013. –
Vol. 11, Issue 5. – P. 327–335. doi: 10.15598/aeee.v11i5.884

5. Octopress, M. T.-P. A Quarterly Technical
Publication for Internet and Intranet Professionals [Text] /
M. T.-P. Octopress. – A Quarterly Technical Publication for
Internet and Intranet Professionals, 2013

6. Open Networking Foundation [Text] / OpenFlow
Switch Specification, 2013. – P. 1–205.

7. Mininet Team-Powered by Octopress [Electronic
resource] / Mininet Overview, 2014. – Available at:
http://mininet.org/overview/

8. Openflow [Text] / Explain all the requirements to run
Mininet, 2011.

9. Azodolmolky, S. Software Defined Networking with
OpenFlow [Text] / S. Azodolmolky. – Packt Publishing,
2013. – 153 p.

10. Open Networking Foundation [Text] / OpenFlow
Switch Specification. – 2014. – Vol. 4. – P. 1–171.

11. Kontesidou, G. Openflow Virtual Networking :
A Flow – Based Network Virtualization Architecture Openflow
Virtual Networking : A Flow-Based [Text] / G. Kontesidou,
K. Zarifis. – Royal Institute of Technology, 2009.

12. Technical Solution Guide [Text] / HP OpenFlow
Protocol Overview, 2013. – 18 p.

13. Opendaylight [Electronic resource] / Available at:
http://www. projectfloodlight.org/floodlight/

14. Avallone, S. D-ITG Distributed Internet Traffic
Generator [Text] / S. Avallone, S. Guadagno, D. Emma. –
University’s di Napoli Federico II COMICS Lab, Department
di Informatics Sistemistica, 2004. – 4 p.

Refernces
1. Khatri, V. (2013). Khatri vikramajeet analysis of

openflow protocol in local area Net – degree programme in
information technology. Tampere University of technology, 74.

2. Open networking Foundation Software-Defined
Networking (2012). The New Norm for Networks.

3. OpenFlow-enabled SDN and Network Functions
Virtualization (2014). Open networking Foundation.

4. Hegr, T., Bohac, L., Uhlir, V., Chlumsky, P. (2013).
OpenFlow Deployment and Concept Analysis. Advances in
Electrical and Electronic Engineering, 11 (5), 327–335. doi:
10.15598/aeee.v11i5.884

5. Octopress, M. T.-P. (2013). A Quarterly Technical
Publication for Internet and Intranet Professionals. A Quarterly
Technical Publication for Internet and Intranet Professionals.

6. Open Networking Foundation (2013). OpenFlow
Switch Specification, 1–205.

7. Mininet Team-Powered by Octopress (2014). Mininet
Overview. Available at: http://mininet.org/overview/

8. Openflow (2011). Explain all the requirements to run
Mininet.

9. Azodolmolky, S. (2013). Software Defined
Networking with OpenFlow. Packt Publishing, 153.

10. Open Networking Foundation (2014). OpenFlow
Switch Specification, 4, 1–171.

11. Kontesidou, G., Zarifis, K. (2009). Openflow
Virtual Networking : A Flow- Based Network Virtualization
Architecture Openflow Virtual Networking : A Flow-Based.
Royal Institute of Technology.

12. Technical Solution Guide (2013). HP OpenFlow
Protocol Overview, 18.

13. Opendaylight. Available at: http://www.
projectfloodlight.org/floodlight/

14. Avallone, S., Guadagno, S., Emma, D. (2004).
D-ITG Distributed Internet Traffic Generator. University’s di
Napoli Federico II COMICS Lab, Department di Informatics
Sistemistica, 4.

Рекомендовано до публікації д-р техн. наук Тіхонов В. І.
Дата надходження рукопису 13.11.2014

Taher Abdullah, PhD, Telecommunication systems department, Odessa National Academy of
Telecommunications named after O. S. Popov, st. Blacksmith, 1, Odesa, Ukraine, 65000
E-mail: abidalla_2004@yahoo.com

УДК 004.925
DOI: 10.15587/2313-8416.2014.

ОБ ЭФФЕКТИВНОМ ИСПОЛЬЗОВАНИИ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ
СОЗДАНИЯ ИНТЕРАКТИВНЫХ ВЕБ-ДОКУМЕНТОВ

© И. Н. Егорова, А. С. Трофименко

Статья посвящена исследованию наиболее востребованных современных технологий разработки веб-
документов, таких как: API Canvas, WebGL, SVG и CSS3. Рассмотрены достоинства и недостатки
каждой из технологий в визуальном представлении информации: анимации, интерфейсах, 2D и 3D
графике. Проведен анализ областей их применения, разработаны рекомендации по наиболее
эффективному их использованию для разработки интерактивных WEB-документов
Ключевые слова: веб-документ, интернет, интерактивность, разработка, спецификация, HTML5, SVG,
векторная графика, WebGL

